Acessibilidade / Reportar erro

Avaliação do ajuste das funções weibull e hiperbólica a dados de povoamentos de eucalipto submetidos a desbaste

Evaluation of weibull and hyperbolic fitting functions to data of eucalypt stands submitted to thinning

Resumos

O objetivo deste estudo foi avaliar as funções de Weibull e Hiperbólica quanto à capacidade de descrição da estrutura diamétrica de povoamentos de eucalipto submetidos a desbaste. As funções com quatro e três parâmetros foram ajustadas a dados de 48 parcelas permanentes instaladas em um povoamento desbastado de um clone híbrido de eucalipto (Eucalyptus grandis x Eucalyptus urophylla), localizado na região Nordeste do Estado da Bahia. Essas parcelas foram mensuradas em 10 ocasiões, a partir de 27 meses de idade. Foi avaliado, também, o ajuste da função Weibull de dois parâmetros por aproximação linear. A aderência foi avaliada pelo teste de Kolmogorov-Smirnov. Também, foram comparadas as somas de quadrados dos resíduos (SQR), dos diferentes ajustamentos. Todas as funções apresentaram aderência aos dados (P>0,01). A função hiperbólica apresentou menor soma de quadrados de resíduos e menores valores para o teste de aderência. A função Weibull, quando ajustada por aproximação linear, apresentou os maiores valores de soma de quadrado de resíduos e de significância no teste de aderência. Foi comprovada a ineficiência do ajuste da função Weibull por aproximação linear.

Distribuição diamétrica; Função de distribuição estatística; Povoamentos equiâneos


The objective of this study was to evaluate the Weibull and Hyperbolic fitting functions for describing the diametric structure of eucalyptus stands submitted to thinning. The four- and three-parameter functions were fit to data of 48 permanent plots set up in a thinned eucalyptus hybrid clone (Eucalyptus grandis x Eucalyptus urophylla) stand located in northeastern Bahia. The fitting of the two-parameter Weibull function was also evaluated by linear approximation. Adherence was evaluated by the Kolmogorov-Smirnov test. The sum of squares of the residues (SSR) from the different fittings also was compared. All the functions presented adherence to the data (P>0.01). The hyperbolic function presented the smallest sum of squares of the residues and smallest adherence test values. The Weibull function, when fit by linear approximation, presented the largest sum of squares of the residues and significance values for the adherence test.

Diameter distribution; Statistical distribution function; Even-aged stands


Avaliação do ajuste das funções weibull e hiperbólica a dados de povoamentos de eucalipto submetidos a desbaste

Evaluation of weibull and hyperbolic fitting functions to data of eucalypt stands submitted to thinning

Helio Garcia LeiteI; Daniel Henrique Breda BinotiII; Daniel Pereira GuimarãesII; Mayra Luiza Marques da SilvaII; Silvana Lages Ribeiro GarciaII

IDepartamento de Engenharia Florestal, Universidade Federal de Viçosa, UFV, Brasil. E-mail: <hgleite@gmail.com>

IIPrograma de Pós-Graduação em Ciência Florestal na Universidade Federal de Viçosa, UFV, Brasil. E-mail: <danielbinoti@yahoo.com.br> e <mayra_ufv@yahoo.com.br>

RESUMO

O objetivo deste estudo foi avaliar as funções de Weibull e Hiperbólica quanto à capacidade de descrição da estrutura diamétrica de povoamentos de eucalipto submetidos a desbaste. As funções com quatro e três parâmetros foram ajustadas a dados de 48 parcelas permanentes instaladas em um povoamento desbastado de um clone híbrido de eucalipto (Eucalyptus grandis x Eucalyptus urophylla), localizado na região Nordeste do Estado da Bahia. Essas parcelas foram mensuradas em 10 ocasiões, a partir de 27 meses de idade. Foi avaliado, também, o ajuste da função Weibull de dois parâmetros por aproximação linear. A aderência foi avaliada pelo teste de Kolmogorov-Smirnov. Também, foram comparadas as somas de quadrados dos resíduos (SQR), dos diferentes ajustamentos. Todas as funções apresentaram aderência aos dados (P>0,01). A função hiperbólica apresentou menor soma de quadrados de resíduos e menores valores para o teste de aderência. A função Weibull, quando ajustada por aproximação linear, apresentou os maiores valores de soma de quadrado de resíduos e de significância no teste de aderência. Foi comprovada a ineficiência do ajuste da função Weibull por aproximação linear.

Palavras-chave: Distribuição diamétrica, Função de distribuição estatística e Povoamentos equiâneos.

ABSTRACT

The objective of this study was to evaluate the Weibull and Hyperbolic fitting functions for describing the diametric structure of eucalyptus stands submitted to thinning. The four- and three-parameter functions were fit to data of 48 permanent plots set up in a thinned eucalyptus hybrid clone (Eucalyptus grandis x Eucalyptus urophylla) stand located in northeastern Bahia. The fitting of the two-parameter Weibull function was also evaluated by linear approximation. Adherence was evaluated by the Kolmogorov-Smirnov test. The sum of squares of the residues (SSR) from the different fittings also was compared. All the functions presented adherence to the data (P>0.01). The hyperbolic function presented the smallest sum of squares of the residues and smallest adherence test values. The Weibull function, when fit by linear approximation, presented the largest sum of squares of the residues and significance values for the adherence test.

Keywords: Diameter distribution, Statistical distribution function and Even-aged stands.

1. INTRODUÇÃO

Algumas distribuições estatísticas são utilizadas na área florestal para descrever a estrutura diamétrica de povoamentos (MALTAMO et al., 2000). Isso permite quantificar multiprodutos e proceder a avaliações econômicas da conversão de árvores em multiprodutos e também simular desbastes (BURKHART et al., 1981; CAMPOS e TURNBULL, 1981; NOGUEIRA et al., 2005). Exemplos de funções que têm sido empregadas para descrever as estruturas horizontal e vertical de povoamentos são: Gama (NELSON, 1964), log-normal (BLISS e REINKER, 1964), Beta (CLUTTER e BENNETT, 1965), Johnson’s SB (HAFLEY e SCHUREUDER, 1977) e Weibull (CAMPOS e LEITE, 2006).

A função Weibull foi descrita originalmente por Weibull (1951) e utilizada no setor florestal por Bailey e Dell (1973). Desde então, ela tem sido amplamente difundida e utilizada na área florestal (CLUTTER e ALLISON, 1974; HAFLEY e SCHREUDER, 1977; MATNEY e SULLIVAN, 1982; NOGUEIRA et al., 2001, 2005). Essa função é ajustada, na maioria das vezes pelo método da máxima verossimilhança (BAILEY e DELL, 1973; NOGUEIRA et al., 2005).

A considerar todas as áreas do conhecimento, é possível que as funções mais utilizadas sejam a função Normal, a função Gama e a função Weibull (JOHNSON e KOTZ, 1970). AWeibull é empregada com frequência no setor florestal devido à sua flexibilidade, permitindo moldar diferentes tendências de distribuição, desde exponencial até a normal. Alem disto, a correlação de seus parâmetros com atributos do povoamento e sua facilidade de ajustamento são características favoráveis à sua utilização (BAILEY e DELL, 1973; CAMPOS e LEITE, 2006).

Guimarães (2002) propôs uma nova função (f.d.p.) para descrever distribuições de diâmetros definida como função hiperbólica (α1). Essa função gera distribuições com pontos de inflexão variando desde zero até o limite superior definido por tanh (1) = 0,76, conferindo a ela maior flexibilidade quando comparada com a função Weibull, cujos pontos de inflexão variam entre zero e o limite de (1-1/e) = 0,63. A função hiperbólica proposta por Guimarães é definida por:

Neste estudo foi feita uma avaliação das funções Hiperbólica e Weibull, para estimar a distribuição de diâmetros em povoamentos de eucalipto submetidos a desbaste.

2. MATERIAL E MÉTODOS

Dados

Foram utilizados dados de um experimento sobre desbaste, instalado em seis instalações, com duas repetições por bloco, em povoamentos do híbrido de Eucalyptus grandis x Eucalyptus urophylla, na região Nordeste do Estado da Bahia. Em cada uma das 48 parcelas, de 2.600 m2 de área útil, sendo o espaçamento inicial entre as árvores de 3,0 x 3,0 m, foram aplicados os seguintes tratamentos de desbaste: remoção de 20% da área basal remanescente; remoção de 35% e de 50% da área basal em cada desbaste, em que os piores indivíduos foram eliminados, seguindo-se os princípios mencionados em Levels-of-Growing-Stock (2002). Informações da área onde se encontrava o experimento são apresentadas no Tabela 1, e os tratamentos aplicados foram:

1: redução de 20% na área basal, eliminando-se piores indivíduos.

2: redução de 35% na área basal, eliminando-se piores indivíduos.

3: redução de 50% na área basal, eliminando-se piores indivíduos.

4: redução de 35% na área basal e desrama artificial nas prováveis árvores remanescentes, empregandose uma altura para desrama de 6,0 m.

As parcelas permanentes foram mensuradas aos 27, 40, 50, 58, 61, 76, 87, 101 e 112 meses, com um desbaste aos 58 meses. Em cada medição, os diâmetros a 1,3 m (dap) de todas as árvores das parcelas foram avaliados.

Descrição das Funções

As funções ajustadas para cada parcela e medição foram:

Função Weibull

em que α é o parâmetro de locação, β o parâmetro de escala (β>0), γ o parâmetro de forma (γ>0) e x o centro de classe de diâmetro (x>0).

Função Hiperbólica (Hyper)

A função Hiperbólica descrita por Guimarães 2002 apresenta como forma derivativa:

em que α é o parâmetro de locação,β o parâmetro de escala (β>0), γ o parâmetro de forma (γ>0) e x o centro de classe de diâmetro (x>0).

A forma integral do modelo é f (X) e o ponto de inflexão da distribuição (I), definido por:

Ajuste das Funções

Os dados de dap observados em cada parcela foram agrupados em classe com amplitude de 1,0 cm. Utilizando um fator assintótico definido como o número de árvores da parcela, procedeu-se ao ajuste da função Weibull com três e quatro parâmetros pelos métodos de máxima verossimilhança e ao da de dois parâmetros por aproximação linear. As funções hiperbólicas de três e quatro parâmetros foram ajustadas pelo método da máxima verossimilhança. Os ajustes foram feitos utilizando-se o software kyplot Versão 2.0 beta 15(19972001c Koichi Yoshioka). As estimativas de β e γ da função Weibull de dois parâmetros, por aproximação linear, foram obtidas por γ = α1 e β = e (0/α1) , sendo α0 e α1 obtidos ao se ajustar o modelo linear .

Qualidade dos ajustamentos

Para testar a aderência das funções aos dados, utilizou-se o teste Kolmogorov-Smirnov (GIBBONS e SUBHABRATA, 1992; SOKAL e ROHLF, 1981). Esse teste compara a frequência acumulada estimada com a observada, sendo a classe de maior divergência a estatística do teste (dn):

em que S(X) é a frequência acumulada observada e F(X) é a frequência estimada pela função densidade. Os ajustes obtidos com a função hiperbólica foram comparados com os conseguidos com a função Weibull, por meio do valor (dn), comparação gráfica entre valores observados e estimados de cada parcela, e soma de quadrados de resíduos.

3. Resultados e Discussão

Comparações entre distribuições observadas e estimadas pelas funções ajustadas são apresentadas nas Figuras 1 e 2, em que se verifica que não ocorreram grandes diferenças entre os resultados. Todos os ajustes resultaram em aderência aos dados pelo teste de Kolmogorov-Smirnov, a uma probabilidade de 99%. Para a escolha da melhor função foram somados os valores de ''dn'' de cada ajuste, identificando-se como a melhor função aquela com o menor valor de ''dn total'' (Tabela 2). Por esse critério, a função hiperbólica foi mais eficiente do que a função Weibull. Além disso, a função hiperbólica apresentou menor soma de quadrado dos resíduos ao serem considerados todos os ajustamentos (Tabela 1 e Figura 3). Menores somas de quadrados de resíduos na Figura 3 ocorreram após o desbaste, em parte devido à redução do número de classes de diâmetro.




Os resultados demonstram o perigo de se utilizar um modelo linear aproximado para obter estimativas dos parâmetros da função Weibull. Embora o ajuste por aproximação linear seja simples e didático, ele deve ser evitado, em razão do risco de viés e baixa precisão.

Os resultados, com maior qualidade no ajustamento da função hiperbólica em relação à função Weibull, comprovam a afirmação de Guimarães (2002) de que a função proposta por ele mesmo era mais flexível do que a função Weibull. Portanto, essa função deve ser testada em modelos de distribuição de diâmetros, em substituição à usual função Weibull.

4. CONCLUSÕES

A função Hiperbólica com quatro parâmetros é eficiente para descrever a distribuição de diâmetros em povoamentos de eucalipto submetidos a desbaste.

A função Weibull de dois parâmetros não deve ser ajustada por aproximação linear.

A função hiperbólica de quatro parâmetros pode ser utilizada em modelos de distribuição de diâmetros.

5. REFERÊNCIAS

Recebido em 21.08.2008 e aceito para publicação em 14.10.2009.

  • BAILEY, R. L.; DELL, T. R.. Quantifying diameter distributions with the Weibull function. Forest Science, v.19, n.2, p.97-104, 1973.
  • BLISS, C. L.; REINKER, K. A. A lognormal approach to diameter distributions in evenaged stands. Forest Science, v.10, p.350-360, 1964.
  • BURKHART, H. E.; CAO, Q. V.; WARE, Z. D. A. A comparison of growth and yield prediction models for loblolly pine Blacksburg: Virginia Polytechnic Institute and State University, School of Forestry and Wildlife Resources, 1981. 59p. (Publ., FWS-2).
  • CAMPOS, J. C. C.; LEITE, H. G. Mensuração florestal: perguntas e respostas. 2.ed. Viçosa, MG: Universidade Federal de Viçosa, 2006. 470p.
  • CAMPOS, J. C. C.; TURNBULL, K. J. Um sistema para estimar produção por classe de diâmetro e sua aplicação na interpretação do efeito de desbaste. Revista Árvore, v.5, n.1, p.1-16,1981
  • CLUTTER, J. L.; ALLISON, B. J. A growth and yield model for Pinus radiata in New Zealand for tree and stand simulation. Royal College of Forestry. Research Notes, n.30, p.136-160, 1974.
  • CLUTTER, J. L.; BENNETT, F.A. Diameter distributions in old - field slash pine plantations. Georgia Forest Research Council Report, n,13, p.1-9, 1965.
  • GIBBONS, J. D.; SUBHABRATA, C. Nonparametric statistical inference 3.ed. New York: Marcel Dekker, 1992. 544p. (Statistics: textbook and monograph, v.31)
  • GUIMARÃES, D. P. Uma função hiperbólica de distribuição probabilística de alta flexibilidade. Planaltina: Embrapa Cerrados, 2002. 40p.
  • HAFLEY, W. L.; SCHREUDER, H. T. Statistical distributions for fitting diameter and height data in ever-aged stands. Canadian Journal of Forest Research, v.7, p.184-487, 1977.
  • JOHNSON, N. L.; KOTZ, S. Distributions in statistics Continuous univariate distributions 2. New York: Wiley, 1970.
  • LEVELS-OF-GROWING-STOCK. Cooperative study in Douglas-fir. Victoria: Natural Resources Canada; Canadian Forest Service e Pacific Forestry, 2002. p.4. (Information Forestry)
  • MALTAMO, M. et al. Comparison of percentile based prediction methods and the Weibull distribution in describing the diameter distribution of heterogeneous Scots pine stands. Forest Ecology and Management, v.133, p.263-274, 2000.
  • MATNEY, T. G.; SULLIVAN, A. D. Variable top volume and height predictions for slash pine trees. Forest Science, v.28, n.2, p.274-82, 1982
  • NELSON, T. C. Diameter distribution and growth of loblolly pine. Forest Science, v.10, n.1, p.105-114, 1964.
  • NOGUEIRA, G. S. et al. Determinação da idade técnica de desbaste em plantações de eucalipto utilizando o método dos ingressos percentuais. Scientia Forestalis, n.59, p.51-59, 2001.
  • NOGUEIRA, G. S. et al. Modelo de distribuição diamétrica para povoamentos de Eucalyptus sp. submetidos a desbaste. Revista Árvore, v.29, n.4, p.579-589, 2005.
  • SOKAL, R. R.; ROHLF, F. J. Biometry San Francisco: Freeman, 1981. 859p.
  • WEIBULL, W. A statistical distribution function of wide applicability. Journal of Applied Mechanics, v.18, p.293-297, 1951.

Datas de Publicação

  • Publicação nesta coleção
    24 Jun 2010
  • Data do Fascículo
    Abr 2010

Histórico

  • Aceito
    14 Out 2009
  • Recebido
    21 Ago 2008
Sociedade de Investigações Florestais Universidade Federal de Viçosa, Departamento de Engenharia Florestal, Avenida Purdue, s/nº - Campus Universitário UFV, CEP: 36570-900, Tel.: (+55 31) 3612-3959 - Viçosa - MG - Brazil
E-mail: rarvore@sif.org.br