# Comparison of safety and efficacy of dapagliflozin and empagliflozin in type 2 diabetes mellitus patients in India

Amit Varshney<sup>1\*</sup> , Ramakant Rawat<sup>2</sup>

#### INTRODUCTION

Approximately 422 million people are suffering from diabetes worldwide. Most of the population is living in third world or developing countries, and about 2 million deaths are directly or indirectly caused by diabetes each year. Among the adult population of India, there are 73 million cases of diabetes<sup>1</sup>. "From 11.9 and 14.2% of adults in urban India have diabetes; in rural India, the prevalence is between 3.0 and 7.8%, with a much higher incidence among people over 50" (ICMR-INDIAB Study)<sup>2</sup>.

The mechanism of action of novel antidiabetic drugs known as sodium glucose co-transporter (SGLT-2) inhibitors differs significantly from those of traditional antidiabetic medications<sup>3</sup>. Anti-glucose reuptake inhibitors like SGLT-2 achieve their hypoglycemic effect by increasing glucose excretion in the urine. A medication that inhibits SGLT-2 would be perfect in her case because her kidneys reabsorb around 90% of the glucose they filter throughout the PCT process<sup>4</sup>. The FDA has so far approved canagliflozin, dapagliflozin, and empagliflozin as drugs in this group<sup>5</sup>. Numerous studies have shown that SGLT-2 inhibitors have favorable effects on body weight (BW), blood pressure, dyslipidemia, and fatty liver disease in addition to lowering the risk of hypoglycemia. Positive results from several clinical studies on the subject of cardiovascular (CV) and renal safety have been reported<sup>6,7</sup>. According to the current guidelines, SGLT-2 inhibitors should be used as second-line antidiabetic drugs when first-line antidiabetic medications fail to adequately control blood sugar levels. However, they may be used well alone as a therapy. Patients with type 2 diabetes were investigated to determine the safety and tolerability profile of SGLT-2 inhibitors (dapagliflozin and empagliflozin)8.

#### **METHODS**

To collect the information for this review, searches were performed in Scopus, Web of Science, Embase, PubMed, and MEDLINE for "Comparison of safety and effectiveness of Dapagliflozin with Empagliflozin in patients with type 2 DM in India." Articles published worldwide between 2010 and 2022 were included.

## **HBA1C REDUCTION**

The majority of Indian patients (56.3%) who started using dapagliflozin at the beginning had HbA1c levels between 8 and 10% with a mean $\pm$ SD value of 9.11 $\pm$ 1.44. Patients who started on empagliflozin had an HbA1c% of 7.92 $\pm$ 0.7018 (mean $\pm$ SD)<sup>9</sup>.

Statistically substantial reductions in HbA1c were observed at 3 months (1.00%) and 6 months (1.49%) in Indian patients who had started dapagliflozin therapy. Therefore, across all of his HbA1c stratified groups (i.e., 8, 8–10, and >10%) from baseline to 3 and 6 months, the HbA1c value considerably decreased (p<0.001) in patients taking dapagliflozin. The mean (SD) HbA1c level was 9.11% (1.44%) at baseline, 8.11% (1.22%) at 3 months, and 7.62% (1.04%) at 6 months. Patients using 10 mg of empagliflozin had a 0.81% decrease in HbA1c levels, while those using 25 mg had a 1.11% reduction by week 76. In patients with baseline HbA1c values considerably greater than 7%, both 10 and 25 mg of empagliflozin were able to lower HbA1c levels to below 7% after 76 weeks of therapy (20.8 and 28.0%, respectively)<sup>10</sup>.

\*Corresponding author: dr.amit.varshney2020@gmail.com

Conflicts of interest: the authors declare there is no conflicts of interest. Funding: none.

Received on Januray 25, 2023. Accepted on May 20, 2023.

<sup>&</sup>lt;sup>1</sup>Kanti Devi Medical College Hospital and Research Center, Department of Emergency Medicine – Mathura (UP), India.

<sup>&</sup>lt;sup>2</sup>Uttar Pradesh University of Medical Sciences, Department of Medicine - Etawah (UP), India.

## WEIGHT REDUCTION

Indian patients using dapagliflozin lost an average of 1.14 (2.21) kg after 3 months and 1.86 (3.04) kg after 6 months (SD). Individuals with a BMI greater than 30 lost their maximum weight [mean (SD): 1.60 (2.50) kg] at 3 months and [2.56 (3.50) kg] at 6 months<sup>9</sup>.

Therapy with either empagliflozin 10 or 25 mg for 76 weeks resulted in a decrease in BW in Indian patients (1.41 and 1.50 kg, respectively)<sup>10</sup>.

#### **BLOOD PRESSURE AND HEART RATE**

After 3 and 6 months of therapy, patients using dapagliflozin had decreases in systolic blood pressure (SBP) of 3.24 (11.44 mmHg) and 3.77 (12.22 mmHg), respectively, from base-line<sup>8</sup>. The SBP of patients using empagliflozin was observed to decrease by 3.3 and 3.8 mmHg, respectively, when the drug is given in doses of 10 and 25 mg<sup>9</sup>. Although dapagliflozin reduced diastolic blood pressure (DBP) by 1.13 (7.67) and 1.46 (8.30) mmHg after 3 and 6 months, respectively, empagliflozin reduced DBP by 1.0 mmHg after 10 mg and 1.6 mmHg after 25 mg. However, these reductions in SBP and DBP are non-significant<sup>9,10</sup>.

Heart rate reductions are non-significant with both the drugs in any doses and for any duration of treatment.

#### **ADVERSE EFFECTS**

Only 2.9% Indian patients on dapagliflozin treatment had one adverse event, while 2.2% Indian patients on empagliflozin had one adverse event. One patient on dapagliflozin and no patient on empagliflozin had greater than one serious adverse event requiring hospitalization. Adverse events such as vulvovaginitis were reported in 0.4% of patients using dapagliflozin and 0.6% of patients using empagliflozin. Fungal infections are also common in empagliflozin 0.3% than dapagliflozin (0.2%). The incidence of urinary tract infections is equal in both groups (0.2%).

Mild adverse events such as headache, constipation, and temperature are infrequent but present in both groups.

Hypoglycemia is an important side effect that should be mentioned, which is 0.2% associated with dapagliflozin and none with patients using empagliflozin<sup>9,10</sup>.

#### DISCUSSION

Not only there are very small data regarding safety and efficacy of dapagliflozin and empagliflozin at the national level, but also the trials and papers addressing this issue are also inconclusive. Thus, the only comparison left is with western world trials. Studies from southern Europe showed that there is a role of geographical diversity in dapagliflozin effect on decreasing HbA1c levels, as well as CV and renal outcomes. As we all know, India is also a country of geographical diversity, so this may be true in Indian perspective also. There are differences between CV and renal effects in northern as well as southern parts of India because of cultural, dietary, and religious differences, so there is no uniformity in the effects of these two drugs.

The mean HbA1c level of dapagliflozin-treated patients was 7.62% after 6 months of treatment, which is close to the ADA-recommended target HbA1c level of <7.0%. Some studies showed a much higher reduction in HbA1c levels from basal HbA1c levels after 6 months (1.49%), which may be due to higher basal HbA1c levels. Results from various studies that are conducted at different parts of the world have shown a positive association between basal HbA1c levels<sup>11-13</sup> (Table 1). However, a study on Chinese patients treated with dapagliflozin reported similar decrease in HbA1c levels<sup>14</sup>. (The percentage of patients who responded well to medication was 1.04 and 1.11%, respectively, with p<0.0001 for both dapagliflozin doses when compared with the placebo group.) Indian patients using empagliflozin have a mean reduction of 0.8-1.1% in HbA1c levels, which is equal to that reported in studies by Ferrannini et al.<sup>15</sup> and Rosenstock et al.<sup>16</sup>. The less reduction in HbA1c levels may be due to lower HbA1c baseline levels. In a meta-analysis, it was shown that a small but non-significant drop in the HbA1c levels was observed in both Asian and non-Asian patients treated with the same dose of SGLT-2 inhibitors. However, when analyzed per patient's baseline HbA1c value, the reduction in HbA1c levels was very clear. For individuals with higher baseline HbA1c levels, the decreases in HbA1c levels at 3 and 6 months were greater. Early intervention with SGLT-2 inhibitors may assist individuals with long-standing type 2 diabetes achieve their HbA1c goals more rapidly as their basal HbA1c levels are often higher than usual<sup>10,15-17</sup> (Table 2).

At 6 months, Indian patients using dapagliflozin had lost an average weight of 1.86 kg. Most of the weight loss occurred in patients with BMIs greater than 30, who lost an average of 1.60 kg after 3 months and 2.56 kg after 6 months<sup>9</sup>. At 76 weeks of therapy, patients using empagliflozin had a significant reduction in BW of 1.50 kg in adjusted mean weight<sup>10</sup>. Neeland et al. carried out the same study throughout the course of two distinct cohorts, at 12 and 24 weeks. As seen here, after 12 weeks of using empagliflozin, the average weight loss was 1.7 kg, and after 24 weeks, the average weight loss was 1.9

| Clinical trial                                                                                                                                           | Population                                                                                                                            | No. of<br>patients | Comparison<br>drug                                                                                                                          | Primary<br>end point                                                 | Results                                                                                                                                                        | Weight<br>change in kg                                                                                                                            | Adverse effects                                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Viswanathan<br>et al. <sup>9</sup><br>Dapagliflozin<br><b>vs.</b> placebo<br>(Indian<br>Population)                                                      | Treatment<br>naïve<br>patients<br>insufficiently<br>managed on<br>diet<br>and exercise                                                | 1,941              | Dapagliflozin 10<br>mg <b>vs.</b><br>placebo                                                                                                | Median HbA1c<br>rise or fall<br>between 3 and<br>6 months            | At 3 and 6<br>weeks:<br>HbA1c<br>reductions in<br>dapagliflozin<br>and placebo<br>w ere<br>-1.00,<br>-1.04, and<br>+0.02%,<br>respectively.                    | At 3 and 6<br>weeks:<br>Reductions in<br>weight with<br>dapagliflozin<br>and placebo<br>were<br>-1.14,<br>-1.86, and<br>-0.72 kg,<br>respectively | Urogenital<br>infections (mainly<br>vulvovaginitis and<br>fungal infection)<br>were more<br>frequent with<br>dapagliflozin<br>than placebo                           |
| Bailey et al. <sup>11</sup><br>Dapagliflozin<br>with metformin<br><b>vs.</b> placebo with<br>metformin<br>(North<br>and South<br>American<br>population) | Diabetic<br>patients<br>inadequately<br>controlled with<br>metformin<br>alone                                                         | 564                | Dapagliflozin 10,<br>5, 2.5 mg, and<br>placebo with<br>metformin<br>(≥1,500 mg/day)                                                         | Percentage<br>reduction<br>from<br>baseline<br>HbA1c at<br>102 weeks | At 102 weeks:<br>Dapagliflozin<br>10, 5, 2.5 mg,<br>and placebo<br>reduced<br>hemoglobin<br>A1c by 0.78,<br>0.58, 0.48,<br>and 0.02%,<br>respectively          | Weight loss<br>was 2.86<br>pounds with<br>dapagliflozin<br>plus metformin<br>and 0.89<br>pounds with<br>placebo                                   | Genital infections<br>were more<br>frequent with<br>dapagliflozin<br>than placebo                                                                                    |
| Ferrannini<br>et al. <sup>12</sup><br>Dapagliflozin <b>vs.</b><br>placebo<br>(Multi-national<br>population)                                              | Treatment<br>naïve<br>patients<br>insufficiently<br>managed on<br>diet<br>and exercise<br>alone with<br>HbA1c<br>between<br>7 and 10% | 485                | Dapagliflozin<br>2.5,<br>5, and 10 mg<br>daily<br><b>vs.</b> placebo                                                                        | Percentage<br>reduction<br>from<br>baseline<br>HbA1c at<br>24 weeks  | At 24 weeks:<br>Hemoglobin<br>A1c (HbA1c)<br>decreases for<br>dapagliflozin<br>2.5, 5, and 10<br>mg were 0.58,<br>-0.77, -0.89,<br>and -0.23%,<br>respectively | In comparison<br>to the placebo,<br>dapagliflozin<br>10 mg caused<br>a 3.16-pound<br>weight loss                                                  | No major episode<br>of<br>hypoglycemia and<br>signs and<br>symptoms<br>suggestive of<br>urogenital infection<br>were<br>more common in<br>the dapagliflozin<br>group |
| Nauck et al. <sup>13</sup><br>Dapagliflozin<br>with metformin<br><b>vs.</b> glipizide<br>with<br>metformin<br>(Multi-national<br>population)             | Diabetic<br>patients<br>inadequately<br>controlled with<br>metformin<br>alone                                                         | 814                | Dapagliflozin<br>(≤10 mg/day)<br>with<br>metformin<br>(≥1,500 mg/day)<br>vs. glipizide<br>(≤20 mg/day)<br>with metformin<br>(≥1,500 mg/day) | Percentage<br>reduction<br>from<br>baseline<br>HbA1c at 52<br>weeks  | At 52 weeks,<br>HbA1c equally<br>reduced<br>-0.52%<br>from baseline                                                                                            | Dapagliflozin<br>with metformin<br><b>vs.</b> glipizide<br>with metformin<br>-3.22 and<br>+1.44 kg,<br>respectively                               | Dapagliflozin with<br>metformin vs.<br>glipizide with<br>metformin<br>(hypoglycemia<br>3.4 vs. 39.7%) and<br>(urogenital<br>infection 12.3<br>vs. 2.7%)              |

Table 1. Comparison of dapagliflozin as monotherapy and combination therapy in different trials.

kg<sup>18</sup>. Similarly, in a clinical study by Bolinder et al., patients using dapagliflozin had a significant reduction in BW of 4.54 kg over a period of 152 weeks<sup>19</sup>.

Similar to the outcomes of the trial by Papadopoulou et al.<sup>20</sup>, Indian patients using dapagliflozin had a decrease in SBP of 3.24 mmHg at 3 months and 3.77 mmHg at 6 months. Indian individuals using 10 or 25 mg of empagliflozin had smaller reductions in SBP (3.3 and 3.8 mmHg, respectively) compared to the results of the research by Kario et al.<sup>21</sup>. This may be due to the geographical difference in study cohorts. However, the DBP reduction in Indian patients using dapagliflozin and empagliflozin was insignificant. Various complications can occur in diabetic patients, but the most common is genito-urinary infections that occur mainly due to glycosuria and more common in females. Usually, the patients had mild episodes and resolved with conservative management. Studies in Indian patients had shown that genito-urinary infections were common with dapagliflozin when compared to empagliflozin (2.9 vs. 2.2%)<sup>9,10</sup>. Similar findings were reported by Ridderstråle et al.<sup>17</sup>.

Safety analyses of dapagliflozin from many double-blind, placebo-controlled trials found that patients using dapagliflozin had an increase in urine output of around 10%. This effect was observed at recommended dosages of both dapagliflozin

| Clinical trial                                                                                                                                        | Population                                                                                                                                                                                                                                                                                                                                                                                                     | No. of patients | Comparison drug                                                                      | Primary end-<br>point                                                                                                                                                                                                  | Results                                                                                                                                                                                                                                                                                              | Weight<br>change                                                                                                                                               | Adverse effects                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Gupta et al. <sup>10</sup><br>empagliflozin<br>10, 25 mg<br>daily, <b>vs.</b><br>placebo <b>vs.</b><br>sitagliptin<br>(Indian<br>population)          | Type 2 diabetes<br>patients (T2DM)<br>who opt to treat<br>their condition<br>organically (with<br>diet and exercise<br>alone)                                                                                                                                                                                                                                                                                  | 108             | Empagliflozin<br>10, 25 mg daily<br><b>vs.</b> placebo <b>vs.</b><br>sitagliptin     | Exploratory<br>effectiveness<br>goals were set<br>using changes<br>from baseline<br>in HbA1c,<br>fasting plasma<br>glucose,<br>body mass,<br>systolic and<br>diastolic blood<br>pressure, and<br>blood sugar<br>levels | At 76 weeks:<br>A significant<br>reduction in<br>hemoglobin<br>A1c was seen<br>with daily<br>empagliflozin<br>10 and 25 mg,<br>with respective<br>values of -0.81<br>and -1.11%<br>from baseline,<br>compared to<br>+0.58% in the<br>placebo group<br>and -0.31% in<br>the sitagliptin<br>collective | Compared to<br>placebo and<br>sitagliptin,<br>weight<br>reduction with<br>empagliflozin<br>10 mg/day was<br>larger (0.39 vs.<br>0.43 kg) (1.01<br>vs. 1.16 kg) | When<br>compared<br>to placebo,<br>sitagliptin has<br>a similar effect,<br>although UTIs<br>and vaginal<br>infections occur<br>more frequently |
| Ridderstråle<br>et al. <sup>17</sup><br>Empagliflozin<br><b>vs.</b><br>glimepiride<br>(Multi-<br>national<br>population)                              | Type 2 DM patients<br>insufficiently<br>managed on<br>metformin, diet<br>and exercise with<br>HbA1c of HbA1c<br>≥7 and ≤10%                                                                                                                                                                                                                                                                                    | 1,549           | Glimepiride<br>1–4 mg daily vs.<br>empagliflozin 25 mg<br>daily                      | Percentage<br>reduction<br>from baseline<br>HbA1c at 104<br>weeks                                                                                                                                                      | Empagliflozin25<br>mg and<br>glimepiride 1–4<br>mg/day both<br>reduced HbA1c<br>by 0.11% from<br>baseline after<br>104 weeks                                                                                                                                                                         | Empagliflozin<br>superior to<br>glimepiride<br>in reducing<br>weight                                                                                           | Hypoglycemic<br>events 2 and<br>24% in<br>empagliflozin<br>and glimepiride,<br>respectively                                                    |
| Ferrannini<br>et al. <sup>15</sup><br>Empagliflozin<br><b>vs.</b> metformin<br>(Multi-<br>national<br>population)                                     | Patients with a<br>body mass index<br>(BMI) of 40 kg/m <sup>2</sup><br>and inadequate<br>glycemic<br>management<br>(HbA1c >7.0 to<br><10.0).                                                                                                                                                                                                                                                                   | 224             | Empagliflozin 5, 10,<br>and metformin                                                | Percentage<br>reduction<br>from baseline<br>HbA1c at 78<br>weeks                                                                                                                                                       | At 78 weeks:<br>HbA1c<br>reduction in<br>empagliflozin 5<br>mg, 10 mg, and<br>metformin were<br>-0.34,<br>-0.47, and<br>-0.56%,<br>respectively                                                                                                                                                      | Empagliflozin<br>5, 10 mg, and<br>metformin<br>-2.2,<br>-2.6,<br>and<br>-1.3 kg,<br>respectively                                                               | Genital<br>infections<br>were more<br>frequent with<br>empagliflozin<br>than metformin                                                         |
| Rosenstock<br>et al. <sup>16</sup><br>Empagliflozin<br>with insulin<br><b>vs.</b> placebo <b>vs.</b><br>insulin<br>(Multi-<br>national<br>population) | Obese patients<br>(BMI<br>>30 and <45 kg/<br>m <sup>2</sup> ) with<br>T2DM and<br>insufficient<br>glycemic control<br>(HbA1c<br>>7.5 to <10%<br>at screening)<br>despite diet and<br>exercise<br>counseling and<br>treatment with<br>MDI insulin<br>(total daily dose>60<br>IU) alone or in<br>combination<br>with metformin<br>(immediate or<br>extended<br>release,<br>equal or more than<br>1,500<br>mg/day | 563             | Empagliflozin<br>10, 25 mg,<br>and placebo<br>with basal<br>insulin in each<br>group | Percentage<br>reduction<br>from<br>baseline<br>HbA1c at<br>52 weeks                                                                                                                                                    | At 52 weeks:<br>HbA1c changes<br>in empagliflozin<br>10,25 mg, and<br>placebo were<br>-1.18,<br>-1.27,<br>and -0.81%                                                                                                                                                                                 | Empagliflozin<br>10 mg, 25 mg,<br>and placebo<br>were<br>-1.95,<br>-2.04, and<br>+0.44 kg,<br>respectively                                                     | Empagliflozin<br>vs. placebo<br>hypoglycemia<br>15.4 <b>vs.</b> 15.6%<br>Genital<br>infection<br>58 <b>vs.</b> 51.1%                           |

and empagliflozin. This is also the case with empagliflozin, suggesting that euglycemic ketoacidosis is a potential adverse effect while using SGLT-2 inhibitors. The FDA and EMA have issued warnings about SGLT-2 inhibitors that these agents can cause diabetic ketoacidosis (DKA) (the body produces large amounts of ketone bodies, namely, acetone, acetoacetate, and beta-hydroxybutyrate), which is a serious complication that may require hospitalization. Patients with a history of DKA, those with type 2 diabetes and low C-peptide levels, those with LADA, chronic pancreatitis, severe dehydration, severe alcoholism, and acute medical and surgical illnesses, and those with decreased food intake are also at risk. The safety of these drugs and their dosage in patients with high risk of DKA<sup>22</sup> is continuously investigated by the FDA.

## CONCLUSION

Diabetes is one of the several difficult-to-manage chronic diseases in the world. The development of new medications is

## REFERENCES

- 1. World Health Organization. Diabetes. Genebra: World Health Organization; 2022. [cited on Oct 25, 2022]. Available from: https://www.who.int/news-room/fact-sheets/detail/diabetes
- Anjana RM, Pradeepa R, Deepa M, Datta M, Sudha V, Unnikrishnan R, et al. The Indian Council of Medical Research-India Diabetes (ICMR-INDIAB) study: methodological details. J Diabetes Sci Technol. 2011;5(4):906-14. https://doi.org/10.1177/193229681100500413
- Feingold KR. Oral and injectable (non-insulin) pharmacological agents for the treatment of type 2 diabetes. In: Feingold KR, Anawalt B, Blackman MR, Boyce A, Chrousos G, Corpas E, et al., editors. Endotext. South Dartmouth: MDText.com Inc; 2000. PMID: 25905364
- Kalra S. Sodium glucose co-transporter-2 (SGLT2) inhibitors: a review of their basic and clinical pharmacology. Diabetes Ther. 2014;5(2):355-66. https://doi.org/10.1007/s13300-014-0089-4
- Food and Drug Administration. Sodium-glucose cotransporter-2 (SGLT2) inhibitors. Maryland: Food and Drug Administration; 2022. [cited on Oct 26, 2022]. Available from: https://www.fda. gov/drugs/postmarket-drug-safety-information-patients-andproviders/sodium-glucose-cotransporter-2-sglt2-inhibitors
- Hussain M, Elahi A, Iqbal J, Bilal Ghafoor M, Rehman H, Akhtar S. Comparison of efficacy and safety profile of sodium-glucose cotransporter-2 inhibitors as add-on therapy in patients with type 2 diabetes. Cureus. 2021;13(4):e14268. https://doi.org/10.7759/ cureus.14268
- Pereira MJ, Eriksson JW. Emerging role of SGLT-2 inhibitors for the treatment of obesity. drugs. 2019;79(3):219-30. https://doi. org/10.1007/s40265-019-1057-0
- Plodkowski RA, McGarvey ME, Huribal HM, Reisinger-Kindle K, Kramer B, Solomon M, et al. SGLT2 inhibitors for type 2 diabetes mellitus treatment. Fed Pract. 2015;32(Suppl 11):8S-15S. PMID: 30766102

underway with the expectation that they will have fewer negative effects and allow for more regulatory precision. Complications from diabetes may be avoided with good glycemic control. As a result, we need additional medications to maintain normal blood sugar levels. In the fight against type 2 diabetes, novel adjuvants that inhibit SGLT-2 are being used. These SGLT-2 inhibitors are investigational kidney-specific diabetic treatments. By increasing the glucose excretion in the urine, dapagliflozin and empagliflozin enhance the glycemic control. Additionally, the diuretic actions of these medications lower blood pressure and BW. Improved lipid values have also been observed.

## **AUTHORS' CONTRIBUTIONS**

**AV:** Conceptualization, Data curation, Formal Analysis, Funding acquisition, Investigation, Methodology, Project administration, Resources, Software, Supervision, Validation, Visualization, Writing – original draft. **RR:** Data curation, Formal Analysis, Investigation, Methodology, Validation, Writing – original draft.

- Viswanathan V, Singh KP. Use of dapagliflozin in the management of type 2 diabetes mellitus: a real-world evidence study in Indian patients (FOREFRONT). Diabetes Technol Ther. 2019;21(8):415-22. https://doi.org/10.1089/dia.2019.0052
- 10. Gupta S, Shaikh S, Joshi P, Bhure S, Suvarna V. Long-term efficacy and safety of empagliflozin monotherapy in drug-naïve patients with type 2 diabetes in indian subgroup: results from a 76-week extension trial of phase III, double-blind, randomized study. Indian J Endocrinol Metab. 2017;21(2):286-92. https://doi.org/10.4103/ ijem.IJEM\_517\_16
- Bailey CJ, Gross JL, Hennicken D, Iqbal N, Mansfield TA, List JF. Dapagliflozin add-on to metformin in type 2 diabetes inadequately controlled with metformin: a randomized, double-blind, placebocontrolled 102-week trial. BMC Med. 2013;11:43. https://doi. org/10.1186/1741-7015-11-43
- **12.** Ferrannini E, Ramos SJ, Salsali A, Tang W, List JF. Dapagliflozin monotherapy in type 2 diabetic patients with inadequate glycemic control by diet and exercise: a randomized, double-blind, placebo-controlled, phase 3 trial. Diabetes Care. 2010;33(10):2217-24. https://doi.org/10.2337/dc10-0612
- 13. Nauck MA, Prato S, Meier JJ, Durán-García S, Rohwedder K, Elze M, et al. Dapagliflozin versus glipizide as add-on therapy in patients with type 2 diabetes who have inadequate glycemic control with metformin: a randomized, 52-week, double-blind, active-controlled noninferiority trial. Diabetes Care. 2011;34(9):2015-22. https://doi.org/10.2337/dc11-0606
- 14. Ji L, Ma J, Li H, Mansfield TA, T'joen CL, Iqbal N, et al. Dapagliflozin as monotherapy in drug-naive Asian patients with type 2 diabetes mellitus: a randomized, blinded, prospective phase III study. Clin Ther. 2014;36(1):84-100.e9. https://doi.org/10.1016/j. clinthera.2013.11.002
- **15.** Ferrannini E, Berk A, Hantel S, Pinnetti S, Hach T, Woerle HJ, et al. Long-term safety and efficacy of empagliflozin, sitagliptin, and metformin: an active-controlled, parallel-group, randomized, 78-week open-label extension study in patients with type 2 diabetes.

Diabetes Care. 2013;36(12):4015-21. https://doi.org/10.2337/ dc13-0663

- 16. Rosenstock J, Jelaska A, Zeller C, Kim G, Broedl UC, Woerle HJ, et al. Impact of empagliflozin added on to basal insulin in type 2 diabetes inadequately controlled on basal insulin: a 78-week randomized, double-blind, placebo-controlled trial. Diabetes Obes Metab. 2015;17(10):936-48. https://doi.org/10.1111/dom.12503
- 17. Ridderstråle M, Andersen KR, Zeller C, Kim G, Woerle HJ, Broedl UC, et al. Comparison of empagliflozin and glimepiride as add-on to metformin in patients with type 2 diabetes: a 104-week randomised, active-controlled, double-blind, phase 3 trial. Lancet Diabetes Endocrinol. 2014;2(9):691-700. https://doi.org/10.1016/ S2213-8587(14)70120-2
- Neeland IJ, McGuire DK, Chilton R, Crowe S, Lund SS, Woerle HJ, et al. Empagliflozin reduces body weight and indices of adipose distribution in patients with type 2 diabetes mellitus. Diab Vasc Dis Res. 2016;13(2):119-26. https://doi.org/10.1177/1479164115616901
- **19.** Bolinder J, Ljunggren Ö, Kullberg J, Johansson L, Wilding J, Langkilde AM, et al. Effects of dapagliflozin on body weight, total fat mass, and regional adipose tissue distribution in patients with

type 2 diabetes mellitus with inadequate glycemic control on metformin. J Clin Endocrinol Metab. 2012;97(3):1020-31. https://doi.org/10.1210/jc.2011-2260

- Papadopoulou E, Loutradis C, Tzatzagou G, Kotsa K, Zografou I, Minopoulou I, et al. Dapagliflozin decreases ambulatory central blood pressure and pulse wave velocity in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled clinical trial. J Hypertens. 2021;39(4):749-58. https://doi.org/10.1097/ HJH.00000000002690
- 21. Kario K, Ferdinand KC, O'Keefe JH. Control of 24-hour blood pressure with SGLT2 inhibitors to prevent cardiovascular disease. Prog Cardiovasc Dis. 2020;63(3):249-62. https://doi.org/10.1016/j. pcad.2020.04.003
- 22. Food and Drug Administration. FDA revises labels of SGLT2 inhibitors for diabetes to include warnings about too much acid in the blood and serious urinary tract infections. Maryland: Food and Drug Administration; 2022. [cited on Oct 26, 2022]. Available from: https://www.fda.gov/drugs/drug-safety-and-availability/ fda-revises-labels-sglt2-inhibitors-diabetes-include-warningsabout-too-much-acid-blood-and-serious

