Acessibilidade / Reportar erro

Evaluation of three constructed soil areas after surface coal mining in Lauro Müller, Santa Catarina State, Brazil

In soils constructed after coal mining, superficial contamination with pyrite coal residues causes acidification, accelerates the mineral weathering, increases Al and Mn contents, and base leaching. The present work evaluated chemical characteristics, clay content and mineralogy, and the spatial variability for some of these characteristics in three constructed soil areas after surface coal mining in Lauro Müller, Santa Catarina State, Brazil. The selected areas present differences in their topographic soil construction. The first area, Juliana Mine (MJ), was constructed in 1996 with materials that had been removed and stored separately before mining (solum, loamy regolithe and rock fragments), as laid down in the rehabilitation plan. The second, Apertado Mine (MA), was constructed in 1996 with solum removed from an adjacent hilltop. The third area, Rio do Meio Mine (MRM), was only submitted to topographical reconstitution in 1983 with a mixture of coal pyrite residues and rock fragments from several soil layers. Soil samples were collected in a grid system, at three depths, and analyzed for pH, exchangeable Ca, Mg, K, Al and H + Al contents, and electric conductivity. Heavy metals and clay mineralogy were also analyzed in some selected samples. Representative analyses of pre-mining conditions, carried out in two soil profiles, were utilized for comparisons with the constructed soils. Values of the chemical soil characteristics and clay contents in all areas presented a high variability among the sampled points. The soil construction process utilized in MJ caused the highest uniformity of characteristics and provided the most adequate conditions for the establishment of vegetal species. In MA, the addition of pyrite coal material to the superficial soil is causing a continuous soil acidification, as well as high salt concentrations. In the MRM area, which had been abandoned and exposed to pyrite coal deposition on the surface layer for an extended period, the soil is very acid and has already suffered intensive leaching of salts. Al, H + Al, and clay contents were the only tested variables that presented a defined model for semi-variance, with a range of 50-70 m.

pyrite oxidation; spatial variability; constructed soils


Sociedade Brasileira de Ciência do Solo Sociedade Brasileira de Ciência do Solo, Departamento de Solos - Edifício Silvio Brandão, s/n, Caixa Postal 231 - Campus da UFV, CEP 36570-900 - Viçosa-MG, Tel.: (31) 3612-4542 - Viçosa - MG - Brazil
E-mail: sbcs@sbcs.org.br