Acessibilidade / Reportar erro

ESTIMAÇÃO DA ALTURA DE ÁRVORES DE EUCALIPTO EM TESTES CLONAIS E DE PROGÊNIES UTILIZANDO REDES NEURAIS ARTIFICIAIS

RESUMO

O objetivo deste trabalho foi testar a aplicabilidade das redes neurais artificiais na estimação da altura em testes clonais e de progênies de eucalipto. Foram utilizados 8.329 dados de teste clonal, coletados em seis idades, divididos em 6 blocos e 5 repetições, e 36.793 dados para o teste de progênie, coletados em 5 idades e divididos em 10 blocos e 5 repetições. As variáveis categóricas de entrada foram a idade, o genótipo e o bloco. O diâmetro (dap) foi utilizado com variável de entrada contínua. Para definição dos dados para treinamento das redes foram utilizadas duas sub-amostras: a sub-amostra 1, composta pela primeira árvore de cada bloco e a sub-amostra 2, uma árvore foi selecionada aleatoriamente dentro de cada bloco. Essa seleção foi feita para os testes clonal e de progênies. Os dados selecionados foram separados em 70% para treinamento e 30% para a validação. As demais árvores, que não faziam parte das duas sub-amostras, foram utilizadas para a generalização. Para cada idade e tratamento foi calculado o teste kolmogorov - Smirnov (K-S) afim de verificar a normalidade dos resíduos. Os resultados demonstram que as redes podem ser usadas na estimação da altura das árvores dos diferentes genótipos presentes nos testes clonais e de progênies, sem perda da exatidão e significativa redução de custo de medição dos experimentos.

Palavras-Chave:
Custo; Predição; Experimento

Sociedade de Investigações Florestais Universidade Federal de Viçosa, Departamento de Engenharia Florestal, Avenida Purdue, s/nº - Campus Universitário UFV, CEP: 36570-900, Tel.: (+55 31) 3612-3959 - Viçosa - MG - Brazil
E-mail: rarvore@sif.org.br