Acessibilidade / Reportar erro

Soil organic carbon budget under crop-livestock integration in southern Brazil

In southern Brazil, crop-livestock integration is increasing in areas traditionally used for extensive beef cattle production. The poor winter pasture management associated to the use of soybean monoculture in the summer may be restrictive for the incorporation of plant residues into the soil and reduce soil organic carbon stocks. The objective of this study was to evaluate the impact of the increase of winter pasture grazing frequencies and summer crop systems on the soil organic C stock. The experiment was carried out for four years under no-tillage and the experiment had a randomized block design and a 3 x 3 bifactorial arrangement with four replications. Factor A consisted of three grazing intervals in the winter: No grazing (NG), Grazing every 28 days (G28) and Grazing every 14 days (G14); and factor B consisted of three summer-cropping systems: Soybean monoculture (Mon-S), Corn monoculture (Mon-C) and annual soybean-corn rotation (Rot-S/C). The addition of C to the soil through plant residues and the soil organic C stock were quantified by the methodologies of equivalent soil layer and equivalent soil mass. The increase of the grazing frequencies reduced the C input by winter forages from 5.3 Mg ha-1 in treatment NG, to 1.7 and 1.3 Mg ha-1 in the treatments G28 and G14, respectively. Corn as summer crop resulted in the highest C input to the soil with a mean of 6.0 Mg ha-¹, while the soybean input was only 2.2 Mg ha-1. The soil organic C stock calculated by the equivalent soil layer method was overestimated in the treatments G14 and G28 and underestimated in treatment NG as compared to results obtained by the soil mass equivalent method, which was used to compare the management systems. The organic C stock in the layers 0-0.025, 0.025-0.05 and 0.05-0.10 m had a linear relationship with the annual C supply through plants (winter pastures + summer crops), requiring an additional 4.48 Mg ha-1 year-1 to maintain the original organic C stock in the 0-0.10 m layer. The lower C supply through plant residues in the G14 treatment resulted in an estimated net C emission to the atmosphere (0.05 to 0.27 Mg ha-1 year-1 ), while the soil in treatment NG acted as an atmospheric C sink (0.19 to 0.30 Mg ha-1 year-1 ). In treatment G28, the soil performance as source or sink of atmospheric C was dependent on the summer crop type; A soil net C emission was verified under Mon-S (0.04 Mg ha-1 year-1 ) and a net C retention under Mon-C (0.15 Mg ha-1 year-1 ) and Rot-S/C (0.11 Mg ha-1 year-1 ). The longest intervals between winter grazing associated to corn in the summer contributed to increases in biomass and soil organic C accumulation.

soil organic matter; carbon sequestration; winter pastures


Sociedade Brasileira de Ciência do Solo Sociedade Brasileira de Ciência do Solo, Departamento de Solos - Edifício Silvio Brandão, s/n, Caixa Postal 231 - Campus da UFV, CEP 36570-900 - Viçosa-MG, Tel.: (31) 3612-4542 - Viçosa - MG - Brazil
E-mail: sbcs@sbcs.org.br