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SUMMARY

The correct use of closed field chambers to determine N2O emissions requires
defining the time of day that best represents the daily mean N2O flux. A short-term
field experiment was carried out on a Mollisol soil, on which annual crops were
grown under no-till management in the Pampa Ondulada of Argentina. The N2O
emission rates were measured every 3 h for three consecutive days. Fluxes ranged
from 62.58 to 145.99 μμμμμg N-N2O m-2 h-1 (average of five field chambers) and were
negatively related (R2 = 0.34, p < 0.01) to topsoil temperature (14 - 20 oC). N2O
emission rates measured between 9:00 and 12:00 am presented a high relationship
to daily mean N2O flux (R2 = 0.87, p < 0.01), showing that, in the study region,
sampling in the mornings is preferable for GHG.

Index terms: soil N2O fluxes, climate change, GHG sampling.

RESUMO: EMISSÕES DE N2O DE UM CHERNOSSOLO CULTIVADO: O
TEMPO IDEAL DO DIA PARA AMOSTRAGEM E PAPEL DA
TEMPERATURA DO SOLO

O uso adequado de câmaras estáticas para determinar as emissões de N2O no campo
requer a definição da hora do dia que melhor representa a taxa de emissão média diária. Um
experimento de campo de curta duração foi realizado em um Chernossolo do Pampa Ondulado
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da Argentina, cultivado com soja em sistema plantio direto. As taxas de emissão de N2O foram
medidas a cada 3 h durante três dias consecutivos. As taxas de emissão de N2O variaram entre
62,58 e 145,99 mg m-2 h-1 de N-N2O (média de cinco câmaras de campo) e foram negativamente
relacionadas (R2 = 0,34; p <0,01 ) com a temperatura do solo (14 - 20 °C). As taxas de emissão
de N2O medidas entre 9 e 12 h foram positivamente relacionadas com a média diária (R2 =
0,87; p <0,01), mostrando que na região de estudo a melhor época para amostragem de GEE
é pela manhã.

Termos de indexação: fluxo de N2O no solo, mudança climática, amostragem de GEE.

INTRODUCTION

Nitrous oxide (N2O) is the main greenhouse gas
emitted by agricultural soils, with a global warming
potential 310 times greater than carbon dioxide (Pérez-
Ramírez, 2007). Its concentration in the atmosphere
increased at a rate of 0.25 % per year between 1980
and 1998 (Houghton et al., 2001) and, according to
Snyder et al. (2007), its concentration reached 319
ppb in 2005.

Closed chambers are widely used for measuring
soil greenhouse gas fluxes. The most common of these
procedures involves manual sampling of headspace
gas from the chamber using syringes (Chen et al.,
2000; Ball et al., 2002; Jantalia et al., 2008) or more
advanced systems such as vacuum pumps or
automated flux monitoring systems (Akiyama et al.,
2000; Dobbie & Smith, 2001).

The method used to measure field N2O emissions is
relatively recent, and it has no universal standard or
internationally accepted guidelines (Hutchinson &
Livingston, 2002). The current global estimate of
agricultural N2O emissions has an uncertainty ranging
from -60 to 170 % of the mean estimate (Venterea et al.,
2009). Rochette & Eriksen-Hamel (2008) concluded that
50 - 60 % of the N2O data measured using field chambers
is unreliable, usually due to the use of inappropriate
methods. This makes the minimization of experimental
errors during field sampling a key concern to improve
confidence levels of N2O measurements (Schindlbacher
et al., 2004; Venterea et al., 2009).

The high spatial variability of N2O fluxes, related
to differences in envizonmental variables (McClain et
al., 2003) requires a high number of chamber
replicates to evaluate N2O fluxes at a reasonable
precision, but compromises have to be made in order
to limit the number of samples to manageable
quantities. Soil N2O daily emission calculations are
usually based on the extrapolation of a single daily
measurement during a short period to represent the
mean flux of a 24 h period. If the time of day that best
represents the mean daily N2O flux is known, more
accurate results can be expected.

In order to identify this time period, a short-term
field experiment was conducted throughout three days
with cultivated soils of the Argentine Pampas under
no-till management. As soil temperature is a
recognized key factor determining daily rates of N2O

emissions (Denmead et al., 1979; Blackmer et al.,
1982; Akiyama et al., 2000; di Marco et al., 2004;
Jantalia et al., 2008) this variable was also considered
in our experiment.

MATERIALS AND METHODS

The study was carried out on an agricultural field
in the Province of Buenos Aires [34° 57' 29'’ S, 60° 13'
11'’], on a loamy Typic Argiudol (clay 190 g kg-1, silt
400 g kg-1) from the O’Higgins Series (INTA, 2010).
Soil organic matter was determined by wet
combustion (Walkley & Black, 1934) was 35.2 g kg-1

and pH in water of the A horizon was 5.7. The field
had been under no-till management for the previous
15 years. The crop sequence in the three years before
our measurements was maize, wheat/soybean (double
cropping) and full-season soybean. Samples were taken
in autumn 2010 before the harvest of the full-season
soybean.

After a rainfall of 30 mm, five closed chambers
(surface = 1.333 cm2, height = 12.5 cm) randomly
spread across the soybean field, were inserted into
the soil to a depth of 0.05 m. This size of field chambers
was described as optimal by other authors (Rochette
& Eriksen-Hamel, 2008) and was already used by
Jantalia et al. (2008) and Alves et al. (2012). After
closing the chambers, gas samples were taken after
0, 20 and 40 min, with a vacuum pump, and injected
into previously evacuated 25 mL vials with a rubber
stopper fixed to the vial with an aluminum flange.
Once sampling was finished, the top of the chamber
was removed. This process was repeated every 3 h
for three consecutive days beginning at 9:00 am on
the first day. The N2O collected was always measured
within seven days after sampling with a GC 6890
Agilent Technologies Network gas chromatograph.
The daily average soil N2O flux was calculated as
the mean of the eight fluxes measured each day.
Samples of the five chambers collected during three
days provided 15 estimates of N2O fluxes per
sampling time.

N2O flux (f) was calculated as:
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where ΔC/Δt is the change of N2O concentration in
the chamber during the incubation time Δt, V is the
volume of the chamber (16.7 dm3), A is the area of
soil covered by the chamber (1.333 cm2), Vm is the molar
volume of N2O and m is its molecular weight. Gas fluxes
were calculated as the increase in concentration during
the incubation period and expressed by the arithmetic
mean and its standard deviation.

Soil temperature was measured with a
thermometer inserted in the soil to a depth of 0.10 m
and air temperature with a shaded thermometer at
the soil surface. The concentration of N-NO3

- (0-0.20 m)
was determined by colorimetric spectrophotometry
(Markus et al., 1985). Soil bulk density (BD) was
determined in 100-cm3 cylinders (diameter 0.05 m) and
gravimetric water content (GWC) by oven-drying at
105 oC during 48 h. The volumetric water content (VWC)
and total porosity (TP) were calculated using BD and
GWC, assuming a particle density (Dp) of 2.65 Mg  m-3

(equations 2 and 3):

TP = 1 - (BD / Dp) (2)

VWC = GWC * BD (3)

The percentage of water-filled pore space
(%WFPS) was calculated with the TP and VWC
values (Equation 4):

WFPS = TP - VWC (4)

In order to determine the time of day that best
represents the mean daily N2O emission rate,
regression analysis (InfoStat, 2002) was used to relate
N2O data with soil and air temperature.

RESULTS

Mean air temperature was 14.5 oC, ranging from
a minimum of 4.0 oC to a maximum of 31.3 oC,
whereas the mean soil temperature was 16.8 ºC, with
a minimum of 14.6 oC and a maximum of 19.2 oC.
Percentage of water filled pore space (%WFPS) and
NO3

- content were kept constant during the three days
of measurements, averaging 0.89 m3 m-3 (89 %) and
73.4 mg kg-1, respectively. The daily dynamics of soil
and air temperature were similar in the three days of
the study.

The soil temperature was slightly lower than 15 oC
on one occasion only. This temperature was the
minimum value above which N2O fluxes were observed
(Keeney et al., 1979). However, this low temperature
did not limit N2O flux under the study conditions.
The times of day when the mean daily N2O emissions
were represented best were at 9:00 and 12:00 am. The
coefficients of determination obtained by the regression
analysis between mean daily and hourly N2O emission
rates were highly significant in both cases (Table 1
and Figure 1). Other authors also found morning hours
more suitable for gas sampling (Blackmer et al., 1982;
Jantalia et al., 2008).

Interestingly, it was found that the dynamics of
other soil N emissions (e.g. NO) were determined
mainly by the season (Xunhua et al., 2003). Other
daily patterns of N2O flux were reported elsewhere
(Denmead et al., 1979; Blackmer et al., 1982; Akiyama
et al., 2000; di Marco et al., 2004). Most of these
studies reported that N2O emission rates were
positively related to soil temperature (Denmead et al.,
1979; Alves et al., 2012). The results obtained in this
paper differ in this aspect.

N2O emission rates were poorly related to air
temperature (data not shown) and were negatively
related to soil temperature (R2 = 0.34). N2O emission
tended to increase as topsoil temperature decreased
(Figure 2 and 3). We only found two cases that agreed
with our results: Bailey (1976) observed an increase
in N2O production when topsoil temperature

Sampling time a b R2

hour of day

9:00 1.12*** -13.78 0.87***

12:00 1.13*** -23.73* 0.88***

15:00 0.48** 38.57** 0.35**

18:00 0.43** 36.50** 0.33**

21:00 0.82** 6.30 0.37**

24:00 1.31*** -28.24 0.75***

3:00 1.84*** -42.22 0.75***

6:00 0.86* 26.61 0.23*

Table 1. Relation between mean daily and mean
hourly N2O emission rates

y = ax + b. *, **, *** indicate significant adjustment of
regression slopes and intercepts at p = 0.1, 0.05 and 0.01,
respectively.
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Figure 1. Dynamics of N2O emission rates during the
day. Bars indicate standard error of the means.
The horizontal line corresponds to the daily
average (88.6 μμμμμg N-N2O m-2 h-1).
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decreased from 30 to l0 ºC, while Avrahami &
Bohannan (2009) reported similar results in soils with
low or moderate amounts of fertilizer. N2O emissions
measured on these Mollisols can be ascribed to
denitrification rather than nitrification, as WFPS was
always greater than 70 % (Bateman & Baggs, 2005).
However, the fact that N2O emission rates decrease
above 24 ºC is not easy to explain. It can be speculated
that during denitrification at higher temperatures,
the rate of N2 production is higher than that of N2O
(Maag & Vinther, 1996). Soil anaerobiosis could be
enhanced by the occurrence of horizontal pores in the
topsoil of the non-tilled soils studied.

The flux of trace gases between the soil and the
atmosphere is the result of three basic processes:
production, consumption and transport (Conrad,
1996). Another possible factor influencing soil N2O
emissions is the continuous no-till management of

these soils. Many of them have a low volume of
structural pores (Taboada et al., 1998; Micucci &
Taboada, 2006; Taboada et al., 2008). The formation
of these pores has been attributed to the lack of
mechanical disturbance as well as to the traffic of
heavy farm machinery in no-till systems, resulting
in shallow compaction in the form of laminar
structures (Bonel et al., 2005; Sasal et al., 2006;
Alvarez et al., 2009). This type of structure favors the
appearance of horizontal pores, which also tend to be
more tortuous and less connected (Bonel et al., 2005),
thus promoting the development of anaerobiosis after
heavy rain episodes.

Taking into account that diffusion capacity is
related to impedance to gas diffusion, which depends
on the shape and orientation of the soil pores (Fen et
al., 2009), it can be also suggested that this pore
arrangement, plus a WFPS percentage close to 90 %,
could reduce the rate at which gases move from the
soil to the atmosphere (Glinski & Stepniewski, 1985).
This is consistent with results of Bartelt-Hunt &
Smith (2002), who found that with a decrease in soil
moisture content, and therefore an increase in the
percentage of air-filled pores (30 to 39 %), the gas
diffusion coefficient rises from 0.0133 to 0.0609 cm2 s-1.
This decrease in gas transport rate from soil to air
leads to an accumulation of N2O molecules in the
ground making them available for use by nitrous oxide
reductase to produce N2, causing a decrease in N2O
rate with increasing temperature in the soil studied
here.

A similar observation was described by Focht
(1974), who found that as the denitrification rate
increased, the quantity of N2O evolved decreased, due
to the greater increase in N2O reduction rate than in
its formation rate. Their results also support and
further develop the hypothesis proposed by Bailey &
Beauchamp (1973) that account for the change in
relative proportion of denitrification gases produced
as temperature changes. These authors reported that
at 15 oC, a partial inhibition of the final reduction
step of denitrification occurred (N2O  N2) (Bailey,
1976).

Results indicate that to sample N2O gases from a
Mollisol, the morning hours (09:00 to 12:00 am) are
more appropriate to minimize errors. Soil temperature
appears to be the main factor negatively regulating
the N2O emission rate. This differs from results
obtained by other authors (Denmead et al., 1979;
Alves, 2011) and should be verified in the future.
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Figure 2. Soil N2O emission rates and soil
temperature at different times of the day. Bars
indicate standard errors of the mean.
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