Open-access Validação de algoritmo de aprendizado profundo para detecção da idade óssea em pacientes de São Paulo, Brasil

Resumo

Objetivo:  Validar em indivíduos paulistas um modelo de aprendizado profundo (deep learning - DL) para estimativa da idade óssea, comparando-o com o método de Greulich e Pyle.

Materiais e Métodos:  Estudo transversal com radiografias de mão e punho para idade óssea. A análise manual foi feita por um radiologista experiente. Foi usado um modelo baseado em uma rede neural convolucional que ficou em terceiro lugar no desafio de 2017 da Radiological Society of North America. Calcularam-se o erro médio absoluto (mean absolute error - MAE) e a raiz do erro médio quadrado (root mean-square error - RMSE) do modelo contra o radiologista, com comparações entre sexo, etnia e idade.

Resultados:  A amostra compreendia 714 exames. Houve correlação entre ambos os métodos com coeficiente de determinação de 0,94. O MAE das predições foi 7,68 meses e a RMSE foi 10,27 meses. Não houve diferenças estatisticamente significantes entre sexos ou raças (p > 0,05). O algoritmo superestimou a idade óssea nos mais jovens (p = 0,001).

Conclusão:  O nosso algoritmo de DL demonstrou potencial para estimar a idade óssea em indivíduos paulistas, independentemente do sexo e da raça. Entretanto, há necessidade de aprimoramentos, particularmente em pacientes mais jovens.

Unitermos: Inteligência artificial; Aprendizado de máquina; Aprendizado profundo; Desenvolvimento ósseo; Crescimento.

location_on
Publicação do Colégio Brasileiro de Radiologia e Diagnóstico por Imagem Av. Paulista, 37 - 7º andar - conjunto 71, 01311-902 - São Paulo - SP, Tel.: +55 11 3372-4541, Fax: 3285-1690, Fax: +55 11 3285-1690 - São Paulo - SP - Brazil
E-mail: radiologiabrasileira@cbr.org.br
rss_feed Acompanhe os números deste periódico no seu leitor de RSS
Acessibilidade / Reportar erro