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ABSTRACT

Methionine (Met) and cysteine (Cys) are nutrients in broiler 
diets, responsible for strengthening protein synthesis, immunity, 
and metabolic regulation. To estimate the ideal digestible Met + 
Cys:digestible Lysine (Lys) ratio for broilers under a lipopolysaccharide 
(LPS) inflammatory challenge, 384 male broilers were distributed in a 
completely randomized 4×2 factorial design, with four ratios of dig. 
Met + Cys:dig. Lys (0.69, 0.73, 0.77, and 0.81) and two conditions 
(with or without challenge). Each treatment had eight replicates, with 
six birds per experimental unit (EU). The evaluated parameters included 
broilers’ weight gain (WG), feed intake (FI), and feed conversion ratio 
(FCR); jejunum mRNA transcript levels of nuclear factor kappa-B (NF-
Κb), glutathione peroxidase (GPX), superoxide dismutase (SOD), 
glutathione synthetase (GSS), and methionine adenosyltransferase 2 
(MAT2); relative weights of liver and spleen, and fat mass (%) and lean 
mass (%). A linear regression model would estimate the ideal ratio if 
an effect had occurred. No interaction (p>0.05) was observed between 
the factors for all the data, nor did the different ratios had any effect 
(p>0.05) either. LPS-administered exhibited reduced performance, 
heavier liver and spleen, and lower GSS expression. Hence, the lowest 
dig Met + Cys:dig Lys ratio (0.69) was sufficient to maintain the 
performance parameters, the relative weight of lymphoid organs, fat 
and lean mass, and NF-Kb, GPX, SOD, GSS, MAT2, and CBS mRNA 
transcript levels in the jejunum.

INTRODUCTION

Currently, in intensive production, broilers are subject to chronic 
inflammatory challenge that triggers immune responses and impairs 
immunological homeostasis (Zhang et al., 2019a) due to pathogenic 
microorganisms present in the production system, vaccinations with 
excessive dosages, and abuse or lack of chemotherapy with growth-
promoting antibiotics (Liu et al., 2015). This challenge prevents poultry 
from expressing their maximum genetic and economic potential (Li et 
al., 2015). 

In experimental trials on inflammation in broiler chickens, inoculation 
of bacterial LPS is a technique used to increase the activation of 
chickens’ inflammatory response without submitting them to potentially 
pathogenic agents, while also simulating a condition closer to the one 
found in commercial sheds (Beutler & Rietschel, 2003; Nunes et al., 
2020). When they are inoculated and perceived by the immune system, 
there is an increase in the production of the NF-Κb transcription factor 
that stimulates the expression and synthesis of inflammatory genes (Liu 
et al., 2022).

The sulfur amino acids (SAA) methionine (Met) and cysteine (Cys) 
are involved in functions that fortify broilers’ immune system, including 
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regulation of the innate immune system, lipid 
metabolism, digestive functions, protein synthesis, 
and defense against oxidative stress (OS; Martínez et 
al., 2017). The leading cause of OS is the imbalance 
between the production of free radicals, such as reactive 
oxygen species (ROS), and antioxidant enzymes (Nawaz 
& Zhang, 2021). Adding high levels of SAA to feed 
increases the synthesis and activity of GPX and SOD 
(Wen et al., 2016), thereby decreasing the presence of 
free radicals that damage macromolecules.

An increase in Met transsulfuration mitigates the 
effects of OS and maintains the demand of Cys for 
cellular reduced glutathione (GSH) synthesis (Del Vesco 
et al., 2015; Bortoluzzi et al., 2019). Moreover, SAA 
participates in glutathione synthetase (GSS) gene 
expression, resulting in the effective synthesis of potent 
antioxidants that contribute to the removing system’s 
ability of ROS to alleviate the OS effect (Lai et al., 2018; 
Lugata et al., 2022).

Therefore, additional SAA supplementation may 
improve performance by reducing OS and, consequently, 
the inflammatory challenge. One strategy to mitigate 
the adverse effects of inflammation is to increase the 
intake of dig SAA through the ratio dig SAA:dig lysine 
(Lys), such as dig Met + Cys. However, few studies 
have estimated the ideal dig Met + Cys to dig Lys 
ratio in diets for broiler chickens under inflammatory 
challenge.

Thus, it was hypothesized that the ideal ratio of 
dig Met + Cys:dig Lys in broiler diets is increased in 
immunologically challenged broilers. The objective of 
this study was therefore to estimate the ideal ratio of 
dig Met + Cys:dig Lys for broilers submitted or not to 
LPS inflammatory challenge.

MATERIALS AND METHODS
Ethics Committee

The Animal Care and Use Committee of the 
Federal University of Viçosa, Brazil, approved all animal 
procedures conducted in this study (protocol no. 
70/2021). The experiment was conducted according 
to the experimental protocols for using live broilers 
from the National Council for Experimentation Animal 
Control (CONCEA, 2008) in the municipality of Viçosa 
(20°45’14” S, 42°52’53” W, altitude 648.74 m), in the 
state of Minas Gerais, Brazil.

Birds and experimental design

One-day-old male broiler chickens (Cobb 500) 
were obtained from a commercial hatchery. The 

poultry were reared on the floor according to lineage 
management recommendations until the beginning 
of the experiment. They had free access to water and 
were fed a corn/soybean meal-based standard diet 
in mashed form (ad libitum). At the thirteenth day 
of age, based on their body weight, a total of 384 
male broilers (514 ± 51.4 g) were distributed in a 
4 x 2 (four ratios of dig Met + Cys:dig Lys x with or 
without challenge) completely randomized factorial 
design, with eight replicates per treatment, and six 
chickens per experimental unit (EU). The birds were 
housed in 64 EUs consisting of wire floor cages (667 
cm²/broiler) in a two-level battery equipped with a 
trough feeder and a nipple drinker. The temperature 
was maintained according to lineage management 
recommendations, and the broilers were exposed to 18 
hours of continuous light daily during the experimental 
period. To simulate a repeated exposure inflammatory 
challenge, all birds were weighted individually so that 
treatments 5, 6, 7, and 8 received an intraperitoneal 
application of 1mg of LPS / kg of body weight at 14, 
16, 18, and 20 days old. The birds from treatments 1, 
2, 3, and 4 were individually weighed and received a 
comparable amount of saline solution (SS) at a similar 
location to the administration of LPS in treatments 5, 
6, 7, and 8, ensuring a consistent induction of stress.

Diets

The experimental diets (Table I) were based on corn 
and soybean meal, and were formulated according to 
the nutritional recommendations by Rostagno et al. 
(2017) for the 8 to 21 days old phase, except for the 
levels of dig Met + Cys, which varied per treatment. 
The ratios of dig Met + Cys:dig Lys tested were 0.69, 
0.74, 0.79, and 0.84. 95% of the recommended level 
of dig lysin was used. The suboptimal level aimed to 
ensure that the chickens consumed all dig Lys and 
that the ideal dig Met + Cys:dig Lys ratio was not 
underestimated. Samples of experimental diets were 
collected for analysis of crude protein and amino 
acids (Aas) to correct the formulas before preparing 
the experimental diets (Table I). All experimental diets 
had an essential nitrogen:total nitrogen ratio that 
was lower than 0.50, as recommended by Maia et al. 
(2021). 

Performance and sample collection

The broilers’ performance was evaluated at 21 days 
of age by determining the weight gain (WG), feed 
intake (FI), and feed conversion ratio (FCR). At 20 days, 
the bird with the weight closest to the average weight 
of the EU was selected for sample collection. Then, 24 
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hours after the last application of LPS, the bird was 
euthanized and slaughtered. 2 cm of the jejuni were 
collected, stored individually in cryogenic tubes, and 
kept in an ultra-freezer until analyzed to measure 
mRNA transcript levels. At 21 days of age, when one 
bird per EU was slaughtered for sample collection, the 
leftover feed was weighed, and the feed intake per 
bird from 13 to 21 days of age was calculated. The 
total feed intake per bird and the final weight were 

used to determine the feed conversion ratio. The liver 
and spleen of the sampled broiler were removed and 
weighed separately to determine their relative weights. 
The relative weights were determined in relation to the 
animal’s live weight (%).

Determination of mRNA transcript level

The total RNA transcript level of the samples from 
the jejunum was extracted using a Trizol® reagent (In-

Table 1 – Ingredients and nutrient composition of experimental diets, as fed basis.
Ingredients, g/kg

Ratio 0.69 Ratio 0.74 Ratio 0.79 Ratio 0.84

³ Corn 519.30 519.30 519.30 519.30
4 Soybean meal 406.40 406.40 406.40 406.40

Soybean oil 34.50 34.50 34.50 34.50

Dicalcium phosphate 16.30 16.30 16.30 6.30

Limestone 8.60 8.60 8.60 8.60

Salt 5.10 5.10 5.10 5.10

DL-Methionine, 990 g/kg 2.10 2.70 3.30 3.90

Starch 1.80 1.20 0.60 0.00

Mineral Premix 1 1.30 1.30 1.30 1.30

Vitaminic Premix 2 1.30 1.30 1.30 1.30

L-Threonine, 985 g/kg 1.00 1.00 1.00 1.00

Choline chloride, 600 g/kg 1.00 1.00 1.00 1.00

L-Triptofano, 980 g/kg 0.50 0.50 0.50 0.50

L-Lysine HCl, 780 g/kg 0.40 0.40 0.40 0.40

Total 100.00 100.00 100.00 100.00

Calculed composition

Nutrients Ratio 0.69 Ratio 0.74 Ratio 0.79 Ratio 0.84

Metabolisable Energy, MJ/Kg 12.77 12.77 12.77 12.77

Crude Protein, g/kg 230.00 230.00 230.00 230.00

Calcium, g/kg 8.70 8.70 8.70 8.70

Available Phosphorous, g/kg 4.10 4.10 4.10 4.10

Sodium, g/kg 2.10 2.10 2.10 2.10

Digestible Lys, g/kg 11.90 11.90 11.90 11.90

Digestible Met + Cys, g/kg 8.20 8.80 9.40 10.00

Digestible Valine, g/kg 9.30 9.30 9.30 9.30

Digestible Threonine, g/kg 8.80 8.80 8.80 8.80

Digestible Tryptophan, g/kg 2.10 2.10 2.10 2.10

Analyzed composition: liquid -chromatography of amino-acids

Nutrients, g/kg Ratio 0.69 Ratio 0.74 Ratio 0.79 Ratio 0.84

Crude Protein 224.10 239.30 234.0 238.30

Lys 13.20 13.50 13.50 13.70

Met + Cys 6.20 7.40 8.70 8.90

Valine 10.80 10.80 10.50 10.60

Threonine 9.60 9.60 9.40 9.80

Tryptophan 1.50 1.50 1.50 1.50

¹ Trace mineral premix provided per kg of diet: Mn, 58.36 g; Fe, 41.68 g; Zn, 54.21 g; Cu, 8.31 g; I, 0.84 g; Se, 0.25 g.

² Vitamin premix provided per kg of diet: vitamin A, 9,638,000 IU; vitamin D3, 2,410,000 IU; vitamin E, 36,100 IU; vitamin B1, 2.60 g; vitamin B2, 6.45 g; vitamin B6, 3.61 g; vitamin 
B12, 15.9 mg; vitamin K3, 1.94 g; pantothenic acid, 12.95 g; nicotinic acid, 39.20 g; folic acid, 0.90 g; biotin, 89.80 mg.

³ Corn analyzed composition (as fed basis): 89.81% dry matter, 7.44% crude protein, 0.16% methionine, 0.11% cysteine, 0.24% lysine, 0.26% threonine, 0.33% valine, 0.07% 
tryptophan, 0.03% hydroxyproline, 0.31% phenylalanine, 0.77% leucine, 0.24% isoleucine, 0.24% tyrosine, 0.66% proline, 0.52% alanine, 0.36% arginine, 0.03% taurine, 0.19% 
histidine, 0.32% glycine, 0.34% serine, 1.27% glutamic acid, 0.50% aspartic acid, 6.69% total amino acids sum.

4 Soybean meal analyzed composition (as fed basis): 88.40% dry matter, 46.37% crude protein, 0.63% methionine, 0.70% cysteine, 2.87% lysine, 1.88% threonine, 2.19% valine, 
0.35% tryptophan, 0,17% hydroxyproline, 2.34% phenylalanine, 3.43% leucine, 2.08% isoleucine, 1.71% tyrosine, 2.44% proline, 2.24% alanine, 3.43% arginine, <0.01% taurine, 
1.18% histidine, 2.23% glycine, 2.48% serine, 8.45% glutamic acid, 5.41% aspartic acid, 46,21% total amino acids sum.
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vitrogen, Carlsbad, California, 279 USA), according to 
the manufacturer’s instructions, in the proportion of 
1 mL for each 80 mg of tissue. This process measured 
mRNA expression for nuclear factor kappa-B (NF-
Κb; F: GTGTGAAGAAACGGGAACTG; R: GGCACG-
GTTGTCATAGATGG), glutathione peroxidase (GPX) 
(F: GACCAACCCGCAGTACATCA; R: GAGGTGCGG-
GCTTTCCTTTA), superoxide dismutase (SOD) (F: AG-
GGGGTCATCCACTTCC; R: CCCATTTGTGTTGTCTC-
CAA), GSS (F: GTGCCAGTTCCAGTTTTCTTATG; R: 
TCCCACAGTAAAGCCAAGAG) and methionine ade-
nosyltransferase 2 (MAT2; F: CTTCCCAGCAGCCACTT-
GAG; R: GCAGTCAAGCTGAGCGTTCC). RNA integrity 
was assessed on a 1% agarose gel stained with ethid-
ium bromide (10 mg/mL) and visualized under ultravi-
olet light. For real-time PCR, the fluorescent dye SYBR 
GREEN (SYBR® GREEN PCR Master Mix, Applied Bio-
systems, USA) was used. The amplification conditions 
in the thermocycler were initially denatured at 95ºC 
for 10 min, followed by 40 cycles of denaturation at 
95ºC for 15 seconds, and annealing at 60ºC for 1 min. 
The melting curves were performed to guarantee the 
specificity of the PCR products. The β-actin gene (F: 
ATTGTCCACCGCAAATGCTTC; R: AAATAAAGCCAT-
GCCAATCTCGTC) was used as an endogenous con-
trol. The data were generated following the 2−ΔΔCT 
method (Livak & Schmittgen, 2001).

DEXA estimated fat mass (%) and lean 
mass (%)

Chicken body composition was measured using a 
Prodigy Advance DEXA scanner (GE Medical Systems 
Ultrasound & Primary Care Diagnostics LLC 3030 
Ohmeda Drive, Madison, WI, 53718, USA) with 
encore software version 18. A complete body scan 
was performed and analyzed in the small animal body 
mode. At the start of each scanning day, a quality 
assurance program was performed using a phantom 
standard to ensure the accurate calibration of the 
scanner. Eight euthanized chickens per treatment 
were placed in a dorsal position with spread wings and 
stretched legs to avoid extensive overlap of body parts. 
Subsequently, the lines defining the regions of interest 
were corrected for the body. Since these lines are fixed 
at specific intersections, a calculated compromise was 
consistently applied. Based on the attenuation of the 
2 X-ray beams by different absorbing materials, the 
software calculated the estimated values for total tissue, 
lean and fat tissue. These values were obtained for the 
whole body region. After that, equations developed by 
Schallier et al. (2019) were used to correct the values 
of total fat mass [1] and total lean mass percentage [2]:

Total Body Fat Percentage = -1.288(±2.597)+0.806
(±0.159)×Fat Percentage DEXA (%) [1]

Table 2 – Growth performance, relative organ weights, mRNA transcript level and DEXA estimated fat mass and lean mass 
of broiler chickens at 21 days of age.

Control Challenged p-value

0.69 0.74 0.79 0.84 Mean 0.69 0.74 0.79 0.84 Mean ² SEM Rel LPS Rel x 
LPS

Growth performance.

¹ WG 0.62 0.62 0.63 0.63 0.63 0.59 0.57 0.57 0.60 0.58 <0.01 0.53 <0.01 0.18

¹ FI 0.78 0.78 0.78 0.78 0.78 0.76 0.74 0.73 0.75 0.75 <0.01 0.07 <0.01 0.88

¹ FCR 1.26 1.25 1.23 1.23 1.24 1.28 1.30 1.28 1.26 1.28 <0.01 0.19 <0.01 0.47

Relative organ weights.

Liver 2.38 2.45 2.36 2.37 2.39 2.46 2.81 2.57 2.62 2.62 0.04 0.32 <0.01 0.68

Spleen 0.09 0.09 0.08 0.08 0.08 0.12 0.12 0.12 0.12 0.12 <0.01 0.98 <0.01 0.97

mRNA transcript level of NF-κB, GPX, SOD, GSS and MAT.

³ NF-Kb 1.58 1.66 1.71 1.54 1.62 1.26 1.43 1.71 1.54 1.49 0.11 0.79 0.77 0.84

³ GPX 1.26 1.29 1.84 1.23 1.41 1.29 0.97 1.15 1.10 1.13 0.10 0.63 0.19 0.68

³ SOD 1.61 1.71 1.98 1.61 1.73 1.43 1.58 1.78 1.62 1.60 0.08 0.55 0.49 0.97

³ GSS 0.93 0.58 0.85 0.32 0.67 0.09 -0.08 0.74 -0.02 0.18 0.12 0.21 0.04 0.69

³ MAT2 1.59 1.92 2.07 1.50 1.77 1.28 1.41 1.73 1.53 1.49 0.09 0.36 0.14 0.78

DEXA estimated fat mass (%) and lean mass (%).

Fat mass 7.62 8.62 8.97 9.60 8.70 8.95 8.98 9.22 9.20 9.09 0.15 0.05 0.17 0.21

Lean mass 91.71 90.57 90.16 89.57 90.50 90.24 90.20 89.96 90.37 90.19 0.16 0.10 0.31 0.08

¹ WG: weight gain (kg/Bird); FI: feed intake (kg/Bird); FCR: feed conversion ratio (kg of gain/kg of feed).

² Standard error of the mean.

³ NF-Κb = nuclear factor kappa-B; GPX = glutathione peroxidase; SOD = superoxide dismutase; GSS = glutathione synthetase; MAT2 = methionine adenosyltransferase 2 beta.
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 Total Body Lean Percentage = 19.95(±13.47)+0.80
5(±0.163)×Lean Percentage DEXA (%) [2]

Statistical analyses

The statistical analysis was conducted using a 4 × 2 
factorial arrangement of treatments to investigate the 
response of (challenged and unchallenged) broilers to 
4 ratios of digestible Methionine + Cysteine:digestible 
Lysine in the diets. Data were analyzed using the GLM 
procedure of SAS 9.4 (SAS Institute Inc., Cary, NC, USA). 
The cage served as the experimental unit for growth 
performance, and one bird served as the experimental 
unit for determining mRNA transcript levels, relative 
weights of liver and spleen, and DEXA estimated fat 
and lean mass. Differences were considered significant 
at an alpha <0.05. The mean comparison method was 
used, and a linear regression model would estimate the 
ideal ratio if an effect had occurred. The assumptions 
of analysis of variance, regarding the normality of 
residuals and the homogeneity of variances, were 
evaluated using the Shapiro-Wilk and Hartley tests, 
respectively. The statistical model used for the analysis 
consisted of Yijk=m+Ri+Cj+(R x C)ij+eijk, where Yijk 
is the measured dependent variable, μ is the overall 
mean, R is the effect of the different ratios, C effect of 
the challenge, R x C is the effect of the interaction, and  
eijk the random error.

RESULTS
Performance

No mortality was observed during the experiment. 
There was no interaction (p>0.05) between the 
inflammatory challenge and the increase of dig Met 
+ Cys:dig Lys ratio for WG, FI, and FCR. The different 
ratios of dig Met + Cys:dig Lys had no significant 
effect (p>0.05) on the same data observed. However, 
there were significant differences (p>0.05) between 
challenged and unchallenged animals. Chickens that 
received the intraperitoneal application of LPS all 
had lower performance parameters than those that 
received a SS application (Table II).

Organs relative weight

There was no interaction (p>0.05) between the 
inflammatory challenge and the increase of the dig Met 
+ Cys:dig Lys ratio on the relative weight of the liver 
and spleen. The different ratios of dig Met + Cys:dig 
Lys had no significant effect (p>0.05) on these same 
indices. However, there was a significant difference 
(p<0.05) between challenged and non-challenged 
animals. The chickens that received an intraperitoneal 

application of LPS had a heavier liver and spleen than 
those that received the application of SS (Table II).

mRNA transcript level

There was no interaction (p>0.05) between the 
inflammatory challenge and the increase in the dig 
Met + Cys:dig Lys ratio for the mRNA transcript level 
of NF-Κb, GPX, SOD, GSS, MAT2, and CBS in the 
jejunum. Furthermore, the different ratios of dig Met 
+ Cys:dig Lys had no significant effect (p>0.05) on 
the mRNA transcript level of the same target genes. 
However, there was a significant difference (p<0.05) 
between challenged and non-challenged animals for 
GSS mRNA transcript level. Broilers that received an 
intraperitoneal application of LPS had lower expression 
than those that received SS (Table II).

DEXA estimated fat and lean mass

There was no interaction (p>0.05) between the 
inflammatory challenge and the increase of dig 
Met + Cys: dig Lys ratio for lean and fat mass. The 
different ratios of dig Met + Cys: dig Lys also had 
no significant effect (p>0.05) on the same body 
compositions. Furthermore, there were no significant 
differences (p>0.05) between challenged and non-
challenged animals for DEXA estimated fat and lean 
mass (Table II).

DISCUSSION

The application of LPS is commonly used to 
experimentally stimulate the inflammatory response 
of broilers (Chen et al., 2020; Kreuz et al., 2020; 
Qiu et al., 2022). This was again confirmed by this 
study’s results, with worsening performance, lymphoid 
organ hypertrophy, and mRNA transcript level of GSS. 
Additionally, the transsulfuration of Met into Cys 
increases under challenge conditions, and the amount 
of Met will be deficient for production. Thus, less Met 
will be acquired and retained in tissues linked to growth 
performance (Conde-Aguilera et al., 2013), potentially 
impacting the quality of prime meats, such as breast 
muscle (Conde-Aguilera et al., 2016). 

This lower performance can be attributed to LPS-
induced inflammation that deteriorates the intestinal 
barrier function (Wang et al., 2022a), and absorption 
and route change of nutrients to support homeostatic 
activities compensating the deficiency (Korver & 
Klasing, 1997; Zhang et al., 2013). The compromise 
in the use of Aas by the animal (Li et al., 2007; Liu 
et al., 2015) alters the nutritional requirement of 
these nutrients. In this study, it was expected that 
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changing the optimal dig Met + Cys:dig Lys ratio in 
broilers submitted or not to inflammatory challenge 
would improve growth performance. However, this 
hypothesis was not confirmed, possibly because the 
level of these Aas in the basal diet was suboptimal, as 
found by Savaram et al. (2022).

Metabolites of Aas can regulate OS and anti-
inflammatory activity (Del Vesco et al., 2015; Zhang 
et al., 2020). This is justified by the increased liver and 
spleen hypertrophy with incremental levels of dietary 
Aas due to the rise in protein biosynthesis and liver 
activity (Jahanian & Khalifeh-Gholi, 2018), and by 
the associated enhanced immune cell replication and 
proliferation (Barekatain et al., 2019). Therefore, one 
strategy to mitigate the adverse effects of bacterial 
LPS-induced inflammation is to increase the intake 
of dig Aas in the diet by increasing the dig Aas:dig 
Lys ratio (Star et al., 2012; Abdaljaleel et al., 2018; 
Lisnahan et al., 2022) through Met + Cys addition. 
However, the results confirm that altering the ideal dig 
Met + Cys:dig Lys ratio does not reduce oxidative and 
inflammatory stress by altering the relative weight of 
the liver and spleen. Nonetheless, animals that received 
the application of LPS had higher relative weight of the 
liver and spleen than the non-challenged animals (SS 
application), which agrees with Lieboldt et al. (2016) 
and Wang et al. (2022b).

LPS can increase NF-Kb production, which 
stimulates the expression of inflammatory genes (Yang 
et al., 2019; Liu et al., 2022). Adding high levels of 
Met to feed can strengthen the antioxidant system by 
increasing SOD activity in the proximal intestine (Wang 
et al., 2019), protecting and repairing cells (Roushdy 
et al., 2018). Powerful negative radicals are formed in 
tissues through metabolism or cellular reactions, such 
as superoxide or singlet oxygen. The SOD enzyme can 
catalytically convert these free radicals into molecular 
oxygen (O2) and hydrogen peroxide (H2O2), which are 
less harmful. However, the exaggerated accumulation 
of H2O2 is toxic to tissues or cells (Ighodaro & Akinloye, 
2017). 

Met is a precursor of GSH (Gasparino et al., 2017), 
and its supplementation increases GPX expression (Del 
Vesco et al., 2015; Zhang et al., 2019b). It plays a vital 
role in antioxidant defense, indirectly breaking down 
H2O2 to water, using H2O2 as a substrate for GSH 
oxidation (Ighodaro & Akinloye, 2017), and stopping 
lipid peroxidation (Chen et al., 2017). Thus, GPX 
contributes to the protection of all cells that utilize 
oxidative metabolism by eliminating increased reactive 
species during the inflammatory process. In this study, 

it was expected that altering the optimal dig Met + 
Cys:dig Lys ratio for broilers subjected to inflammatory 
challenge or not would improve the mRNA transcript 
level of NF-Kb, GPX, and SOD in the jejunum. However, 
this hypothesis was not confirmed.

According to Li et al. (2017), SOD activity can be 
improved by S-adenosylmethionine, a vital methyl 
donor. It is synthesized from Met and adenosine 
triphosphate through the upregulation of MAT2 (Faraji 
et al., 2018). S-adenosylmethionine acts in methylation 
and biosynthesis processes of molecules that increase 
energy availability for protein deposition, such as the 
methylation of guanidinoacetic acid to form creatine 
(Mousavi et al., 2013). This study hypothesized that 
altering the optimal dig Met + Cys:dig Lys ratio for 
broilers subjected or not to inflammatory challenge 
would improve the mRNA transcript level of MAT2 in 
the jejunum. However, this was not confirmed.

Reverse transsulfuration is a Cys biosynthetic 
pathway characterized by the cleavage of cystathionine. 
It starts with CBS separating the homocysteine complex 
(HCy) and serine to form cystathionine (Kruger, 2017). 
In addition to this role, HCy can regenerate Met via 
remethylation (Wan et al., 2017). This study expected 
that altering the optimal dig Met + Cys:dig Lys ratio 
for broilers subjected or not to inflammatory challenge 
would improve CBS’s mRNA transcript level in the 
jejunum. However, this hypothesis was not confirmed.

GSS is an enzyme that acts in the second step of the 
formation of GSH by catalyzing the reaction of dipeptide 
gamma-glutamylcysteine with glycine (Lu, 2013). GSH 
is present in the intestinal epithelium, where it can 
improve intestinal morphology characteristics (Song et 
al., 2018). However, when chickens go through LPS-
induced inflammation, there is a lower production of 
GSH (Sun et al., 2014). Since GHS depends on the GSS 
enzyme activity for their formation, it can be stated 
that there was a reduction in the expression of GSS 
as well. This study predicted that the alteration of the 
ideal dig Met + Cys:dig Lys ratio for broilers submitted 
or not to inflammatory challenge would improve the 
mRNA transcript level of GSS. However, this hypothesis 
was not confirmed. On the other hand, findings show 
that broilers that received LPS-induced inflammation 
had lower mRNA transcript level of GSS in the jejunum.

SAAs stand out in the protein and lipid metabolism of 
poultry (Majdeddin et al., 2019). These Aas participate 
in pathways that give rise to polyamines, creatine, 
melatonin, and epinephrine (Zhou et al., 2020). In 
addition, SAAs participate in metabolic pathways of 
methyl group donation, such as choline and betaine 
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(Alagawany et al., 2022). Regarding lipid metabolism, 
SAAs interfere with the oxidative catabolism of 
fat tissue (Elsharkawy et al., 2021) (like carnitine 
biosynthesis (Ringseis et al., 2018) that stimulates fatty 
acid oxidation for better energy production), growth 
performance (Golrokh et al., 2016), and improves 
carcass quality, as reported by Asadi et al. (2016). Thus, 
this study hypothesized that altering the ideal dig Met 
+ Cys:dig Lys ratio for broilers submitted or not to 
inflammatory challenge would change the percentage 
of lean and fat mass. However, results revealed that 
these variables were not influenced.

CONCLUSIONS

It is therefore inferred that the lowest dig Met 
+ Cys:dig Lys ratio, that is 0.69 (1.193% dig Lys: 
0.823% dig Met + Cys), was sufficient to maintain 
the performance parameters, the relative weight of 
lymphoid organs, fat and lean mass, and the NF-Kb, 
GPX, SOD, GSS, MAT2, and CBS mRNA contents of 
the jejunum.
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