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ABSTRACT
This paper discusses the Bayesian approach as an alternative to 

the classical analysis of nonlinear models for growth curve data in 
Japanese quail. A Bayesian nonlinear modeling method is introduced 
and compared with the classical nonlinear least squares (NLS) method 
using three non-linear models that are widely used in modeling the 
growth data of poultry. The Gompertz, Richards and Logistic models 
were fitted to 499 Japanese quail weekly averaged body weight 
data. Normal prior was assumed for all growth curve parameters of 
the models with assuming Jeffreys’ non-informative prior for residual 
variances. Models were compared based on the Bayesian measure of 
fit, deviance information criterion (DIC), and our results indicated the 
better fit of Gompertz and Richards models than the Logistic model to 
our data. Moreover, the parameter estimates of the models fitted by 
both approaches showed only small differences.

INTRODUCTION
While a large number of linear functions are adequately used to 

model a wide variety of relationships between variables, many biological 
phenomena require non-linear functions, in which the response varies 
as a function of time. Time-related changes of a phenomenon are of 
particular importance in a wide range of disciplines such as biology, 
agriculture, economics, medicine, crop science, etc. Growth curves 
illustrating these changes allow the data to be summarized by a few 
number of parameters known as growth curve parameters.

There has been a great deal of interest in modeling the growth of 
poultry. Most studies have successfully fitted the Gompertz, Richards, 
and Logistic functions to Japanese quail data (Marks, 1978; Anthony 
et al., 1991; Narinc et al., 2009, 2010). On the other hand, several 
other studies have modeled the growth of other species of poultry 
(Tzeng & Becker, 1981; Emmans, 1995;Akbas & Oguz, 1998; Aggrey, 
2002;Ahmadi & Golian, 2008).

Growth curves are generally fitted by nonlinear regression or linear 
regression if the model can be linearized by transformation. However, 
a linear form of most of the widely used growth models does not exist 
(Blasco et al., 2003). Nonlinear functions are particularly suitable for 
modeling growth data, since predictions outside the range of data 
set can be obtained more reliably than by linear models, and few 
parameters having a biological interpretation can be used to describe the 
entire growth process (Vuori et al., 2006). Nonlinear models are more 
complicated to solve than linear models, and therefore, many different 
algorithms have been developed to obtain the estimates of model 
parameters. More recently, an alternative to the classical approach, the 
Bayesian approach, has received much attention as a tool for estimating 
the parameters of a variety of nonlinear models, including complex 
growth curve models (Zhang et al., 2007).
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In the Bayesian approach, as an alternative to the 
frequentist or classical approach, the assumption of 
normality of the data set is not a necessary condition, 
and the inferences on the model parameters are 
based on their posterior distribution. In general, 
they produce more accurate estimates, with greater 
representativeness of the statistical models and have 
been shown to be easy to apply and understand. It 
is a tool with great potential, as it can consider the 
uncertainty of all the parameters in a model. Bayesian 
methods also provide a natural and principled way 
to incorporate prior information about unknown 
parameters with the data in hand, which can improve 
the accuracy of the results or predictions. The key point 
of the Bayesian approach is that it treats parameters as 
random variables, whereas they are fixed constants in 
the classical approach. Therefore, Bayesian approach 
may be an alternative to the frequentist methodology 
for fitting nonlinear models to the growth data of 
Japanese quail. Although the Bayesian approach is 
powerful and can be used in a variety of analytic models, 
the difficulties of programming and computational 
demands have discouraged many researchers from 
using it (Zhang et al., 2007). However, the use of 
the Markov Chain Monte Carlo (MCMC) methods 
have allowed the researchers to numerically obtain 
the solution of complex posterior density integration 
and made the Bayesian methods popular among the 
researchers from different disciplines.

Although Bayesian methods have become well 
established in the animal science literature and have 
been successfully applied to linear models (Theobald et 
al., 1997; Firat et al., 1997a; Firat et al., 1997b; Firat, 
2001), to our knowledge, none of the studies employed 
Bayesian methods to estimate the growth curve 
parameters of Japanese quail in nonlinear models. This 
study aimed at fitting three commonly used nonlinear 
models (Gompertz, Richards and Logistic models) to 
describe the growth curves of Japanese quail. Growth 
curve parameters were estimated using the classical 
(NLS) approach, as well as the Bayesian method, 
allowing estimating the joint posterior distribution 
of growth curve parameters. Models were compared 
using the deviance information criterion (DIC) that 
permits the comparison of the overall predictive ability.

MATERIAL AND METHODS
Animals

The data set, which was first published in Narinc et 
al. (2010), were formed the basis of this study. The study 

was conducted at the Poultry Breeding Unit, Animal 
Science Department, Faculty of Agriculture, Akdeniz 
University, Turkey. Averages of weekly recorded body 
weight measurements belonging to 499 Japanese 
quail were used in model fitting.

Models’ Formulation 

A growth model for a single experimental unit was 
assumed as:

ε( )= θ +y f t ,j j j 	 = …j , , ,n1 2

where y j  is the observed weight, n is total number 
of observations; θ  is a vector of unknown parameters, 
tj is the time of which the jth observation was taken,

( )ε σ~N ,0j
2

 is independent random error of yj, and 

( )θf t ,j  is one of the different types of growth curves. 
For the analysis of our data set, the following three 
nonlinear functions, which are frequently used for the 
description of growth curves of Japanese quail, were 
considered:

Gompertz model:

θ β β β( ) ( )= − − f t , exp exp tj j11 0 1 2

where θ β β β( )= , ,'
1 0 1 2

Richards model:

θ β β β( )( ) ( )= + −
β

f t , exp t1j j22 0 1 2

1 3

where θ β β β β( )=' , , ,2 0 1 2 3

Logistic model:

θ β β β( )( ) ( )= + −f t , exp t1j j33 0 1 2

where θ β β β( )=' , ,3 0 1 2  

In the above models, β0 stands for the asymptotic 
weight, β1 is a constant without biological meaning, 
β2  is the maturity index as an expression of the 
growth rate relative to mature weight, and β3 is the 
shape parameter defining the position of the point of 
inflection (Aggrey, 2002; Kizilkaya et al., 2006).

Then, θ( )f t ,l j l l=1, 2, 3 were substituted in the 

growth model and denoted { }= =y , j , , ,ny 1 2j  and 

{ }= =t , j , , ,nt 1 2j ,their likelihood functions were 
obtained, as follows:
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∑θ σ
σ σ

θ{ }( )( )
( )

= − −










=

L | , ,
π

exp y f t ,y t
1

2

1
2l n

n
j l j l

j

n
2

2
2

2

1

where
 θ( ) ( )= θf t , E yl j l jl

, l=1, 2, 3.

Bayesian Inference

The following distributions of the three growth 
model priors ar proposed:

Gompertz model:

 β µ σ( )β β~N ,0
2

0 0
,  β µ σ( )β β~N ,1

2
1 1

 and  β µ σ( )β β~N ,2
2

2 2
.

Then       θ µ σ µ σ µ σ( )= β β β β β β, , , , ,1
2 2 2

0 0 1 1 2 2
.

Hence, the prior distribution is


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




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Richards model:

 β µ σ( )β β~N ,0
2

0 0
,  β µ σ( )β β~N ,1

2
1 1

,  β µ σ( )β β~N ,2
2

2 2
 and 

 β µ σ( )β β~N ,3
2

3 3
, where β0, β1, β2 and β3 are independent, 

the vector         θ µ σ µ σ µ σ µ σ( )= β β β β β β β β, , , , , , ,2
2 2 2 2

0 0 1 1 2 2 3 3
. 

Hence, the prior distribution is:
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Logistic model:

 β µ σ( )β β~N ,0
2

0 0 ,  β µ σ( )β β~N ,1
2

1 1  and  β µ σ( )β β~N ,2
2

2 2

where β0, β1 and β2  are independent, the vector 



     θ µ σ µ σ µ σ( )= β β β β β β, , , , ,3
2 2 2

0 0 1 1 2 2 .

Hence, the prior distribution is:
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The prior distribution for the error variances are 
assigned a scaled inverted chi-square distribution with 

hyper-parameters υ and s2 ~ , s2 2 2σ χ υ υ( )( )−

σ υ σ υ
σ( ) ( )∝ −









υ( )− +
f , s exp

s
2

2 2 2
1
2

2
2

2 ,

where υ is the degree of belief and s2 is the scaling 
factor of the inverted chi-square distribution.

In practice, the specification of hyper-parameters 
may be difficult, and therefore we can choose the 
values of hyper parameters to obtain non-informative 
priors. For example, setting υ and s2 to zero will yield 
Jeffreys’ prior for σ2 and thus we will have density 

σ σ( ) ∝p 12 2 .
The joint posterior distributions of all the unknown 

parameters for a single experimental unit i are as 
follows:

Gompertz model:
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Richards model:
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Logistic model:
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The joint posterior distributions described in (1)-(3) 
are complex, and the implementation of the Bayesian 
procedure requires MCMC sampling techniques, and in 
particular, the Gibbs sampling and Metropolis–Hastings 
(MH) algorithm. The Gibbs sampler generates posterior 
samples using the conditional densities of the model 
parameters. The full conditional posterior distributions 
of each model parameter and error variance for running 
the Gibbs sampler and Metropolis-Hastings are needed 
to derive. These full conditional distributions can be 
obtained from algebraic and matrix manipulations of 
the joint posterior distributions in equations (1)-(3). 
The full conditional distribution of error variance, σ2, 
was proportional to inverted χ2 distribution,

∑σ β β β β χ ν θ ν{ }( )+ − +






−

=

| , , , , ~ n , y f t , sy j j
j

n
2

0 1 2 3
2

2 2

2

1

2

 (4)

Suppose we take the Richards model as an example. 
The full conditionals for the unknown parameters  

, , ,2 0 1 2 3θ β β β β( )=  from (2) are as follows:
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Conditional posterior distributions of the growth 
curve parameters (β0, β1, β2, β3) of models in equations 
(5)-(8) do not have a closed form. Therefore, these 
parameters require implementation of a Metropolis 
algorithm, which is used to sample from the 
appropriate conditional posterior densities given in 
(5)-(8). However, the error variance, σ2, has a scaled 
inverse Chi-square conditional posterior distribution 
in equation (4) and Gibbs sampling can be used to 
draw samples from this recognizable conditional 
distribution. Metropolis steps can be embedded in the 
Gibbs scheme in order to draw samples from the non-
standard statistical distributions.

Goodness of Fit

There exist a variety of methodologies to compare 
several competing models for a given data set and 
to select the one that best fits the data. In this study, 
models were compared using the Bayesian measure 
of fit, the deviance information criterion (DIC), which 
is a tool that is used for model assessment and 
provides a Bayesian alternative to Akaike’s information 
criterion (AIC) and the Bayesian information criterion 
(BIC). This statistic takes into account the number of 
unknown parameters in the model and is intended as 
a generalization of the AIC. Let iθ  be the parameters 
of the i’th model, the DIC is computed as follows (Forni 
et al., 2009):

DIC D D2 iθ( )= −

where,

D log p p dy y2 i i i∫ θ θ θ( ) ( )= −  

and

D log p ˆy2i iθ θ( )( ) = − 





In model comparison, the smaller the DIC model 
fits better to the data set (Spiegelhalter et al., 2002; 
Forni et al., 2009). In practical applications of DIC, 
Spiegelhalter et al. (2003) stated that just reporting the 
model with the lowest DIC could be misleading if the 
difference in DIC is small, for example less than 5, and 
the models make very different inferences. DIC gives a 
clear conclusion to support the null hypothesis or the 
alternative hypothesis similar to the Bayes factor, BIC, 
and AIC.

Statistical Analysis

Parameter estimates of the three non-linear models 
were obtained by two methods:

i) Frequentist or classical: A non-linear least square 
(NLS) problem is an unconstrained minimization 
problem, where the objective function is non-linear 
in terms of model parameters. Unlike the linear least 
square estimation, closed form solutions to the k 
normal equations cannot be obtained, and therefore, 
iterative methods such as Gauss-Newton are required 
to minimize the sum of squares. Therefore, for 
estimating the parameters of growth functions, the 
Gauss-Newton algorithm was utilized and the NLIN 
procedure of SAS 9.2 software (SAS Ins., 2009) was 
used.

ii) Bayesian: Posterior samples of the model 
parameters were obtained by the WinBUGS program, 
1.4.2 version (Lunn et al., 2000) through the 
R2WinBUGS package of R program (R Development 
Core Team, 2010). A normal distribution with mean 
0 and variance 10,000, N(0, 10,000), was used as 
the prior distribution for each of the growth curve 
parameters in models (β0, β1, β2, β3), and a gamma 
distribution Ga(0.001,0.001) was used as prior for 
the precision parameters. Both N(0, 10,000) and 
Ga(0.001, 0.001) are considered “vague”. The 
distribution Ga(0.001, 0.001) (a proper distribution) 
is very close to the commonly used Jeffreys’ prior for 
the precision parameter, an improper distribution that 
does not integrate to one. Using this “barely” proper 
distribution, it is possible to avoid improper posteriors 
under the Jeffreys’ prior. The distribution N(0, 10,000), 
with a mean 0 and standard deviation of 100, is 
practically flat. Vague prior distributions were used 
because we had no information about these model 
parameters. In all models, chain lengths of 500,000 
cycles were considered with a burn-in period of first 
50,000 cycles. Every 225th sample is retained in the 
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next 450,000 samples to reduce the auto-correlation 
and in total 2,000 samples were used to estimate the 
features of marginal distributions.

RESULTS AND DISCUSSION

Parameter estimates, their approximate standard 
errors and 95% confidence intervals obtained from the 
classical approach (NLS) for the three growth functions 
are given in Table 1 for completeness. Also, Table 2 
provides the summary statistics of Bayesian analysis for 
the fitted functions.

Gompertz function has the best fit to the data in 
terms of model selection criteria, AIC and BIC, followed 
by Richards and Logistic functions using classical 
approach, NLS. On the other hand, Figure 1 depicts 
the fit of three growth functions to the actual values 
within Bayesian context. From the figure, it can clearly 
be seen that all models are accurate in prediction 
of the actual body weights. The DIC statistics of the 
aforementioned models indicated that both the 
Gompertz and Richards functions fits the data exactly 
the same and also are better than the logistic function 
(Table 2). Comparing the goodness of fit of various 
growth functions to quail data, numerous studies have 
shown that Gompertz and Richards functions reflect 
the age-weight relationship of Japanese quails well 
(Tzeng & Becker, 1981; Anthony et al., 1991; Akbas 
& Oguz, 1998; Mignon-Grasteau et al., 1999; Sezer 
&Tarhan, 2005; Alkan et al., 2009; Narinc et al., 2010).

Similar parameter estimates were obtained when 
classical and Bayesian approaches were considered 
(Tables 1 and 2). The standard deviations (SD) of the 
posterior distribution are analogous to the approximate 
standard error (SE) estimates of the parameters which 
can be produced by default in any statistical package. 
In this respect, SDs (Table 2) were used as equivalent 
estimates of the SEs (Table1). For the Gompertz 
function, the Bayesian analysis resulted higher SDs 
of the parameter estimates than their corresponding 
SEs. The Bayesian estimation of the Richards function 
produced smaller SDs for all the parameters. While 
the posterior SD of β0 is higher than its SE in NLS 
estimation, smaller SEs are obtained for β1 and β2 
when fitting the logistic function. In the Bayesian 
context, the classical confidence intervals (CI) are 
replaced by the Bayesian credible intervals (BCI). Both 
CI and BCI for the Gompertz function parameters were 
similar, while BCIs are narrower than CIs for Logistic 
and Richards function parameters (Tables 1 and 2). On 
the other hand, CIs of both β1 and β3 parameters of 

Richards function include zero, and are considered to 
be statistically insignificant. Non-significance of any 
of the estimated parameters of a growth function 
might have several reasons (Fekedulegn et al., 1999): 
1) one or more parameters in the function may not 
be useful, or model can be reparameterized to involve 
less parameters; 2) the growth data are not adequate 
to estimate all parameters in the function; or 3) the 
assumptions of the function do not conform with the 
biological system being modeled. Moreover, it was 
reported that convergence problems may occur in fitting 
Richards function (Darmani Kuhi et al., 2003; Karkach, 
2006). Although Logistic function led to statistically 
significant parameter estimates using NLS approach, 

Figure 1 – Actual and Fitted body weights (g) for Gompertz, Richards and Logistic 
functions via Bayesian approach.
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as can be seen by a better fit of Richards function than 
the Logistic function, significant parameter estimates 
do not always guarantee a good fit to the data, and 
therefore this should not be the only criterion to select 

the best fitting model for the data in hand (Darmani 
Kuhi et al., 2003). Contrary to NLS method, BCIs of 
the parameters in Richards function do not include 
zero. This is due to the power of Bayesian approach 

Table 2 – Posterior summary statistics for the three growth functions

Median Mean SD MCError
95% Credible Interval (BCI)

2.50% 97.50%

Gompertz

β0 222.10 222.14 2.14 0.080 217.80 226.60

β1 3.312 3.312 0.057 0.002 3.195 3.429

β2 0.080 0.080 0.002 0.000 0.077 0.083

σ2 0.653 1.031 1.871 0.044 0.198 4.059

DIC 22.3

Richards

β0 221.80 221.86 2.19 0.071 217.70 226.31

β1 0.014 0.015 0.003 0.000 0.012 0.021

β2 0.080 0.080 0.002 0.000 0.077 0.084

β3 0.004 0.005 0.001 0.000 0.004 0.007

σ2 0.646 1.077 1.772 0.047 0.200 4.766

DIC 22.3

Logistic

β0 202.00 202.58 7.26 0.254 189.70 217.30

β1 12.630 12.586 1.341 0.186 9.491 14.940

β2 0.138 0.138 0.009 0.001 0.117 0.156

σ2 23.870 34.076 34.914 1.238 8.060 117.805

DIC 46.9

Sd: Standard deviation; MCError: Monte Carlo Error; DIC: Deviance information criterion

Table 1 – NLS estimation results for the three growth functions

Estimate
Approximate

Std. Error
(SE)

95% Approximate
Confidence Interval (CI)

2.50% 97.50%

Gompertz

β0 222.10 1.584 217.700 226.500

β1 3.312 0.044 3.190 3.435

β2 0.080 0.001 0.077 0.084

AIC -2.010

BIC -2.172

Richards

β0 222.00 3.191 211.800 232.100

β1 0.010 0.237 -0.743 0.763

β2 0.080 0.004 0.066 0.094

β3 0.003 0.071 -0.223 0.229

AIC -0.014

BIC -0.231

Logistic

β0 201.90 5.982 185.300 218.600

β1 12.824 2.098 6.999 18.649

β2 0.139 0.011 0.108 0.169

AIC 24.378

BIC 24.215

AIC: Akaike’s information criterion; BIC: Bayesian information criterion
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in estimating the parameters of complex functions, 
particularly with small data sets.

Although the parameters of the functions are 
represented with the same letters, they do not have 
the same biological meaning, except the asymptotic 
weight parameter, β0, and comparison of the parameter 
estimates across the models is not reasonable. The 
asymptotic weight parameter estimates obtained 
from fitting Gompertz, Richards and Logistic functions 
are 222.10, 221.80 and 202.00, respectively. These 
values of β0 parameter are higher than Anthony et 
al. (1991) have reported. Similar results have been 
reported by Akbas & Oguz (1998), Kizilkaya et al. 
(2005) and Alkan et al. (2009). The differences in the 
parameter estimates of growth functions may occur 
among different studies as a result of having different 
genotype and environmental conditions.

Gompertz and Logistic functions have a priori 
defined growth shapes with inflection point at 37% 
and 50% of the asymptote, respectively (Grimm & 
Ram, 2009). In the Richards function, an additional 
parameter, β3, allows the flexibility in the inflection 
point. Moreover, the Gompertz and Logistic growth 
functions can be derived from the Richards function. 
When the β3 parameter in Richards function approaches 
0, Gompertz function is approximated, where as if 
β3 parameter approaches 1, the Logistic function is 
obtained (Sezer & Tarhan, 2005;Kizilkaya et al., 2006). 
When choosing an appropriate function to model 
growth in biological systems, researchers need to pick 
a model that is flexible with the least complexity among 
the available functions. For instance, the Gompertz 
and Logistic functions are simple and were shown to 
fit well to short time series such as growth data of 
animal species (Darmani Kuhi et al., 2010). Compared 
to Gompertz and Logistic functions, Richards function 
is more complex, has an additional parameter and can 
fit well to the complex patterns but it is difficult to fit 
and requires a long time series (Karkach, 2006).

Conclusions

In this paper, we considered the estimation of the 
growth curve parameters for nonlinear models using 
classical and Bayesian methods. Both classical and 
Bayesian methods of estimation are well established 
and it is not necessary to justify why one or the other 
is preferred (Blasco, 2001). The Bayesian methodology 
can be applied without restriction to the growth 
functions used in this study. However, Bayesian analyses 
are sensitive to the choice of priors and different priors 

may result in different posterior expectations of the 
parameters. Since the parameters of the normal priors 
(hyper parameters) were chosen so as to yield nearly 
a flat distribution, classical and Bayesian estimates did 
not differ much for the nonlinear curve parameters. 
Further study may be carried out to examine the effects 
of different prior specifications in nonlinear functions 
and to estimate their parameters in Bayesian context. 
However, the Bayesian method consistently predicts 
narrower credible intervals and gives more accurate 
results than those from the classical approach. When 
using the Bayesian methodology, it is possible to 
proceed to the comparisons among these parameters 
without having to resort to asymptotic procedures and 
incoherent results through frequentist theories. It is 
also important to note that use of these procedures 
need not be confined to any specific class of models. 
Rather, they can be applied to a wide range of model 
determination problems.
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