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INTRODUCTION
Fractures constitute the most prevalent form of injury, with 
data indicating that from 40 to 60% of male children and 25 
to 40% of female children will seek medical attention at an 
emergency department (ED) for a fracture1. These injuries are 
a significant contributor to long-term disability among the 
pediatric population.

Radiography stands as the primary and most frequently 
utilized imaging technique for fracture diagnosis. However, 
the failure or delay in diagnosing fractures in pediatric patients 
via radiograph is a common issue. This can be attributed to 
several challenges, including difficulty in ensuring appropri-
ate positioning for children, the unavailability of comparative 
radiography due to limiting radiation exposure, and natural 
variability in the appearance of developing bones and growth 
plates in immature skeletons. These factors can lead to misin-
terpretation, where normal anatomical features may occasion-
ally appear as injuries2.

Artificial intelligence (AI) is increasingly recognized for its 
potential to revolutionize medical diagnostics. An expanding 
corpus of research illustrates that AI software, particularly those 
based on deep learning methodologies, can achieve diagnostic 
accuracies in fracture detection from imaging studies that are on 
par with medical practitioners3. However, the field of pediatric 
fracture detection still lacks substantial research contributions4.

The primary objective was to assess the diagnostic accuracy 
of a deep learning-based AI model for the detection of acute 
appendicular fractures in pediatric patients presenting with a 
recent history of trauma to the ED. The secondary goal was to 
examine the effect of assistive support on the emergency doc-
tor’s ability to detect fractures.

METHODS
Following ethical committee approval, the study retrospectively 
analyzed 7,150 plain anteroposterior radiographs of patients aged 
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SUMMARY
OBJECTIVE: The primary objective was to assess the diagnostic accuracy of a deep learning-based artificial intelligence model for the detection 

of acute appendicular fractures in pediatric patients presenting with a recent history of trauma to the emergency department. The secondary goal 

was to examine the effect of assistive support on the emergency doctor’s ability to detect fractures.

METHODS: The dataset was 5,150 radiographs of which 850 showed fractures, while 4,300 radiographs did not show any fractures. The process 

utilized 4,532 (88%) radiographs, inclusive of both fractured and non-fractured radiographs, in the training phase. Subsequently, 412 (8%) 

radiographs were appraised during validation, and 206 (4%) were set apart for the testing phase. With and without artificial intelligence assistance, 

the emergency doctor reviewed another set of 2,000 radiographs (400 fractures and 600 non-fractures each) for labeling in the second test.

RESULTS: The artificial intelligence model showed a mean average precision 50 of 89%, a specificity of 92%, a sensitivity of 90%, and an F1 score 

of 90%. The confusion matrix revealed that the model trained with artificial intelligence achieved accuracies of 93 and 95% in detecting fractures, 

respectively. Artificial intelligence assistance improved the reading sensitivity from 93.7% (without assistance) to 97.0% (with assistance) and the 

reading accuracy from 88% (without assistance) to 94.9% (with assistance).

CONCLUSION: A deep learning-based artificial intelligence model has proven to be highly effective in detecting fractures in pediatric patients, 

enhancing the diagnostic capabilities of emergency doctors through assistive support.
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2–18 years (mean age 8.3 years) who presented to the Dışkapı 
Yıldırım Beyazıt Research and Training Hospital’s ED due to 
trauma between January 15, 2015, and December 30, 2020. 
The inclusion criterion was the availability of a radiograph of 
an appendicular part taken after a recent trauma, regardless of 
whether a fracture was present or not. Radiographs featuring 
implants, casts, or any other pathological lesions in the bones, 
as well as patients presenting fractures highly specific to child 
abuse (e.g., metaphyseal corner fractures), were excluded.

In the present study, a convolutional neural network (CNN) 
model known as You Only Look Once (YOLO)v8, which 
employs deep learning techniques, was applied to identify frac-
tures within radiographs. The study involved the utilization of 
image enhancement, data balancing, preprocessing techniques, 
and radiograph training by using a YOLO-based framework. 
The YOLO architecture distinguishes itself by applying a neu-
ral network across the entire image to identify objects and 
encircle them with bounding boxes, instead of focusing on 
specific sections of the image. The radiographs were initially 
downloaded in the Digital Imaging and Communications in 
Medicine (DICOM) format, then converted into the Joint 
Photographic Experts Group (JPEG) format, and standard-
ized to a resolution of 640×640 pixels.

In the study, bounding boxes to indicate detected fractures 
in radiographics were independently drawn by three radiologists 
(RPK, BT, and SDK) with experiences of 16, 10, and 9 years, 

using a specialized software devoid of AI assistance. The consen-
sus criterion for a verified fracture involved an agreement among 
the experts’ bounding boxes, requiring an intersection over union 
ratio of more than 50%. To train the deep learning models, aug-
mentation techniques were applied as part of the preprocessing 
strategies to enhance the training data pool.

The dataset was 5,150 radiographs. Since deep learning 
algorithms require a large amount of labeled data to be trained, 
augmentation techniques, one of the preprocessing methodol-
ogies, have been used to enrich the training dataset (Figure 1).

An additional subset of 2,000 radiographs were reserved 
specifically for second testing and subsequent statistical evalu-
ation. An emergency doctor (NK, 15 years of experience) con-
ducted analyses on this dataset, performing assessments in two 
scenarios: without AI support (comprising 400 radiographs with 
fractures and 600 without) and with AI support (comprising 
400 radiographs with fractures and 600 without), followed by 
an annotation process. For each radiograph, metrics of sensi-
tivity and specificity were derived, facilitating a comparative 
analysis between the AI-assisted and non-assisted evaluations.

Statistical method
The area beneath the receiver operating characteristic (ROC) 
curve was assessed using a dedicated web-based ROC anal-
ysis application, which utilizes a Python script. Sensitivity 
and specificity values were extracted using the optimal cutoff 

Figure 1. Workflow of data used in YOLOv8.
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point determined by the area under the curve (AUC) analy-
sis. The model’s performance metrics, including mean average 
precision (mAP), precision, recall, and the F1 score (which 
represents the harmonic mean between precision and recall), 
were derived using foundational parameters such as true posi-
tives (TP), true negatives (TN), false positives (FP), and false 
negatives (FN). Each image was evaluated through the final-
ized model for fracture detection, producing a probabilistic 
score on a scale from 0 to 1 for categorizing the image as frac-
ture or no fracture.

RESULTS
The design of the YOLOv8 model yielded significant perfor-
mance metrics, including a mAP50 of 89%, specificity at 92%, 
sensitivity reaching 90%, and an F1 score of 90%. The analy-
sis of the confusion matrix from testing data revealed that the 
YOLOv8-informed model attained accuracies of 93 and 95% 
in identifying fractures (Table 1). Furthermore, the integra-
tion of AI with expert evaluation from an emergency doctor 
enhanced the sensitivity of assisted readings to 97.0%, mark-
ing an improvement of 3.3% over the sensitivity of readings 
without AI assistance, which stood at 93.7%. Similarly, the 
accuracy of readings with AI support was elevated to 94.9%, 

surpassing the accuracy of unassisted readings by 6.9%, which 
was previously 88% (Table 2).

DISCUSSION
The ED acts as the primary point of contact for the initial assess-
ment of fractures in pediatric patients arriving due to trauma. 
The frequent oversight of fractures in these settings is often a 
consequence of the demanding workloads, lengthy hours, and 
the medical staff’s insufficient training in analyzing radiographs. 
Such omissions can lead to postponements in administering the 
appropriate treatment, thereby escalating morbidity and the 
economic impact on the healthcare industry. In recent years, 
there has been an accelerated integration of AI across a diverse 
array of medical specialties. Nevertheless, the adoption of AI 
in pediatric radiology has been comparatively slow. This delay 
may be attributed to pediatric radiology’s relatively smaller role 
in healthcare, a greater diversity of case types, and generally 
lower case volumes, which hinder the collection of substantial 
datasets necessary for algorithm training5. This study revealed 
that the specified AI subset, leveraging deep learning, exhib-
ited robust diagnostic capabilities in identifying appendicular 
fractures in pediatric patients. Moreover, it was observed that 
the diagnostic effectiveness of emergency doctors is notably 

Table 1. YOLOv8 model performance comparison based on the training datasets.

You Only 
Look Once v8

Artificial intelligence

Total sets
True 

positive
True 

negative
False 

positive
False 

negative
Sensitivity 

(95%CI)
Specificity 

(95%CI)
Accuracy 
(95%CI)

All 5,150 3,712 921 352 163 95.8% 72.3% 90.0%

Fracture 850 506 259 72 13 97.5% 78.2% 90.0%

Not fracture 4,300 3,208 662 280 150 95.5% 70.3% 90.0%

Table 2. Emergency doctor and YOLOv8 model performance comparison based on the test datasets.

Emergency 
doctor

Without artificial intelligence

Total sets
True 

positive
True 

negative
False 

positive
False 

negative
Sensitivity 

(95%CI)
Specificity 

(95%CI)
Accuracy 
(95%CI)

All 1,000 655 230 71 44 93.7% 75.2% 88.0%

Fracture 400 225 118 38 19 92.2% 75.6% 85.8%

Not fracture 600 430 112 33 25 94.5% 77.2% 90.3%

With artificial intelligence

Total sets
True 

positive
True 

negative
False 

positive
False 

negative
Sensitivity 

(95%CI)
Specificity 

(95%CI)
Accuracy 
(95%CI)

All 1,000 688 261 30 21 97.0% 89.7% 94.9%

Fracture 400 239 132 21 8 96.8% 86.3% 92.8%

Not fracture 600 449 129 9 13 97.2% 93.5% 96.3%
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enhanced when supplemented with AI software, surpassing the 
outcomes achieved by either AI or emergency doctors operat-
ing independently.

In the study by Duron et al.6, the AI system underwent 
training using 60,170 radiographs from 18 years or older 
trauma patients. A group comprising six radiologists and six 
emergency doctors was tasked with identifying and pinpointing 
fractures in 600 radiographs, half of which were aided by AI. 
The assistance from AI led to an 8.7% increase in the doctors’ 
sensitivity and a 4.1% enhancement in specificity. Additionally, 
it significantly reduced the incidence of FP by 41.9% among 
patients without fractures and decreased the average reading 
time by 15.0%. Notably, the independent performance of the 
AI system surpassed that of all manual readers, including expert 
radiologists in skeletal imaging, achieving an AUC of 0.94.

In their study, Hayashi et al.7 employed an AI program, 
BoneView™, to analyze radiographs from pediatric patients (aged 
2–21 years), comprising 150 cases with fractures and 150 cases 
without fractures across various anatomical sites (hand/wrist, 
elbow/upper arm, shoulder/clavicle, foot/ankle, leg/knee). The 
findings demonstrated a patient-based sensitivity of 91.3%, a 
specificity of 90.0%, a fracture-based sensitivity of 92.5%, and 
an FP rate of 0.11 per patient among those without fractures. 
The AUC for all fractures on a per-patient basis was 0.93.

In a separate study by Dupuis et al.8, involving 5,865 radio-
graphs from patients (aged 0–17 years), the diagnostic accu-
racy of the deep learning algorithm (Rayvolve) was evaluated, 
with the senior radiologist’s diagnosis serving as the gold stan-
dard. The algorithm exhibited a sensitivity of 95.7%, a speci-
ficity of 91.2%, and an overall accuracy of 92.6% in detecting 
fractures. Notably, the algorithm’s performance improved in 
patients older than 4 years. This discrepancy in performance 
was ascribed to the potential limitation that the training data-
set might not have adequately represented the heterogeneity of 
the target demographic, particularly noting that young infants 
possess more cartilaginous structures, which could affect diag-
nostic outcomes.

In their research involving 480 patients and conducting 
60 examinations per body region, Guermazi et al.9 assigned 
24 readers to evaluate the entire validation dataset (n=480) both 
with and without AI assistance. The findings revealed that the 
sensitivity per patient increased by 10.4% with AI assistance, 
reaching 75.2%, compared to 64.8% without AI. Additionally, 
the specificity per patient was 95.6% with AI support, demon-
strating non-inferiority to the 90.6% specificity observed with-
out AI assistance, marking a significant difference of 15.0%. The 
incorporation of AI was also found to reduce the average exam-
ination reading time by 6.3 s. The research was structured with 

a predetermined fracture prevalence of 50% within the sample, 
thereby preventing the determination of positive or negative 
predictive values. Additionally, the authors acknowledged the 
likelihood of a carryover effect, a consequence of employing a 
1-month minimum washout period in their research approach.

We attribute the observed variations in specificity and sen-
sitivity across different studies to a wide spectrum of patient 
ages, injury mechanisms, and algorithms, along with the spe-
cific inclusion and exclusion criteria utilized.

Further, our research observed that AI, when used in conjunc-
tion with emergency doctors, enhanced the sensitivity of assisted 
readings by 3.3% and the accuracy of assisted readings by 6.9% 
compared to readings without AI assistance. The application 
of AI resulted in an AUC of 0.93 when used by an emergency 
doctor. This underscores the substantial support AI provides to 
emergency medical practice by bolstering the diagnostic profi-
ciency of emergency doctors, enhancing their decision-making 
accuracy, and streamlining their clinical workflow.

The AI algorithm exhibited a 7.6% rate of FP, whereas the 
combination of an emergency doctor and AI assistance was 
associated with a 3% rate of FP. This occurrence can be ascribed 
to multiple factors, such as the magnitude of the study popu-
lation, and should be considered a critical metric when assess-
ing the algorithm’s comprehensive precision and sensitivity. 
As the deployment of AI systems in medical diagnostic pro-
cesses becomes more prevalent, minimizing such rates of FP 
will be imperative to enhance the reliability and applicability 
of these algorithms10.

Our study was retrospective. Radiologists and emergency 
doctors involved in the AI algorithm evaluation assessed the 
radiographs without access to the patient’s clinical histories. 
Additionally, a limitation of the algorithm was its inability to 
comparatively evaluate lateral radiographs or a series of radio-
graphs. Patients exhibiting fractures with high specificity for 
indicators of child abuse (e.g., metaphyseal corner fractures) 
were not included in our study; these fractures were not pres-
ent in our dataset, and the AI algorithm was not trained to 
detect them.

CONCLUSION
The YOLOv8 model demonstrates substantial efficacy in identi-
fying fractures among pediatric patients, particularly when used 
to augment the diagnostic capabilities of emergency doctors.

INFORMED CONSENT
Retrospective study.
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