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ABSTRACT: Soil maps are important to evaluate soil functions and support 
decision-making process, particularly for soil properties such as pH, carbon content (C), 
and cation exchange capacity (CEC), but the spatial resolution and soil depth should 
meet the needs of users. On another hand, the efficiency of statistical models to create 
soil maps, with an acceptable level of accuracy, often require a large number of samples 
with an appropriate distribution across the area of interest. However, accessibility for 
sampling can be a trouble in remote areas, such as the Itatiaia National Park (INP). The 
hypothesis of this work is that it is possible to obtain a viable result in soil mapping of 
areas with limited access by using DSM tools. The general objective of this paper was 
to create 2- and 3-D maps of the soil properties pH, carbon content, and CEC, with the 
correspondent spatial uncertainty, in the INP plateau. The sampling strategy was designed 
using conditioned Latin Hypercube Sample (cLHS), and different methods were tested 
to produce the soil properties maps. For calibration of the models: linear (MLR, multiple 
linear regression) and nonlinear (GAM, Generalised Additive Models). The results showed 
differences in predictive performance for all statistical methods and covariate selection 
approaches. The GAM, with covariates selection based on soil formation factors, was 
the best method for the limited number of soil samples. The greatest uncertainty was 
associated with areas with the lowest accessibility and, consequently, with low sampling 
density and/or noises in covariates. Even though the 2- and 3-D maps of soil properties, 
each associated with explicit uncertainty, can contribute to the INP decision makers/
managers by providing information not available before.

Keywords: depth function, generalized additive models, uncertainty propagation, 
predictor selection.
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INTRODUCTION
Soil is a vital part of the natural environment and it has a crucial role in ecosystem 
functioning (Adhikari and Hartemink, 2016). The soil functions can be derived from 
interactions of soil properties. To predict soil properties to assess their functions can 
provide detailed spatial information particularly useful in complex mountain terrain 
(Jeong et al., 2017). Soil information is an extremely important factor for conservation and 
sustainable management, and is essential in the formulation of sustainable agricultural 
policies and monitoring impacts of inappropriate use of resources (Carvalho Júnior et al., 
2016), especially in mountain areas. 

A relatively new approach that gives useful soil information is the 3-D modeling of soil 
properties. The modeling of soil properties in three dimensions has been evaluated in 
several studies (Kidd et al., 2015; Mulder et al., 2016; Amirian Chakan et al., 2017), 
including the assessment of associated uncertainty (Kempen et al., 2011; Poggio and 
Gimona, 2017a, b). With the progress of digital soil mapping (DSM), there is rising 
use of 3-D modeling to provide information on soil patterns for applications, from 
agricultural management to ecosystem services (Zhang et al., 2017) and so on. In 
terms of the evaluation of predicted results besides the estimation of the errors, such 
as Accuracy and kappa in a categorical map and R2, RMSE, ME in the continuous 
map, it is important to evaluate the uncertainty associated with the prediction. This 
is another important information to guide land management choices and decision-
makers (Poggio and Gimona, 2017a).

In recent years, there was a considerable advance in DSM due to new approaches, among 
them, powerful predictive algorithms (Beguin et al., 2017; Sindayihebura et al., 2017); 
models combining machine-learning and geostatistical tools (Poggio and Gimona, 2017a,b); 
expert knowledge-based methods (Menezes et al., 2014, 2018); and high-resolution soil 
maps (Nussbaum et al., 2017). However, the limiting factor is often the number of soil 
data used for model calibration (Samuel-Rosa et al., 2015; Somarathna et al., 2017). It was 
suggested that more data was more important than a better model (Somarathna et al., 
2017). However, obtaining more data can be a problem because of the size and/or the 
accessibility of some test areas. 

To facilitate DSM in poorly-accessible areas, Cambule et al. (2013) proposed a methodology 
of sampling in the area of greater accessibility, which is representative of the total area, 
and to evaluate the representativeness using, e.g., the similarity between the histogram 
of the covariates for the total and accessible areas. Other studies considered the costs 
of accessibility in soil sampling (Roudier et al., 2012; Carvalho Júnior et al., 2014; 
Stumpf et al., 2016) using a variation/optimization of the method known as conditioned 
Latin Hypercube Sampling (cLHS), proposed by Minasny and McBratney (2006). The 
cLHS is a robust tool for the allocation of sampling points by means of a set of auxiliary 
covariates. The idea is to be able to capture the maximum of soil variation, and its 
properties, by using environmental covariates as auxiliary information.

The Itatiaia National Park (INP) (Brazil) has limited access due to the steep slopes, 
dense forest cover, rocky outcrops, and altitude vegetation fields in the upper plateau 
(Barreto et al., 2013), all that making the INP an excellent case study. To obtain a viable 
result with a low cost, it is important to use DSM tools, ranging from optimization of 
the sampling site (Minasny and McBratney, 2006; Roudier et al., 2012; Stumpf et al., 
2016) to the covariate selection using powerful predictive algorithms (Beguin et al., 
2017; Jeong et al., 2017). Based on the above and considering the advancements and 
challenges of DSM, it is necessary to optimize financial and human resources to produce 
quality information that can be useful for decision-makers. 

The hypothesis of this work is that it is possible to obtain a viable result to map soil 
properties in areas with limited access by using DSM tools.The general objective of 
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this paper was to create 2- and 3-D models of soil properties (pH, carbon content, 
and cation exchange capacity), with the correspondent spatial uncertainty, with a 
resolution of 25 m and in a poorly accessible area of the INP plateau. For that, it was 
necessary to design a sampling strategy that balanced accessibility, costs, area, and 
environmental covariates; and to model soil properties, with the number of samples 
available. A goal of this study was to contribute with information for the management 
plan of the INP, regarding the soil properties studied and their potential relationship 
to the ecosystems in the park.

MATERIALS AND METHODS

Study area

The INP has an area of 225.54 km2, and it is located in the Serra da Mantiqueira, the 
border region between the Minas Gerais (MG) and Rio de Janeiro (RJ) States (Barreto et al., 
2013). According to Tomzhinski et al. (2012), the INP can be divided into three broad 
areas: the “Lower part”, which comprises the southern part of the park, the “upper part” 
of the plateau (Figure 1) and Visconde de Mauá in the east side.

Data sources and environmental covariates

The environmental covariates used to model the soil properties were derived from 
three data sources: a digital elevation model, remote sensing data (orbital image), and 
a geology map (Table 1). They were chosen to describe the main soil-forming factors, 
according to the scorpan approach (McBratney et al., 2003).

Digital Elevation Model (DEM)

The DEM used, with a spatial resolution of 25 m, was generated from contour lines, with 
20 m equidistance, and hydrography extracted from plani-altimetric charts, both in the 
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Figure 1. The upper part of the Itatiaia National Park in the southeastern region of Brazil. Major roads and trails are in black. Blue points 
are soil sampling points selected according to cLHS method (Minasny and McBratney, 2006). 
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1:50,000 scale. The sheets used were SF-23-ZA-I-2 Alagoa, SF-23-ZA-I-3 Passa Quatro, 
and SF-23-ZA-I-4 Agulhas Negras. They were obtained from the in vector format from 
the cartographic base of the Brazilian Institute of Geography and Statistics (IBGE). The 
dataset was provided by the INP administration.

Table 1. Environmental covariates, soil formation factor that represents their sources, resolution, and definition
Formation factor Covariate Source Spatial resolution Definition

Organism (O)
Bands (1,2,3,4, and 5) RapidEye (2011) 5 m

Bands in the spectrum of 440-510 nm 
(Blue), 520-590 nm (Green), 630-685 nm 

(Red), 690–730 nm (Red Edge),  
760-850 nm (Near IR)

NDVI RapidEye (2011) 5 m NDVI=(NIR–Red)/(NIR+Red)
SAVI RapidEye (2011) 5 m SAVI= (1+0.5) (NIR–Red)/(NIR+Red+0.5)

Relief (R)

DEM INP managers 25 m
Digital elevation model of the 

area-representation of the terrain’s 
surface made by contour lines and 

hydrology (scale 1:50,000, IBGE data)

Slope DEM 25 m Gradient or rate of change of elevation 
between neighboring cells

Aspect DEM 25 m Represents exposure faces, values in 
degrees (0 to 360°)

Northernness DEM 25 m
Indicates the direction of the slope 

relative to the northern.  
Northernness = abs (180°−Aspect)

Plan_curv DEM 25 m
The shape of the hillside on the 

horizontal plane (concave,  
rectilinear or convex).

Prof_curv DEM 25 m The shape of the hillside on the vertical 
plane (concave, rectilinear or convex).

Convergence DEM 25 m
The general shape of the hillside  

in all directions (concave, rectilinear  
or convex)

Cat_area DEM 25 m Related to volume of flooding that 
reaches a certain cell

TWI DEM 25 m Describes a tendency for a cell to 
accumulate water

LS_factor DEM 25 m
Attribute equivalent to the topographic 
factor of the Revised Universal Soil Loss 

Equation (RUSLE)

RSP DEM 25 m Represents relative slope position based 
on the base channel network

CHND DEM 25 m Altitude above the channel network  
(CHNB- original elevation)

CHNB DEM 25 m Interpolation of a channel network base 
level elevation

Parent material (P) Geology Santos et al. 
(2000) 25 m Categorical map with geological 

information (scale 1:50,000)

Spatial position (N) X, Y Grid data - X = longitude, Y = latitude in UTM 
system, zone 23S, projection Sirgas 2000

XY Grid data - XY = polygon of second order of X and Y, 
XY = (X2+Y2+X*Y)/106

Geology classes: alluvial sediments, colluvium sediments, nepheline syenite, quartz syenite, alkaline granite, magmatic breccia, homogeneous 
gneisses. NDVI: normalized difference vegetation index; SAVI: soil-adjusted vegetation index; DEM: digital elevation model; Plan_curv: plan curvature; 
Prof_curv: profile curvature; Convergence: convergence index; Cat_area: catchment area; TWI: topographic wetness index; LS_factor: LS factor;  
RSP: relative slope position; CHND: channel network distance; CHNB: channel network base level.

ftp://geoftp.ibge.gov.br/cartas_e_mapas/folhas_topograficas/vetoriais/escala_50mil/projeto_conv_digital/
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Satellite image

Two scenes from the RapidEye sensor were used, scene 1 (from 02/07/2011) and scene 
2 (16/08/2011). The two scenes were used to cover the entire study area. They have a 
12-bit radiometric resolution, 6.5 m spatial resolution, and were orthorectified to 5 m 
spatial resolution (RapidEye, 2012). Both images were atmospherically corrected using 
the 6S model (Vermote et al., 1997). 

Geology map

It was obtained from Santos et al. (2000), and it was scanned, vectorized, and georeferenced. 
The file was rasterized at the same spatial resolution as the DEM (25 m). 

Soil dataset and sampling strategy

The soil dataset used for the DSM modeling had a total of 90 soil profiles, being 359 
horizons with a morphological description, and 346 horizons with analytical data. 
The approach used in this study to select the sampling points followed the principles 
proposed by Minasny and McBratney (2006). The points were selected by using cLHS 
with auxiliary covariates, and considering the access costs (Roudier et al., 2012; 
Carvalho Júnior et al., 2014; Stumpf et al., 2016). As a constraint, three buffer sizes were 
created in relation to roads and trails, as proposed by Carvalho Júnior et al. (2014). After 
testing the distances of 100, 200, and 400 m, with no significant differences between 
buffers (data not shown here), the distance of 100 m was selected to represent the 
accessible area.

The auxiliary covariates used to select sampling locations were: geology, elevation, 
slope, northernness, and soil-adjusted vegetation index. From the 90 points, 74 were 
selected for soil profile description. Also, legacy data (Soares et al., 2016) and data 
unpublished from field trips in the area were added to the database. In addition, other 
samples were selected based on the expert pedological knowledge and the relationship 
between soil and landscape, as recommended in the methods for conventional soil 
surveys (IBGE, 2015). These additional data (n=16) were obtained from places inside 
and outside the area in which the sampling was considered of higher accessibility 
(buffer of 100 m).

Covariates selection approach 

To evaluate the relationships between soil properties such as pH, total carbon content 
(C), and cation exchange capacity (CEC), and environmental covariates, Multiple Linear 
Regression (MLR) and Generalized Additive Models (GAM) were tested (Figure 2). The 
MLR is a parametric method, and it assumes that the relationships between dependent 
variable and covariates are linear (Hastie et al., 2009). The GAM is a flexible statistical 
method that may be used to identify and characterize nonlinear regression effects 
through smoothing functions (Hastie et al., 2009; Wood, 2017).

The selection of the covariates was carried out to produce simpler models with the 
minimum number of covariates, and still able to explain the maximum of the data 
variability. Different strategies were used and they are described below.

Step one - correlation cut off: it evaluated the correlation between covariates. If two 
covariates had a coefficient greater than 0.85 (the cutoff value considered for this study), 
only one was maintained. The covariate used in the model was presumed to have a 
greater relationship with the SCORPAN (McBratney et al., 2003) model, i.e., greater 
pedological information.

Step two - selection using different approaches: it involved fitting models using the 
covariates maintained in the first step. But whereas fitted MLR models were fitted with all 
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covariates, the same was not possible for GAM, due to limitation of degrees of freedom 
for many covariates and the few soil samples (Poggio et al., 2013). The purpose of the 
model with all covariates is to have a basis of comparison with different methods of 
selection commonly used. 

MLR: four models were fitted: one with all covariates (MLR_full); with covariates selection 
by correlation less than 0.85 between covariates (MLR_cor); other with the popular 
technique used in regression models, AIC (Akaike’s Information Criterion) stepwise 
selection (Carvalho Junior et al., 2016; Chagas et al., 2016; Vermeulen and Niekerk, 
2017) (MLR_step); and the technique of Recursive Feature Elimination (RFE) (MLR_RFE).  

This last has recently been used in soil science for variable selection in machine-learning 
algorithms, and it is a backward selection using rank (Jeong et al., 2017; Vašát et al., 
2017). The backward selection algorithm iteratively eliminates the least promising 
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Figure 2. Covariate selection approach, model fitting, validation, and prediction workflow. AIC: 
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predictors from the model based on an initial predictor importance measure. When the 
full model has created a measure of variable importance is computed and shows the 
ranks of predictors from most to least important (Kuhn, 2017).

GAM: the approach was different due to the degree of freedom limitation. In this 
case, the models are penalized by the low number of points (soil data) and a large 
number of covariates, i.e., large parametric parameters of the GAM model. The models 
were fitted based on the stepwise forward approach, where covariates are added 
according to AIC. All models began with geographic coordinates (X, Y) and geology 
as fixed covariates. Three models were fitted. The first using the base model, where 
each covariate was added in the base model individually, and then evaluated by its 
AIC. The model ran with all covariates, and the four with lower AIC value composed 
the final model termed GAM_one. The second model consisted of making all possible 
combinations of four covariates and then run the model with all possible combinations. 
The combination with a smaller AIC was termed GAM_comb. This approach seeks to 
capture the interaction between covariates when a predictor model is fitted. In both 
cases (GAM_one and GAM_comb), it was included as many covariates as possible; 
since the base model already had nine covariates X, Y, and seven different levels 
for geology, it was possible to include another four covariates totaling a model with 
a maximum of 13. The third model involved a more parsimonious model based on 
the scorpan approach (McBratney et al., 2003). In this case, in addition to the base 
model that already included the parent material (geology) and spatial position (X, Y), 
for 2-D prediction and geology, and X, Y and depth (Z) for 3-D prediction, different 
combinations of data derived from the satellite image (in this way adding the factor 
organism associated to the land coverage) and data derived from the DEM (mainly 
represent factor relief, topography) were tested.

In all, possible combinations were tested for each soil property using external validation, 
but the same procedure was repeated using cross-validation. The best model in both 
evaluations was selected and termed GAM_scorpan. 

The GAM model was selected for the 3-D approach due to its simplicity, and being a 
flexible approach that can deal with both linear and non-linear relationships between 
soil properties and the considered covariates (Poggio and Gimona, 2017a). Also, the 3-D 
smooth can provide a better performance, considering non-linear relationships between 
covariates and soil properties (Poggio and Gimona, 2017a), which are frequent when 
modeling natural environments.

For all combinations of models and covariate selection, an extension of the scorpan-kriging 
approach, hybrid geostatistical model, i.e., GAM-kriging or MLR-kriging was tested, 
combining the models with spatially correlated errors. However, the short-range 
spatial structure combined with the sparse sampling along the roads and tracks led 
to the fact that the errors do not show spatial dependence. Thus, this analysis was 
not fully accomplished.

Validation and uncertainty

The model’s performance was evaluated in two ways: the first by external validation, 
where points selected by the cLHS n = 74 soil profiles (Minasny and McBratney, 2006) 
were used to fit the models. To validate the performance of the models, there were 
used n = 16 profiles, from the legacy data (retrieved from the literature), as well as 
extra points collected in the field based on the pedological knowledge and the soil-
landscape relationship (without pre-selection). In training, samples were taken within 
a 100 m buffer in relation to roads and tracks. The validation samples include points 
inside and outside the buffer, defined as accessibility criterion; the second form of 
evaluation was leave-one-out cross-validation (LOO-CV) (Brus et al., 2011). In both 
cases, the Mean Square Error (MSE) and Root Mean Square Error (RMSE) were computed. 



Costa et al. Mapping soil properties in a poorly-accessible area

8Rev Bras Cienc Solo 2020;44:e0190107

And a coefficient of determination was derived from a linear model between observed 
and predicted data (R2). For 3-D soil modeling, the results of the modeling were 
summarized for the whole profile and at five depth layers, according to Global- Soil Map 
project specification (Arrouays et al., 2014), and compared with observed values from 
corresponding depths. Uncertainty propagation was analyzed through simulation (N = 
1000) from the posterior distribution of fitted GAMs to derive simultaneous confidence 
intervals for the derivatives of penalized splines (Ruppert et al., 2003). All algorithms 
implementation, spatial prediction, and uncertainty analysis were done using the R 
program (R Core Team, 2018).

RESULTS 

Correlation analysis between covariates

Strong relationships were observed between covariates derived from the satellite image, 
most of them with a correlation greater than 0.85 (Figure 3). They contributed in a 
similar way as information of vegetal coverage or land use, and their use may impair the 
model’s fitness due to multicollinearity problems. The covariates CHND, band1, band2, 
band3, and SAVI were excluded, due to a correlation greater than 0.85 with one or more 
covariates. The CHND showed a strong correlation with elevation values.

It is usually necessary to decrease the number of covariates in the GAM models, especially 
when there is limited number of soil samples, as in this study. Since there was no high 
relation (no greater than the cut-off value 0.85) between covariates derived from satellite 
image and DEM (Figure 3), all possible combinations were tested to build the scorpan 
GAM model.

The 2-D approach

For the model’s comparison by soil properties, for pH prediction using linear models, 
the best method of covariate selection was the RFE, in both cases, using external and 
cross-validation (Table 2). However, this pattern was not repeated for the other soil 
properties, C and CEC (Tables 3 and 4). For the total soil C and CEC, the RFE method 
presented the worst performance for the linear model (Table 2). In the case of the linear 
model, the most commonly used method for covariate selection, the stepwise method 
increased the R2 coefficients when compared to other linear methods, for both validation 
methods - external validation and cross-validation, for C and CEC prediction and also 
RFE for pH.

For the GAM models, the best method of covariate selection was the scorpan approach, 
in both cases, using external, and cross-validation (Tables 2, 3, and 4). It was also the 
best model when compared with different approaches to select covariates in MLR models 
(Tables 2, 3, and 4). The scorpan model remained the best approach for covariate 
selection in GAM models. 

For CEC prediction, all the best models in each approach had better performance when 
used external validation for evaluating. However, the validation samples are not completely 
random, and this may overestimate the model’s performance for the external validation 
approach. Regardless of the differences, the best model selected in the external validation 
was also the best model in the cross-validation.

About the spatial prediction and uncertainty propagation, the predicted values (in the grid) 
and the observed values using the best covariate selection approach for MLR and GAM 
models are presented in the figure 4. For carbon content, the extreme values (minimum 
and maximum) were similar to the prediction made by MLR, with maximum values 
close to measured values, but the minimum showed negative values. The uncertainty 
in the predictions of soil properties for the superficial layer was mainly associated with 
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extrapolation of values for regions not sampled, and the INP boundaries with greater 
limitation of access (Figure 4).

The 3-D approach

On the continuous depth function using GAM scorpan, based on results for topsoil 
layer prediction, the GAM scorpan approach was chosen to predict the soil properties 
for the whole profile. In this case, besides the base model of 2-D GAM with covariates 
X, Y, and geology, the soil depth (Z) was added as a covariate in the base model to 
create a smoother 3-D. As with 2-D modeling, the base model was used to test different 
combinations of properties derived from DEM and satellite images. Since most of the 
soils in the INP have shallow profiles, it was considered for prediction the maximum 
depth limit of 1.00 m. A greater soil profile depth than that represents less than 23 % 
of the total data (Figure 5).

For model evaluation, it was used the descriptive statistic for the whole soil profile, and 
predictions for soil pH are very close (Tables 3) to observed values (Table 3), especially 
when using the cross-validation approach (Table 3). The values of the determination 
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coefficient for carbon content and CEC are higher among observed and predicted values 
than for the pH, especially in cross-validation (Table 3). The magnitude of errors, RMSE, 
and MSE shows a tendency to extrapolate low carbon contents.

Although there is a positive relationship between predicted and observed carbon values, 
they decrease in depth (Figure 5) and there is a tendency for very low values for depths 
greater than 0.30 m (Table 4). This is especially true for soils that begin with low levels 
of soil carbon, such as mineral soils. Particularly in the deeper layers, the low number 
of points to represent these layers affected the prediction (Tables 4). 

Table 2. Performance of MLR and GAM models to predict soil pH, carbon content, and CEC
pH External validation LOO-CV
Model R² MSE RMSE R² MSE RMSE
MLR_full 0.15 0.66 0.43 0.26 0.43 0.19
MLR_cor 0.21 0.62 0.39 0.30 0.41 0.17
MLR_step 0.22 0.48 0.23 0.24 0.42 0.18
MLR_rfe 0.32 0.45 0.20 0.31 0.40 0.15
GAM_one 0.20 0.48 0.23 0.35 0.38 0.14
GAM_comb 0.50 0.39 0.15 0.31 0.39 0.15
GAM_scorpan 0.52 0.39 0.15 0.35 0.38 0.14
Carbon External validation LOO-CV
Model R² MSE RMSE R² MSE RMSE
MLR_full 0.06 7.56 57.10 0.14 6.55 42.87
MLR_cor 0.10 6.71 44.95 0.13 6.44 41.47
MLR_step 0.17 5.29 27.97 0.24 5.25 27.59
MLR_rfe 0.04 5.44 29.56 0.09 5.44 29.59
GAM_one 0.33 3.95 15.59 0.42 4.35 18.96
GAM_comb 0.31 4.09 16.71 0.43 4.31 18.56
GAM_scorpan 0.49 3.85 14.83 0.45 4.21 17.74
CEC External validation LOO-CV
Model R² MSE RMSE R² MSE RMSE
MLR_full 0.20 14.96 223.69 0.05 12.92 166.81
MLR_cor 0.18 15.28 233.50 0.03 13.25 175.67
MLR_step 0.19 14.78 218.37 0.04 11.18 124.97
MLR_rfe 0.00 16.78 281.61 0.02 9.283 86.17
GAM_one 0.38 13.71 187.92 0.22 8.289 68.72
GAM_comb 0.32 13.17 173.41 0.17 8.581 73.63
GAM_scorpan 0.41 13.61 185.06 0.27 7.764 60.29

MLR_full: all covariates (Full model); MLR_cor: covariates selected with correlation smaller than 0.85 with 
each other’s. Selected covariates for pH: MLR_step: covariates selected: DEM, Northernness, geology, X, 
NDVI; MLR_rfe: covariates selected: plan_curv, prof_curv, NDVI, Y, X, twi; GAM_one: covariates selected: X, 
Y, geology, DEM, northernness, chnd, band5); GAM_comb: covariates selected: X, Y, geology, DEM, aspect, 
plan_curv, cat_area; GAM_scorpan: covariates selected: X, Y, geology, prof_cuv, band3. Selected covariates 
for carbon content: MLR_step: covariates selected: DEM, Northernness, geology, X, NDVI; MLR_rfe: covariates 
selected: plan_curv, prof_curv, NDVI, Y, X, twi; GAM_one: covariates selected: X, Y, geology, DEM, northernness, 
chnd, band5); GAM_comb: covariates selected: X, Y, geology, DEM, aspect, plan_curv, cat_area; GAM_scorpan: 
covariates selected: X, Y, geology, prof_cuv, band3. Selected covariates for CEC: MLR_step: covariates selected: 
band5, northernness, DEM, X, chnd, geology; MLR_rfe: covariates selected: plan_curv, prof_curv, NDVI, 
ls_factor, twi, slope, convergence; GAM_one: covariates selected: X, Y, geology, band5, northernness, DEM, 
NDVI; GAM_comb: covariates selected: X, Y, geology, plan_curv, twi, band5, NDVI; GAM_scorpan: covariates 
selected: X, Y, geology, chnb, band3.
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The form of the model evaluation, external data or cross-validation, leads to different 
results by layer. For cross-validation, in which better results were obtained, the best 
performance was 0.05-0.15 m, for pH and C, and 0.60-1.00 m for CEC (Table 4).

On the spatial prediction and uncertainty propagation, when comparing the spatial 
prediction of the models, the cross-validation showed better results, so these models 

Table 3. Descriptive statistics of predicted values for the whole profile using external validation 
and LOO-CV dataset, and for observed values (all data and validation data set)

Property
Predicted values on external validation

R2 RMSE MSE Min Mean Max

pH 0.27 0.38 0.15 3.80 4.49 5.00

C 0.26 5.73 32.82 -2.98 10.53 22.58

CEC 0.42 10.75 115.54 6.61 17.67 31.52

Predicted values on LOO-CV

pH 0.45 0.29 0.09 3.42 4.51 5.14

C 0.60 3.63 13.20 -3.81 6.43 20.96

CEC 0.59 5.95 35.36 -0.03 13.65 46.95

Observed values

Property
All data Data validation

Min Mean Max Min Mean Max

pH 3.24 4.51 5.72 3.72 4.69 5.46

C 0.24 6.42 29.48 0.43 7.95 17.46

CEC 3.00 13.68 69.01 4.35 19.04 69.01

Table 4. Descriptive statistics of predicted values for each depth, with LOO-CV dataset

Property R2 RMSE MSE Min Mean Max Layer n(1)

m

pH

0.43 0.35 0.13 3.78 4.39 5.08 0.00-0.05 90

0.46 0.33 0.11 3.81 4.41 5.00 0.05-0.15 90

0.41 0.30 0.09 3.87 4.45 4.88 0.15-0.30 85

0.32 0.27 0.07 4.00 4.50 4.88 0.30-0.60 73

0.38 0.28 0.08 4.14 4.57 5.09 0.60-1.00 51

C

0.32 9.42 88.66 2.64 14.31 22.90 0.00-0.05 90

0.35 9.50 90.33 2.02 13.38 21.93 0.05-0.15 90

0.30 9.81 96.15 1.02 11.85 20.34 0.15-0.30 85

0.27 9.91 98.14 -0.41 8.38 12.95 0.30-0.60 73

0.28 9.03 81.49 -1.80 6.97 13.86 0.60-1.00 51

CEC

0.40 7.15 51.15 14.47 22.61 33.27 0.00-0.05 90

0.41 7.15 51.17 13.62 21.59 32.08 0.05-0.15 90

0.52 6.81 46.31 12.11 19.84 30.08 0.15-0.30 85

0.58 6.29 39.59 9.01 16.60 26.62 0.30-0.60 73

0.65 4.36 19.01 7.52 14.78 23.44 0.60-1.00 51
(1) Number of observations in each layer.
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Figure 4. Descriptive statistics (histograms and boxplot) of the observed values and predicted values (grid) for soil properties using 
the best covariate selection approach for MLR and GAM models.
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were used to predict the soil properties on the grid and to produce the maps (Figure 7). 
Some extrapolated values for C and CEC are affected, among other factors, by the access 
limitations; consequently, we had a smaller number of points to calibrate the models 
and limited spatial distribution of the soil samples. 

DISCUSSION

2-D approach

The performance gain in MLR models, already in the selection of covariates by correlation, 
excluding those with highly correlated (Figure 3), is probably due to the multicollinearity 
problem (Kempen et al., 2009; ten Caten et al., 2011), which significantly affects the 
model performance. The MLR with several covariates showed a tendency to have the 
worst performance because of its effect of harmful multicollinearity in the parametric 
models; thereby impairing the model. This leads to the problem of inflating the variance 
of parameters, model over-fitting, and even noise problems (Kempen et al., 2009; ten 
Caten et al., 2011; Nussbaum et al., 2018). This is especially important if we have a 
limited number of samples and a large number of covariates.

The MLR model presented regular performance, and it was worse than GAM (Table 2). 
In the RFE used in Random Forest, as it was done Jeong et al. (2017), the best results 
can be due to the parameters optimization using cross-validation inside the algorithm 
(using caret package), thus selecting an optimal value of the number of trees and mtry 
parameter. This pattern was not observed in the MLR using RFE. For linear models, the RFE 
selection method (using the RFE lmFuncs function on caret package) did not present good 
results; it was the model with the worst result, except for soil pH (Figure 5). Furthermore, 
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it almost always selects the same covariates, regardless of the soil properties tested. 
This suggests that selection algorithm using the function (rfe) for linear models in the 
caret package should be used carefully. In general, the best way to select covariates 
for MLR is the stepwise selection with AIC criteria, a common method to select models 
in linear regression (Carvalho Junior et al., 2016; Chagas et al., 2016; Vermeulen and 
Niekerk, 2017).

The GAM_scorpan was the most appropriate model for the prediction of all soil properties. 
It presented the best performance, in both ways, when evaluated using external 
validation and with cross-validation. However, this was the only model where, in all soil 
properties, performance in the cross-validation was lower than in the external validation 
(Tables 3 and 4). This may be due to the fact that external validation samples are not 
probabilistic, as suggested by Brus et al. (2011), and do not include all geographic 
and attribute space. For these conditions, where the validation samples come from 
various sources and are not completely random, and there is a limited set of soil data, 
cross-validation is the best approach to evaluate the models.

For the three soil properties and selection methods evaluated in this work, the linear 
models showed inferior performance to GAM. This is probably because relationships 
between soil attributes and covariates are not linear, and models such as the MLR fail 
to capture the nonlinear relationships efficiently (Poggio et al., 2013; Jeong et al., 2017). 
Since, in general, soil properties do not have linear relationships with environmental 
covariates, the models that captured these relationships tend to be better. In contrast, 
GAM models, where it is possible to model nonlinear relationships (Jeong et al., 2017; 
Poggio and Gimona, 2017 a,b), had the best performance when combined a nonlinear 
modeling approach and the concept of soil formation factors for covariate selection 
(expert knowledge).

When analyzing the models separately according to their respective methods of covariates 
selection, it is observed that, in general, the best results use stepwise selection for 
MLR (except for predicting soil pH), and GAM using the scorpan approach. It is possible 
to separate the models and covariates selection approach. This appears to contradict 
Somarathna et al. (2017), who suggested investing in sampling (Figure 4) rather than 
more robust models. However, it agrees with Beguin et al. (2017), who tested different 
statistical approaches and found significant differences, thus suggesting that robust 
methods can enhance DSM capabilities and support existing efforts for improving digital 
soil products, even with limited data.

Pedological knowledge is crucial in DSM and was used by Nussbaum et al. (2018), to 
exclude covariates with low spatial variation and aggregate levels of categorical variables 
with low sample density per level. The knowledge of soil-forming factors as well as of 
the study area is a powerful tool, and when associated with computational tools, it may 
improve predictions of soil properties and classes.

When evaluating soil-forming factors and pedological elicitation, the elevation, parental 
material, and covariates from the RapidEye sensor (Table 1) were the factors that 
most influenced the soil properties of the INP plateau, because they were frequently 
selected by the different approaches of covariate selection for both models, MLR and 
GAM. All soil factors are related, for example, the relief has spatial variation, and the 
highest part is in the center of the study area; in turn, the elevation influences the 
weather, that is cold and wet in the INP, and that leads to a distinct distribution of 
plant species. This environment favors accumulation and preservation of soil organic 
matter due to low temperatures, leading to the formation of the organic soils in the 
high altitudes (Soares et al., 2016), which explains why the organic soils predominate 
in the upper part of the INP.
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This agreed with the results found in the GAM_scorpan models, the models selected as the 
best since they combine the most important covariates, related to the parent material, 
relief, organism, and position in the geographic space. The combined influence of these 
factors is the main reason for soil formation in the upper part of the INP. For example, 
the higher carbon and CEC contents, properties strongly related to each other, were 
predicted with highest values in the areas of INP with altitudinal fields coverage (Figure 1) 
(predominant species are Poaceae and Cyperaceae), which are concentrated in the plateau 
central region of INP, where the dominant geology is composed by quartz-syenites and 
related sediments (Santos et al., 2000; Soares et al., 2016).

When the predicted values (in the grid) and the observed values were compared, it was 
observed a tendency of the MLR to extrapolate results, especially lower values being 
more negative; as in the carbon and CEC (Figure 5). This can be related to the limited 
access to regions located to the North and West of INP, consequently a small number of 
soil samples, with some covariates having high variations (DEM). Similar results were 
observed by Chagas et al. (2016) and Carvalho Junior et al. (2016), when comparing 
Random Forest and MLR, regression seems to extrapolate the values. Like MLR, GAM 
models tend to extrapolate the extreme values.

Despite the best performance of the GAM model (Table 2), evaluated by the R2, RMSE, and 
MSE metrics, there was an extrapolation of values predicted in the grid. This reinforces the 
importance of evaluating the spatial propagation of uncertainty in DSMs (Stumpf et al., 
2016; Vaysse and Lagacherie, 2017). Besides some geology classes occurred in small 
areas; consequently they had fewer soil samples. A similar pattern was observed by 
Cambule et al. (2014), predicting carbon stocks in the Limpopo National Park, where 
they observed high uncertainty values, and it was suggested that it was due to short-
range spatial structure combined with the sparse sampling.

3-D approach

Due to limited accessibility conditions and hence the reduced number of points, the best 
approach to fit and validate GAM models are smoothing functions using cross-validation. 
Also, because when there are many covariates and few points, it is not possible to fit GAM 
models due to the limitation on the degrees of freedom of the model (Poggio et al., 2013). 
In this case, with limited ground points, the cross-validation seems to be more appropriate 
to fit the 3-D function (Taghizadeh-Mehrjardi et al., 2016; Amirian Chakan et al., 2017). 
Even if more data are available, this is a common approach in recent 3-D soil properties 
modeling (Veronesi et al., 2014; Mulder et al., 2016). As there are more samples for 
the topsoil, in general, this layer presented better prediction results as observed by 
Kempen et al. (2011), Mulder et al. (2016), and Poggio and Gimona (2017a) consequently, 
larger errors prediction and greater uncertainty are observed in the deepest depths 
(Figures 6 and 7). In this sense, LOO-CV is the best approach to obtain the results given 
that in depth the number of samples is even more limited.

The evaluation of spatial uncertainty propagation showed a greater uncertainty for the 
higher values given by the standard error, due to noise in the very steep areas (above 
100 %) and/or shadowed regions detected in the satellite images. Also, areas that had 
greater uncertainty occurred when the predicted values are associated with higher 
access limitation, with little or no soil samples. As mentioned, in some areas of INP, the 
access is very limited, with unused/semi-closed tracks, or no tracks at all, for the North 
and West directions. In addition, no vehicles, except during an emergency, are allowed 
to travel inside the park. These reasons led to a low number or no soil sampling at all in 
some areas of INP (Figure 1). When the profile depth is considered, due to the dominance 
of shallow soils, the number of soil samples decreases, in the distance and with depth. 
Some covariates such as DEM also varied significantly (North and West). This contributes 
to the model’s higher extrapolations and uncertainty.
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In terms of soil genesis, due to the very steep slopes and the predominantly acidic 
nature of the parent material, the dominant soils in the INP are the Regosols and Cambic 
Umbrisols. Under the forest coverage, but with higher slopes, some intermediate 
developed soils such as Cambisols and Folic Umbrisols occur, with the Regosols occupying 
the strongly sloping and steep areas. In the higher elevation areas, with altitude fields 
vegetation and rock exposures, shallow soils such as Histosols and Leptosols with a 
histic horizon are dominant. In the lower elevations of INP, under forest coverage and 
located in flat and gently slopes, more weathered and deeper soils such as Rhodic 
Acrisols and Ferrasols predominate.

In summary, the INP plateau is relatively complex in terms of soil variation and their 
attributes and most soil properties predictions were produced with admissible modeling 
diagnostics and uncertainty ranges for LOO-CV (Table 4), when the limitation due 
to the number of soil samples and their spatial distribution is taken in account. For 
the remote areas of the INP plateau, the models tend to extrapolate the results for 
soil carbon content and CEC in deeper layers, especially the MLR in relation to GAM. 
The same results were observed by Kidd et al. (2015), suggesting that maps should 
be created with continuous improvements, from the input of newly collected data. 
Prediction uncertainty can help to choose supplemental sampling to improve the DSM 
(Li et al., 2016).
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Figure 6. Distribution of pH, carbon content (%), and CEC (cmolc dm-3) for the data collection. 
The percentage values represent the relative number of profiles that contributed to the estimates 
in each layer.
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CONCLUSIONS
In general, the GAM model had superior performance MLR. The approach based on 
soil-forming factors showed to be a simple and viable method for covariates selection 
in the GAM model, especially considering limitations regarding degrees of freedom due 
to the limited number of soil samples.
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Figure 7. Maps of the soil properties at five layerss (pH left, carbon content (%), CEC (cmolc 
dm-3) right). They were predicted with models evaluated with cross-validation. The five layers are 
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The elevation, parental material, and covariates from the RapidEye sensor were the 
factors that most influenced the soil properties of the Itatiaia National Park plateau.

The greater uncertainty of the maps was associated with the low accessibility areas, 
which had low sampling density and/or noises in the covariates. The 2- and 3-D soil 
properties modeling with the correspondent uncertainty propagation can be used for 
INP management of ecosystems.

The high resolution of soil attributes and uncertainties produced for INP in the 3-D space 
are an important step in developing a comprehensive soil database, carrying quantitative 
soil-information on a scale adequate to the INP demands.

The sampling planning using cLHS provided a convenient subset of the area representation, 
increasing the possible combination of ranges from the pool of covariates. This approach 
enhances the potential of the best model (GAM scorpan) to produce maps, by accounting 
with the uncertainty, confining sampling points to the absolutely necessary, especially 
in areas with limited access such as the INP. This strategy contributes to minimize costs 
when balancing challenges and sampling requirements.
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