Acessibilidade / Reportar erro

Linear and spatial correlation between the soil penetration resistance and irrigated bean yield

Soil penetration resistance exercises major influence on crop development, root growth and crop productivity, which is inversely proportional to that soil attribute. In this way, the analysis of spatial variability of soil penetration resistance and crop yield based on geostatistics can indicate alternative management practices, not only to reduce the effects of soil variability on crop yield, but also to improve the estimated crop response under certain management practices. This study aimed to correlate soil penetration resistance (RP) and spatial yield variability in irrigated no-till snapbean cultivation in two consecutive cycles. The experiment was carried out on a typical dystrophic Red Latosol (Oxisol), in an experimental field of the FEAGRI/UNICAMP, in Campinas-SP (lat 22 ° 48 ' 57 " S, long 47 ° 03 ' 33 " W, mean altitude of 640 m asl). The evaluations were performed in a regular sampling grid of 3 x 3 m, totaling 60 points per treatment. Spatial dependence was evaluated by geostatistical techniques as well as semivariogram parameters to generate isoline maps, by means of kriging interpolation, using program Surfer 8.0. The simple linear regression between maps (pixel-to-pixel) detected an inverse correlation between RP and crop yield, whereas the bean yield was loosely correlated with soil penetration resistance under irrigated no-till system in the studied growing seasons.

spatial variability; kriging; soil compaction; soil management


Sociedade Brasileira de Ciência do Solo Sociedade Brasileira de Ciência do Solo, Departamento de Solos - Edifício Silvio Brandão, s/n, Caixa Postal 231 - Campus da UFV, CEP 36570-900 - Viçosa-MG, Tel.: (31) 3612-4542 - Viçosa - MG - Brazil
E-mail: sbcs@sbcs.org.br