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ABSTRACT: Since the industrial revolution, human activities have emitted approximately 
2,500 Gt of CO2, increasing the concentration of atmospheric CO2 by 50 % compared 
to pre-industrial levels. To better understand the potential for mitigating greenhouse 
gas (GHG) emissions through proper management of degraded pasture areas, we 
conducted a systematic literature review and identified 23 publications reporting carbon 
sequestration values for pastures managed under different conditions in the south 
and southeast regions of Brazil. From this dataset, 17 publications considered to be in 
line with the research premises were selected to estimate the potential for soil carbon 
sequestration (SEQ) through pasture recovery in the southern region of Brazil, using 
conservative and regenerative agricultural management practices. Results show that 
managed pastures can sustain carbon sequestration rates of around 2.50 Mg C ha-1 yr-1 
over approximately 20 years. However, due to the numerous variables influencing SEQ 
rates, the limited number of publications, and the lack of data for some variables among 
them, a more extensive analysis of publications and data is needed to establish causal 
and preponderance relationships regarding the effect of each variable on the found SEQ 
rates. Under current pasture occupation conditions in Brazil’s south region, it is estimated 
these areas could sequester between 0.433 and 1.273 Gt CO2 at the end of 20 years if 
managed under appropriate practices. These numbers are not representative to reduce 
atmospheric CO2 concentration from legacy emissions and significantly mitigate physical 
impacts of climate change, reinforcing the importance of prioritizing the reduction of 
global GHG emissions as the primary mitigation strategy. On the other hand, from the 
perspective of mitigating the national agricultural sector’s annual GHG emissions, this 
potential cannot be considered negligible. Carbon sequestration by soils under agricultural 
management can play a vital role in mitigating climate change, integrating the set of 
necessary solutions and actions for a Paris Agreement goals compatible trajectory of 
limiting global warming to between 1.5 and 2 °C by the end of the century.
Keywords: climate change, soil texture, degradation level, Atlantic Forest Biome, 
Pampas Biome.

Division – Soil Use and Management  |  Commission – Soil and Water Management and Conservation

https://doi.org/10.36783/18069657rbcs20230121
mailto:arcangelo.loss@ufsc.br
https://doi.org/10.36783/18069657rbcs20230121
https://orcid.org/0000-0001-9943-2898
https://orcid.org/0000-0002-1402-3612
https://orcid.org/0000-0001-6739-3409
https://orcid.org/0000-0003-4680-3274
https://orcid.org/0009-0002-2983-4589
https://orcid.org/0000-0001-9774-7335
https://orcid.org/0000-0002-3553-7727
https://orcid.org/0000-0003-0358-1974
https://orcid.org/0000-0002-3005-6158


Fronza et al. Carbon sequestration potential of pastures in Southern Brazil: A systematic…

2Rev Bras Cienc Solo 2024;48:e0230121

INTRODUCTION

There has been a growing concern about how the environmental impacts of human 
activity affect the planet. In face of society’s exponential growth rate and demand for 
resources under the current economic development model, the scientific understanding 
is that this dynamic constitutes a threat to civilization itself and life on Earth as we know 
it, as we are breaking planetary boundaries crucial for the stability and maintenance of 
the planet’s support capacities, essential for our survival (Rockström et al., 2009; Steffen 
et al., 2015; IPCC, 2021).

There is broad scientific consensus that the planet’s observed warming trend and 
intensification of related extreme events are a consequence of anthropogenic emissions 
of greenhouse gases (GHG), primarily from burning fossil fuels followed by land-use 
changes. The sixth and most recent assessment report by the Intergovernmental Panel 
on Climate Change (IPCC), the leading authority on the state-of-the-art in climate 
science, unequivocally confirms human influence in warming the atmosphere, oceans, 
and continental territories through anthropogenic GHG emissions (IPCC, 2021). The 
reports also highlight the urgent need for action to avoid irreversible consequences for 
humanity and the planet (IPCC, 2022).

Agriculture and conversions from native ecosystems to agrosystems contribute, worldwide, 
to approximately 24 % of global CO2 emissions, 55 % of CH4 emissions, and 85 % of 
total N2O emissions into the atmosphere (IPCC, 2007), placing Brazil as the 4th largest 
historical CO2 emitter (Evans, 2021), and currently responsible for around 4.4 % of global 
GHG emissions (Our World in Data, 2023; SEEG, 2023). Around 75 % of the country’s 
gross emissions (tCO2e) come from the agricultural and land-use sectors, with 24.8 
and 49 %, respectively, in 2021 (SEEG, 2023), while the aggregate Gross Domestic 
Product (GDP) of agribusiness represented around 27.5 % of the national GDP (CEPEA, 
2022). The country’s total emissions for the 2000 to 2020 period are at similar levels 
as today, with land-use changes and agriculture accounting for approximately 52 and  
24 %, respectively (SEEG, 2023).

Deducting carbon removals promoted by vegetation and land-use, in 2021, agricultural 
activity accounted for a total of 34.2 % of net national GHG emissions, of which  
63.7 % came from enteric fermentation alone, accounting for around 16 % of gross 
national emissions and 22 % of the country’s net emissions. In the same year, Brazil 
had between 95 and 100 million hectares of degraded pastures, representing almost 
two-thirds of the country’s total pasture area (LAPIG, 2023; MapBiomas, 2023). Under the 
Paris Agreement, in addition to becoming Net Zero by 2050, Brazil has also voluntarily 
committed to reducing national GHG emissions by 43 % and restoring 15 million hectares 
of degraded pastures by 2030 (CDP, 2023).

Pasture degradation is an evolutionary process involving the loss of vitality, productivity, 
and the ability to sustain the production levels and quality required by animals. It also 
encompasses overcoming the harmful effects of pests, diseases, and invasive plants, 
ultimately leading to advanced degradation due to inadequate management (Townsend 
et al., 2012). Degradation is directly linked to soil quality (SQ), which comprises the 
set of functions and characteristics allowing it to accept, store, and recycle water, 
nutrients, and energy, sustaining productivity and promoting the health of plants and 
animals (Doran, 1997; Carter, 2001). This way, degradation can also be understood as 
the loss or decrease at some level of these properties, ensuring the soil ability to fulfill 
its functions in nature.

In the land-use context, the definition of management is related to the way human 
intervention occurs in a landscape through the set of practices adopted. Since degradation 
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involves the loss of SQ and, consequently, its productive capacities and functional 
properties, appropriate or conservationist management of a productive system can 
prevent or reverse degradation characteristics, or from the opposite perspective, it can 
sustain or recover SQ. Different types of agricultural management in a crop, forestry and 
pasture areas directly influence SQ, particularly regarding soil aggregation and carbon 
content (Braida et al., 2007; Vezzani and Mielniczuk, 2009). Adopted management 
can contribute to observing better or worse conditions for these indicators. Practices 
without soil disturbance, such as plowing and harrowing, and the constant presence of 
plants, preferably of varied species, are some practices that favor the maintenance and 
improvement of carbon stocks (CS) and SQ (Fayad et al., 2019).

Certain agricultural systems and management conditions can mitigate GHG emissions into 
the atmosphere by maximizing the effects of soil and vegetation carbon sequestration 
(SEQ) (Carvalho et al., 2010a; Quintão et al., 2021). Regarding pasture management, 
different studies have highlighted the potential and capacity of systems such as Voisin 
Rational Grazing (VRG), Adaptive Multi-Paddock Grazing (AMP) and Holistic Grazing 
Management (HGM) to contribute to increases in soil CS, surpassing levels achieved 
by conventional management systems (Seó et al., 2017; Stanley et al., 2018; Mosier 
et al., 2021). This capacity arises from these systems favoring a reduction in erosion 
due to overgrazing, a greater supply of nutrients from animal excreta, maintenance of 
soil cover, and an ideal fallow period for sustaining the root zone and recomposing the 
aerial part of the vegetation (Machado, 2004; Machado Filho et al., 2021), aspects not 
controlled in extensive management systems. On the other hand, intensive confinement 
areas are generally associated with erosion and consequent soil carbon loss (Izaurralde 
et al., 2007; Olson et al., 2016).

In addition to management practices, CS levels and rates of soil SEQ vary depending on 
different factors, such as source material, pedogenetic processes, soil texture, amount of 
organic matter (OM) cycling and input, and climatic conditions, with higher CS generally 
being achieved in conditions of lower temperatures and higher rainfall (Jenny, 1941; 
Hengl et al., 2015; Gomes et al., 2019). At least 50 years of soil maintenance are required 
to achieve the maximum possible CS, but the rate of increase will not necessarily be 
constant throughout this period (Lal et al., 1998).

Numerous studies and authors have explored the carbon fluxes dynamics in soils managed 
under pasture in Brazil, primarily concentrated in the Amazon and Cerrado biomes (Moraes 
et al., 1996; Neill et al., 1997; Bernoux et al., 1998; Cerri et al., 2003; Bustamante et 
al., 2006; Segnini et al., 2007; Carvalho et al., 2010b; Oliveira et al., 2021). Despite the 
established knowledge about this potential and the existing mechanisms for valuing 
the environmental service of atmospheric carbon sequestration, significant degradation 
rates persist in the national territory, specially in the South Region, highlighting potential 
barriers to reversing this scenario.

Considering the economic and climatic importance of agriculture and land-use in the 
Brazilian context; the potential for reducing GHG emissions and promoting carbon removals 
in these sectors through GHG mitigation practices; and the limited visibility of studies 
focused on SEQ in Brazil’s southern region pastures; this research aimed to identify soil 
SEQ potential in these managed systems through a systematic literature review. We 
hypothesize that the environmental service of carbon sequestration, potentially promoted 
by the recovery of these areas, represents a significant contribution to the global context 
of climate change, given the current conditions of pasture areas in this geographical 
region. Our goal was to investigate the potential magnitude of this environmental service 
for the described area, verifying its relevance and discussing opportunities and challenges 
associated with the transition to sustainable agricultural practices on a large scale.
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MATERIALS AND METHODS

The delimited area for studies surveying by the systematic review was the South Region 
of Brazil, according to geopolitical division, characterized by the predominant climate 
typologies of humid subtropical (Cfa) and oceanic (Cfb) Köppen climate classification 
system. This region includes the Atlantic Forest and Pampa biomes. Pampa biome also 
extends into Argentina and Uruguay; however, no studies have been performed in these 
regions, as the research was exclusively conducted in Brazil’s territory. Due to the limited 
volume of articles found, publications on the Atlantic Forest biome in the southeast region 
were also included in the research to enhance the representativeness of the analysis. 
The representation of the study area is depicted in figure 1.

In addition to the reference values found from the literature review, other data used to 
conduct the analyses included the mapping of Brazilian pasture degradation classes for 
the year 2021, provided by the Image Processing and Geoprocessing Laboratory of the 
Federal University of Goiás (LAPIG/UFG), and the grouping of soil classes from the Brazilian 
Soil Classification System (SiBCS) by Bernoux et al. (2002) provided by MCTI (2020). 
Data used are summarized in table 1; and figure 2 provides a visual representation of 
the two georeferenced products used in the analyses.

Figure 1. Location map of the study area. Source: Elaborated by the author with data provided by IBGE (2019).
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Defining pasture carbon sequestration factors

The initial step in the methodological course of activities involved conducting a systematic 
literature review for mapping and summarizing the volume of soil carbon sequestration 
data available for Brazil’s south region. This survey was performed by searching the Scopus 
platform in March 2023, using the combination of keywords (Pasture OR Grassland OR 
Grazing) & Carbon & Soil & (Sequestration OR Removal OR Addition OR Accumulation). 
Subsequently, the articles were sequentially filtered based on the criteria described in 
the following steps.

i. Sample universe: All articles returned by the combined keyword search (5,718 
articles), filtered for Brazil region (336 articles).

ii. Bank of articles for analysis: Articles with quantitative data on soil organic carbon 
(SOC) located in the Atlantic Forest biome or the South Region (67 articles).

iii. Data tabulation: Articles that presented reference values for variation rates of soil 
CS in managed pastures, or for which it was possible to infer this variation from other 
data presented, such as experiment time and CS of a reference area (23 articles).

iv. Sample set selected: Articles with experiments located in the south or southeast 
region, whose soil CS variation rates resulted in carbon sequestration by pasture 
management (17 articles). For studies with values reported for different layers, we 
sought to adopt the value of the deepest layer up to the 0.40 m limit.

For each publication, all the available information on aspects influencing the observed 
SEQ rates was tabulated, which encompasses from geophysical data such as geographical 
location, altitude, biome, climatic characteristics and soil textural class; to the system’s 
characteristics such as cultivated species, type of land-use, management type, grazing 
pressure (grazing height and/or animal stocking), forage productivity, animal productivity, 
adoption of soil turning and fertilization practices. Other relevant information for the 
analysis of found CS and SEQ rates included the year of native vegetation conversion, 
the area previous use before system implementation, the experiment duration, the layer 
depth, and the comparative basis of the CS adopted to determine the observed SEQ 
rates. Based on the values found, maximum, average, and minimum SEQ values were 
established for different soil textural class conditions as a prerequisite for the subsequent 
calculation stage (Table 2).

Considering the hierarchy SEQclayey > SEQclay-sandy > SEQsandy indicated in the literature 
for the same climatic and management conditions, and the representativeness and 
characteristics of data returned by the systematic literature review, as a conservative 

Table 1. Variables used to conduct the analysis

Variablet Source Year Nature

Pasture degradation classes 
(2021)

Image Processing and 
Geoprocessing Laboratory, 
Federal University of Goiás 

(LAPIG/UFG)
2023 Georeferenced, semi-

quantitative

Grouping of soil classes from 
the Brazilian Soil Classification 
System (SiBCS)

Bernoux et al. (2002), made 
available by MCTI (2020) 2002 Georeferenced, qualitative

CO2 emission and removal 
factors for managed pastures

Systematic literature review 
(Scopus) - Quantitative, referenced by 

attributes
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approach, the range of maximum, average, and minimum SEQ values was attributively 
defined for the clayey textural class and unfolded for the others. To do this, based on 
the observed data from Stanley et al. (2018), correction factors of 80 % were applied to 
transpose the SEQ values found for clayey soils to clay-sandy soils, and 40 to 50 % to 
transpose the values from clayey soils to sandy soils. Since reference values for SEQ are 
typically expressed in publications in terms of Mg C ha-1 yr-1, atmospheric CO2 removal 
calculations were conducted by converting these values to Mg CO2 ha-1 yr-1, using the 
CO2-C stoichiometry of 44/12 (CO2 molar mass / C molar mass) as a basis.

Carbon sequestration potential through pasture recovery and management

To determine the SEQ factors to be applied in each pasture polygon, georeferenced 
data on the current degradation class and soil type grouping from the SiBCS produced 
by Bernoux et al. (2002) were cross-referenced. The following assumptions were made 
for this stage:

•	 CO2 removal factors presented in the literature for well-managed and recovering 
pastures can be transposed to calculate the potential for increased CS in other 
pasture areas;

•	 Level of pasture degradation directly influences the amount of carbon stored in a 
given plot of soil;

•	 Recovery and proper management of pastures promote removals of atmospheric 
CO2 continuously for 20 to 50 years until the SOC stock stabilizes (IPCC, 2019; Lal 
et al., 1998).

Considering that SOC contents tend to be higher in areas with a lower degradation index, 
maximum sequestration rates were assigned to areas with greater degradation and vice 
versa. Data provided by Bernoux et al. (2002) was used as a proxy to determine the 
soil textural class under each pasture polygon, assigning the correspondences shown 
in table 3.

Figure 2. Illustration of the georeferenced data used to conduct the analysis. Grouping of soil classes from the Brazilian Soil 
Classification System by Bernoux et al. (2002) (a); Pasture degradation classes in 2021 (b). Source: Author elaborated on this with 
data provided by LAPIG (2023) and MCTI (2020).
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Georeferenced pasture quality data (LAPIG, 2023) was cross-referenced with the SiBCS 
soil class grouping data (Bernoux et al., 2002), thereby determining the soil textural 
class under each pasture polygon. Subsequently, acknowledging the high uncertainty 
associated with the likely SEQ values resulting from pasture management, three different 
scenarios were formulated for calculating the potential carbon sequestration in these 
areas, as shown in table 4.

Thus, based on the textural class characterization obtained for each pasture polygon and 
the corresponding assignment of SEQ factors, as shown in table 4, carbon sequestration 
potential in these areas was calculated for each scenario over a 20-year horizon. Once the 
potential carbon sequestration values were calculated, an assessment was conducted on 
their significance in terms of mitigating atmospheric CO2 concentration. This assessment 
considered the equivalence of 7.8 Mg CO2 for 1 ppm of atmospheric CO2 (CDIAC, 1990). 
Subsequently, a discussion and critical analysis of the results obtained was undertaken, 
considering the challenges and prospects associated with the feasibility and scalability 
of carbon sequestration practices through land-use and management.

RESULTS

Definition of pasture carbon sequestration factors

The systematic review identified 5,718 articles, with 336 classified as located in Brazil. 
From these, 67 articles were selected for analysis, resulting in 23 publications for data 
tabulation. Out of these, 22 were obtained through the Scopus platform search, and 
one additional reference identified in one of these articles was incorporated. For two 
publications, the tabulation of qualitative data was complemented by references cited 
by the studies, one for each. Finally, 17 studies were selected to define the SEQ factors 
applied to estimate soil carbon sequestration potential in Brazil’s south region pastures. 
Results show a broad variability of SEQ rate values found among different publications, 
ranging from 7.43 to 0.15 Mg C ha-1 yr-1 with a series of intermediate values between 
these extremes (Table 5).

Table 2. Conceptual distribution of carbon sequestration factors (SEQ) to be used in calculations 
of estimated SEQ potential by pastures

Parameter
Soil textural class

Clayey (clay) Clay-sandy (clsa) Sandy (sand)
SEQmax (Mg C ha-1 yr-1) SEQmax-clay SEQmax-clsa SEQmax-sand
SEQavg (Mg C ha-1 yr-1) SEQavg-clay SEQavg-clsa SEQavg-sand
SEQmin (Mg C ha-1 yr-1) SEQmin-clay SEQmin-clsa SEQmin-sand

Source: Elaborated by the author. SEQmax: Maximum sequestration rate; SEQavg: Average sequestration 
rate; SEQmin: Minimum sequestration rate.

Table 3. Deriving textural classes from soil groupings
Soil grouping according to Bernoux et al. 
(2002) Textural class considered

S1 – Soil with high-activity clay
ClayeyS2 – Latossolo (Oxisol)

S5 – Hydromorphic soils
S3 – Non-Oxisol with low-activity clay Clay-sandy
S4 – Sandy soils

Sandy
S6 – Other soils

Source: Elaborated by the author based on Bernoux et al. (2002).
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Based on the list of carbon sequestration factors for managed pastures identified by 
the systematic literature review, the conceptual distribution table of SEQ factors for the 
estimate calculations of pastures carbon sequestration potential was populated with 
reference values. This was done through judgment and critical analysis of the results 
found in the literature. Thus, the maximum, average and minimum SEQ factors for 
clayey texture were defined as 2.50; 1.25; and 0.50 Mg C ha-1 yr-1, respectively. These 
values were then proportionally adjusted for other textural classes according to the ratios 
derived from Stanley et al. (2018), as described in the methodology. This resulted in the 
values 2.00; 1.00; and 0.40 Mg C ha-1 yr-1 for clay-sandy texture, and 1.25; 0.50; and  
0.25 Mg C ha-1 yr-1 for sandy texture, as shown in table 6.

Carbon sequestration potential from pasture recovery and management

Results for carbon sequestration potential of pasture areas found in the calculations range 
from 0.433 to 1.273 Gt CO2 for the different scenarios considered (Table 7). These findings 
indicate the capacity to mitigate climate change effects through carbon sequestration 
in these pasture areas is not very significant. The balance of removals over a 20-year 
period in the most optimistic scenario is approximately 6.5 times less than the amount of 
CO2 removal needed to reduce the concentration of the gas in the atmosphere by 1 ppm.

DISCUSSION
Due to the numerous variables influencing the observed and reported carbon sequestration 
values, and the limited number of available publications, it is not possible to make an 
assertive inference about the reasons explaining this variability, which is a limitation of 
this research. Counterintuitive results for experiments with different characteristics are 
also observed, such as SEQ values in pasture areas shortly after the conversion of native 
forest (Santos et al., 2019) being higher than values observed in pastures converted 
from other previous non-conservative uses (Tarré et al., 2001; Piva et al., 2020). This 
highlights the presence of a wide range of variables in pasture management influencing 
soil ability to sequester carbon.

Among the variables influencing the observed SEQ rates are the comparative basis 
adopted, layer depth sampled, soil texture, experiment duration, management system 
type, grazing pressure, sward height, adoption or non-adoption of soil tillage, fertilization, 
crops used and climatic conditions (Pinto et al., 2014; Cardozo Jr et al., 2016; Seó et al., 
2017; Santos et al., 2019; Segnini et al., 2019), with emphasis on the first five mentioned 
aspects. Due to the complexity resulting from the combination of these different variables 
related to carbon sequestration, the characteristics and volume of data available make 
it impossible to conduct a conclusive statistical or empirical analysis of each variable 
preponderance on the sequestration values found, based on the sample set obtained 
by this research.

However, one observation that can be made is that longer observation times tend to 
show a reduction in the observed SEQ values, as evident in the analysis of publications 
reporting different values for the same experiment (Pinto et al., 2014; Oliveira et al., 
2020a). This indicates that greater carbon accumulations tend to occur in the initial years 
and are amortized over time. A comparison between different publications cannot be 

Table 4. Scenarios considered and respective carbon sequestration factors application
Level of pasture 
degradation Scenario 1 Scenario 2 Scenario 3

Severe SEQmax SEQmax SEQavg
Intermediary SEQmax SEQavg SEQavg
Absent SEQavg SEQmin -
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Table 5. Summary of the results found for carbon sequestration in pastures from the systematic literature review

Reference Biome Region Soil 
texture

Soil 
use

Management 
system

Comparative 
basis Duration Layer SEQ

yr m Mg C ha-1 yr-1

Pinto et al. 
(2014)

Atlantic 
Forest Southeast Clayey Pasture Continuous

CS in 
conventional 
corn farming

3 0.40 7.43
3 0.40 7.27

20 0.40 2.54

Seó et al. 
(2017)

Atlantic 
Forest South

Sandy-clay

Pasture Rotational
CS in direct 

planting 
system 
farming

5 0.40 5.28(¹)

8 0.40 4.53(¹)

17 0.40 1,.89(¹)

Clayey
14 0.40 1.61(2)

30 0.40 0.62(¹)

9 0.40 0.40(¹)

Resende et 
al. (2020)

Atlantic 
Forest Southeast Clayey CLFi N/I

Initial CS 
in the 

experiment 
area

8 N/I 3.84
8 N/I 3.50
8 N/I 3.21
8 N/I 2.59

Bieluczyk et 
al. (2020)

Atlantic 
Forest Southeast Sandy-clay Pasture Extensive

Initial CS 
in the 

experiment 
area

6 0.40 1.96
6 0.40 1.74
6 0.40 1.68

Oliveira et 
al. (2020a)(1)

Atlantic 
Forest Southeast Clayey Pasture Rotational Native 

vegetation CS
9 1 1.92

15 1 1.80

Souza et al. 
(2009) Pampa South Clayey CLi Continuous

Initial CS 
in the 

experimente 
area

6 0.20 1.40
6 0.20 1.20
6 0.20 0.60

Ribeiro et 
al. (2020)

Atlantic 
Forest South Clayey CLi Continuous

Initial CS 
in the 

experimente 
area

3.5 1 1.14

3.5 1 0.28

Assman et 
al. (2014) Pampa South Clayey CLi Continuous

Initial CS 
in the 

experimente 
area

9 0.20 0.96

Oliveira et 
al. (2017)

Atlantic 
Forest South Clayey Pasture N/I Native 

vegetation CS 20 0.40 0.95

Segnini et 
al. (2019)(1)

Atlantic 
Forest Southeast Clayey Pasture Rotational Native 

vegetation CS
15 0.30 0.94

9 0.30 0.47

Ramalho et 
al. (2020)

Atlantic 
Forest South Clayey CLi N/I

Control area 
with pasture 
conducted 

with 
plowing and 
harrowing

9 0.20 0.57

Alves et al. 
(2020) Pampa South Sandy-clay CLi Rotational

CS of the 
treatment 
with the 
lowest 

accumulation

14 0.30 0.50

Santana et 
al. (2013)

Atlantic 
Forest South Clayey Pasture Hybrid

Native 
pasture 
without 

mowing and 
burned for 8 

years

17 0.50 0.44

Continue
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made for the reasons mentioned above, given the heterogeneity of conditions identified 
for the aspects that influence the results found in the studies. On the other hand, it could 
be mistakenly stated that continuous management systems (Pinto et al., 2014) have 
higher carbon accumulation than rotational systems (Seó et al., 2017; Segnini et al., 
2019; Oliveira et al., 2020a), which is not in line with the state-of-the-art knowledge on 
the dynamics of soil organic matter (SOM) accumulation and CS increase in these types 
of systems (Machado, 2004; Machado Filho et al., 2021; Mosier et al., 2021).

Although indications about the best management practices in terms of carbon sequestration 
can be obtained through studies that isolated some variables, other limitations persist 
due to the lack of representativeness of publications. For example, while authors who 
worked with sward height as a control variable reported higher soil carbon accumulations 
for higher sward heights (Cecagno et al., 2018), others found divergent values for 
different time horizons (Souza et al., 2009). Findings obtained by Cecagno et al. (2018) 
are reinforced by Souza et al. (2009) for an observed period of six years, but inverse 
results are reported for the first three years of the observation period.

Data heterogeneity reported by the publications is another relevant aspect in terms of 
either completeness or the adoption of different reference values and approaches. An 
example of this second aspect is the depth of the layer sampled, with sequestration values 
being reported between the different studies for layers varying between 0.05, 0.10, 0.20, 
0.40 and 1.00 m (Table 5). Another example is the comparative basis used to estimate 
carbon sequestration through pasture management. While some publications use as a 
comparative basis the CS measured at a previous point in time in the experiment area 
(Nicoloso et al., 2008; Souza et al., 2009; Assman et al., 2014; Bieluczyk et al., 2020; 

Continuation

Reference Biome Region Soil 
texture

Soil 
use

Management 
system

Comparative 
basis Duration Layer SEQ

Rosset et 
al. (2014)

Atlantic 
Forest South Clayey Pasture Extensive

Set of system 
without 

plowing and 
harrowing

38 0.40 0.34

Piva et al. 
(2020) Atlantic 

Forest South Clayey CLi
Rotational

Area under 
conventional 
cultivation

3.5 0.20 0.25

Piva et al. 
(2014) Rotational N/I 3.5 0.20 0.19

Nicoloso et 
al. (2008)

Atlantic 
Forest/ 
Pampa 

(transition)
South Sandy-clay CLi Continuous

Initial CS 
in the 

experiment 
area

3.75 0.10 0.15

(1) To obtain these results, the author provided complementary data not present in the publication. (2) Value is a composite average for five properties 
evaluated in the article. (3) Both references deal with the same experiment. Different SEQ values within the same reference where different characteristics 
are not observed in the table are due to suppressed information. CLFi: Crop-Livestock-Forest integration. CLi: Crop-Livestock integration. N/I: Not informed.

Table 6. Factors considered for calculating the estimated potential for soil carbon sequestration 
through appropriate management of pastures in southern Brazil

Parameter
Soil textural class

Clayey Clay-sandy Sandy
SEQmax (Mg C ha-1 yr-1) 2.50 2.00 1.25
SEQavg (Mg C ha-1 yr-1) 1.25 1.00 0.50
SEQmin (Mg C ha-1 yr-1) 0.50 0.40 0.25

SEQmax adapted from Pinto et al. (2014); SEQavg adapted from Seó et al. (2017); SEQmin adapted from 
Alves et al. (2020).
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Resende et al., 2020; Ribeiro et al., 2020) or in areas with the same crop type but with 
different management (Alves et al., 2020; Ramalho et al., 2020), others consider areas 
with varying types of crop (Pinto et al., 2014; Seó et al., 2017; Piva et al., 2020) or even 
native vegetation (Oliveira et al., 2017; Segnini et al., 2019; Oliveira et al., 2020b) as the 
CS reference. This is a limiting factor for comparing and grouping the results obtained 
into representative sets of average carbon sequestration values by soil type, textural 
class, land-use class, and management system.

A recommendation already highlighted in the literature for new studies involving sustainable 
and regenerative agricultural practices, in terms of choosing the comparative basis for 
assessing variations in CS as a result of land-use changes and employed management 
techniques is to adopt as a comparative baseline, CS values found in correlated systems 
that better represent the initial conditions of the area where the experiment is taking 
place or the common practices adopted in business-as-usual scenarios. In general, 
these have a lower capacity for sequestering, storing, and maintaining soil CS when 
compared to areas of native vegetation, for example, and can allow for a more assertive 
assessment of the benefits that appropriate management practices can bring when 
employed in these conditions. In this sense, a suggestion for estimating variations in CS 
promoted by the adoption of practices such as crop-livestock integration (CLi) and crop-
livestock-forest integration (CLFi) is the adoption of CS values observed in monoculture or 
degraded pasture systems as a comparative basis (Oliveira et al., 2023). In these cases, 
the compatibility of other parameters related to the dynamics of SOC and CS between 
the two evaluated systems should also be observed, such as climatic conditions and 
soil textural class, for example.

Although positive carbon sequestration values have been reported when comparing the 
soil CS of managed pastures with that of areas under native vegetation, the opposite has 
also been found (Dalal et al., 2005; Wendling et al., 2011). In general, replacing forests 
with pastures leads to a loss in the total amount of carbon stored by the system (Oliveira 
et al., 2017), especially when considering other aspects such as aerial biomass. Using 
native vegetation soil CS values as a reference and comparative basis for estimating 
carbon sequestration or emissions promoted by managed systems implies limitations 
to interpreting these values. However, this characteristic is considered to provide a 
conservative approach to the estimates made under the assumptions of this research, 
as the baseline scenario is degraded pastures assuming further management through 
regenerative practices. Thus, it is expected an increasing trend for the CS values in 
these areas, excluding the potential forest carbon loss observed after native vegetation 
conversions for example.

Another important observation regarding the results obtained is, in some cases, 
sequestration values are directly presented by the studies (Souza et al., 2009; Bieluczyk et 
al., 2020; Oliveira et al., 2020b; Ramalho et al., 2020), while in other cases it is necessary 
to calculate them through the difference between two different CS values presented by 
the study (e.g., CS in pasture area and CS in native vegetation), divided by the time 
horizon since the conversion or implementation of the management system (Pinto et al., 
2014; Seó et al., 2017; Segnini et al., 2019; Resende et al., 2020). This possibly reveals 
there is not always a concern in highlighting this information by part of the authors. Both 
positive (Table 5) and negative variations in CS are found in the literature (Nicoloso et 
al., 2008; Segnini et al., 2019; Oliveira et al., 2020a, 2020b; Piva et al., 2020), and the 
negative variations may be associated with different reasons, such as conversion of native 

Table 7. Potential carbon sequestration calculated for the scenarios considered
Scenario 1 – Optimistic Scenario 2 – Moderate Scenario 3 – Conservative

Sequestration potencial 1,273 Gt CO2 0,719 Gt CO2 0,433 Gt CO2
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vegetation areas and comparison with their original soil CS, or inadequate management 
practices from the point of view of organic matter accumulation.

Currently, the concentration of atmospheric CO2 is approximately 140 ppm above 
pre-industrial levels, which reinforces the fact that the best measure to contain the 
worsening effects of climate change is to avoid new GHG emissions into the atmosphere. 
However, the capacity of soils to sequester and store carbon on a global level cannot be 
considered negligible. On the opposite, a study recently published by the United Nations 
Environment Programme (UNEP) reveals for soils under different types of agricultural 
occupation around the world, improving management practices could result in an 
annual removal balance of 31 Gt CO2 (UNEP, 2022), enough to reduce atmospheric CO2 
concentration by approximately 4 ppm per year.

Although in the scenario definition of this research, a greater potential for increasing 
CS was considered for degraded areas, depending on their level of degradation and the 
practices to be employed, the time horizon required for carbon sequestration rates to 
reach satisfactory levels may vary. Due to degradation, at early recovery stages, these 
areas may have a lower biomass productivity potential and, consequently, a lower amount 
of organic matter availability to be incorporated into the soil, which is a key factor for 
sustaining carbon sequestration rates (Cecagno et al., 2018; Santos et al., 2019). Thus, 
lower carbon sequestration rates could be found in initial years for scenarios of greater 
degradation until they reach higher levels with the recovery of such areas’ productive 
capacity. Despite this, significant carbon sequestration rates for short time horizons 
after intervention with management in pastures areas previously maintained under 
non-conservationist management are found (Pinto et al., 2014; Martins et al., 2017).

Another relevant aspect to be mentioned is that the premise of a greater sequestration 
potential in severely degraded areas, as previously supported in the literature  
(Szakács, 2003), is based on the understanding the previous loss in CS results in a 
greater SEQ capacity when recovering the area, due to the originated deficit. Although, 
the notion that there is a carbon saturation point in the soil representing a limitation 
for its SEQ capacity is questioned by some authors in the scientific literature (Mathieu  
et al., 2015; Fontaine et al., 2018).

Still, pasture recovery and management activities can result in increased GHG emissions 
when compared to a baseline scenario, either through enteric fermentation methane 
emissions led by increasing animal occupation, fossil fuels-powered machinery, or other 
reasons such as the use and displacement of raw materials. Therefore, the net carbon 
sequestration balance promoted by management and recovery interventions may be 
lower than the results found. However, activities such as intensification of pasture-based 
livestock with rotational management and livestock-forest integration can be developed to 
amortize this balance (Stanley et al., 2018; Machado Filho et al., 2021). This highlights the 
importance of taking a systemic and integrative approach to agricultural and landscape 
management practices into consideration when discussing public policies and market 
incentives, guiding the sector practices towards a decarbonization path aligned with 
the Paris Agreement’s primary goal of limiting global warming between 1.5 and 2 °C by 
the end of the century.

In this sense, there is currently an early stage but growing movement, which brings 
together large corporations and agents to diffuse initiatives, seeking to develop solutions 
that directly or indirectly contribute to overcoming bottlenecks for the regeneration of 
landscapes and pastures at scale, with a powerful appeal over the perspective of these 
systems carbon sequestration capacity. These arrangements range from business models 
and/or product innovations (e.g., Inocas, Belterra, Agroforestry Carbon, InPlanet); new 
reforestation-focused ventures arising from the coalition of major players and/or agents 
with the capacity to raise large amounts of investment (e.g., Biomas, Mombak, Re. 
Green); technological and intelligence solutions to increase the integrity and scalability 



Fronza et al. Carbon sequestration potential of pastures in Southern Brazil: A systematic…

13Rev Bras Cienc Solo 2024;48:e0230121

potential of carbon measurements techniques and projects (e.g., Pachama, Sylvera,  
Arable); and alternative, low-cost carbon certification models to increase the voluntary 
carbon market accessibility to small and medium-sized producers and landowners (e.g. 
Bluebell Index, Carbify, Regen.Network, ONCRA).

Finally, the public and private sectors must create the proper incentive and support 
conditions necessary for transitioning agricultural production systems through the 
adoption of conservative and regenerative practices, such as technical assistance and 
rural extension (TARE) and incentive programs and credit lines, designed to suit the 
specific needs of different actors that can play a contributing role in this context.

CONCLUSIONS
Managed pastures can sustain soil carbon sequestration rates above the average found 
in the literature, with values as high as 2.50 Mg C ha-1 yr-1 for prolonged periods of the 
order of 20 years. Due to the large number of variables that influence SEQ rates; the 
limited number of publications found; and the lack of data for some of these variables 
among different publications; a larger set of publications and data needs to be analyzed to 
establish causal and preponderance relationships on the effect of each of these variables 
on the reported SEQ rates through a multivariate analysis.

Although the carbon sequestration potential for the specific pasture areas restricted to 
the south region of Brazil is not representative for promoting a significant reduction in 
atmospheric CO2 concentration, in terms of mitigating climate change, literature suggests 
carbon sequestration by soils under agricultural management can play a significant 
role for this purpose, integrating the necessary set of solutions and actions for a Paris 
Agreement’s goal compatible trajectory, of limiting global warming to between 1.5 and 
2 °C by the end of the century.

For this to happen, coordinated efforts and political and financial incentives are needed 
to match the scale and speed required to implement these measures. For carbon finance 
instruments to make a significant contribution to this scenario, it is necessary to accelerate 
the development and application of technologies that make it possible to measure changes 
in soil carbon stocks in a reliable, cost-effective, and periodic manner at a large scale.

SUPPLEMENTARY MATERIALS
Supplementary data to this article can be found online at https://drive.google.com/drive/
folders/1X3xheV9A10KmY64SbYb4Ifb3qamt5Y8E.
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