Figure 1
Different diameters of punches used in the follicular unit extraction procedure (left) and large punches used in older techniques (right). In the follicular unit extraction procedure punches with diameters ranging from 0.7mm to 1 mm are used, whereas those used in older techniques have a diameter of 3mm or more.
Figure 2
(A), An unsightly scar aspect and poor aesthetic appearance of the donor area 1 year after follicular unit removal with punches of 3mm in diameter. (B) and (C), Compromising and unsightly outcomes, referred to as “doll hair.”
Figure 3
(A) and (B), unsatisfactory outcomes and enlarged scars from donor areas subjected to spindle resection and suture.
Figure 4
(A), Patient 1 year after a conventional hair transplant surgery (with strip harvesting of donor area) and satisfactory scar when the hair is 3mm in length. (B), The same patient with hair shaved to 1mm in length, showing the scar.
Figure 5
(A), A patient who underwent a follicular unit extraction procedure with 1,200 follicular units removed, with hair shaved to 1 mm in length, 6 months post-transplant. (B), The same patient with hair shaved close to the scalp and hypochromic points.
Figure 6
A manual extraction device used for the follicular unit extraction procedure. The punch is connected to a handle and the depth can be adjusted according to the depth of the follicular unit. (A), Handle; (B), Punch of 1 mm; (C), Inserting the punch into the handle; (D), Adjusting the penetration depth.
Figure 7
(A), Model of the electric extraction device * used for the follicular unit extraction procedure. (B), Disassembled device showing the punch and the adapter. (C), The assembled extraction device. (* The Safe System, one of the motorized devices used for the extraction of follicular unities, uses a blind (blunt) punch and decelerates when this punch penetrates the dermis).
Figure 8
(A), Follicular units in bundles on the surface of the skin showing their distribution in the subcutaneous tissue. (B), The red lines indicate the variation of the inclination angles of the exit of the hair follicle through the skin. (C), Different positions and depths of the roots within the same follicular unit.
Figure 9
(A) and (B), Intact follicular units (without root transection) removed by follicular unit extraction with a punch 1 mm in diameter. (C), Intact follicular units (without root transection) removed by follicular unit extraction with a punch 0.8 mm in diameter. The punch diameter is gradually decreased, according to the improving skill of the surgeon. (D) and (E), Intact units on the left and transected units in the middle and right. F, Mode of transection by the punch.
Figure 10
In (A, B and C), the safety region for follicular unit extraction is shown within the demarcated area. The areas outside these zones can include follicles with the genetic code for baldness, which, therefore, may fall out in the future and generate hypochromic scars on glabrous areas.
Figure 11
A, Sequence showing the correct alignment of the punch (A), engagement of the punch (B) and partial penetration of the punch around the follicular unit (C). The punch should be aligned with the angle of hair exit and penetrate only partially.
Figure 12
Schematic appearance showing follicular unit extraction with fine forceps and traction in the same direction of hair exit, after partial penetration of the punch.
Figure 13
(A), Follicular units removed with the follicular unit extraction procedure. (B), Follicular units after removing the excess epidermis. (C), Units containing one, two, and three strands, placed in saline and cooled to 4ºC.
Figure 14
(A), Immediate postoperative appearance of the occipital region after removal of 1,561 follicular units with a punch 0.9mm in diameter. (B) and (C), First and seventh days after surgery, respectively. (D), Immediate postoperative appearance of the left occipitotemporal region and in (E), fifth postoperative day. In both cases, a punch 0.8mm in diameter was used.
Figure 15
Donor areas exhausted by multiple previous transplants.
Figure 16
Patient with a donor area without elasticity, which generated a hypertrophic scar 1 year after a transplant surgery by conventional technique. We plan to treat the scar and, if necessary, perform a new hair transplant, in which the follicular unit extraction procedure will be used.
Figure 17
Follicular unit extraction procedure of beard, as an example of the use of hair follicles from other parts of the body when the donor area is exhausted. In this case, 917 follicular units were removed from the beard. Courtesy of Dr. Robert True. In the detail, beard vs. scalp follicle. Notice the difference in thickness.
Figure 18
(A) and (B), Images before correction of the donor area. (C), First postoperative day. (D), Sixth postoperative day. (E), One year after surgery, with two transplant sessions, for a total of 927 follicular units.
Figure 19
A 42-year-old patient who had undergone two previous surgeries and was dissatisfied with the naturalness of the front line. (A), Figure before the correction of the previous hairline. This was treated with transplantation of 1,025 follicular units, removed by follicular unit extraction procedure, in a single surgical step. (B), One year after corrective surgery.
Figure 20
Before and 1 year after surgery by the FUE procedure. A 33-year-old patient, a military personnel, required to have very short hair. Option by FUE procedure with 2,127 transplanted units.
Figure 21
A 32-year-old patient who underwent transplant of 220 follicular units to the eyebrow on both sides. The units were removed by the follicular unit extraction procedure. (A), Preoperative image. (B), Outcome 6 months after surgery showing increased follicular density of the outer tail of the eyebrows.