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ABSTRACT: In geostatistical modeling of soil chemical properties, one or more influential 
observations in a dataset may impair the construction of interpolation maps and their 
accuracy. An alternative to avoid the problem would be to use most robust models, 
based on distributions that have heavier tails. Therefore, this study proposes a spatial 
linear model based on the slash distribution (SSLM) in order to characterize the spatial 
variability of soybean yields as a function of soil chemical properties. The likelihood ratio 
statistic (LR) was applied to verify the significance of parameters associated with the 
model. We evaluated the sensitivity of the maximum likelihood estimators by means of 
local influence analysis for both the soybean response and the linear predictor. In the 
proposed model, we analyzed data gathered from a commercial grain production area 
(127.18 ha) located in the western part of the state of Paraná (Brazil). The results 
showed that the slash distribution allowed us to adjust the high kurtosis of the data set 
distribution and the LR test confirmed that the soil chemical properties of phosphorus, 
potassium, pH, and organic matter were significant for the SSLM. Diagnostic analysis 
indicated that the atypical value of the sample set was not influential in the parameter 
estimation process. Construction of the interpolation map based on the proposed model 
is not affected when considering the atypical and/or influential observations. Thus, SSLM 
becomes a robust alternative in the study of soybean yield variability as a function of 
soil chemical properties, making it possible to investigate the productive potential of 
the areas.
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INTRODUCTION
Knowledge of spatial variability of soybean yield and its relationship to soil chemical 
properties are essential for proper crop management (Sobjak et al., 2016). However, 
many precision agriculture users get disappointed trying to find the ideal variable-rate 
application of the nutrient based on the prescription map, because does not always 
correspond to the soybean yield map generated after the intervention. One of the main 
explanations is related to complexity of the soil, which is considered a dynamic system 
whose functionality arises from interactions between physical, chemical, and biological 
components that are specific for each crop (Pereira et al., 2016). Thus, a localized 
management system for soybean requires accurate information on spatial variation and 
the interaction between soil chemical properties and their relationship to yield (Pagani 
and Mallarino, 2015; Al-Kaisi et al., 2016; Dalla Nora et al., 2017). 

One of the methods used in such characterization is geostatistics, which takes soil spatial 
variation patterns into account and provides techniques that enable construction of 
maps associated with one or more soil chemical properties (Cressie, 2015).One of the 
different methods used in geostatistical studies is spatial linear models, which have been 
widely evaluated by assuming a Gaussian stochastic process (Uribe-Opazo et al., 2012; 
Grzegozewski et al., 2013; Nesi et al., 2013; De Bastiani et al., 2015). This modeling 
enables estimation of spatial dependence parameters through the maximum likelihood 
method (ML), making inferential studies possible.

However, Assumpção et al. (2014) and Schemmer et al. (2017) reported on the 
sensitivity of a Gaussian distribution for atypical values and errors with heavier tails 
than normal and stated that such modeling may generate unrealistic maps. Thus, 
one of the alternatives to avoid this problem would be to use more robust models 
based on heavier tails. Following this line of reasoning, multivariate slash distribution 
is quite attractive because it has an additional parameter, here designated as 
η (0 < η < 1) which allows kurtosis adjustment, making the modeling more flexible in 
the presence of atypical values (Osorio et al., 2009; Alcantara and Cysneiros, 2013). 
This distribution was first introduced by Lange and Sinsheimer (1993), belonging 
to the class of scale mixtures of normal distribution. The basic idea behind this 
distribution class is to insert randomness in the covariance matrix, as well as in 
the mean vector of the multivariate normal distribution, through a strictly positive 
mixture variable. This allows generalization of a multivariate normal distribution, 
preserving the main properties.

Although it creates robust models, spatial modeling based on the slash distribution 
may be affected by influential observations. Therefore, it is important to evaluate its 
sensitivity through influence diagnostics, which may be carried out by different evaluation 
methods, one of them being local influence assessment. The aim of this assessment is 
to evaluate the goodness of fit of the model, and the robustness of its estimates when 
small perturbations are introduced in the model and/or in the dataset (Cook, 1986; Zhu 
and Lee, 2001; Jonathan et al., 2016).

Regarding georeferenced data, Uribe-Opazo et al. (2012) evaluated the sensitivity of 
covariance function estimators and linear predictors under small dataset perturbations 
and/or a spatial linear model with a normal distribution. Assumpção et al. (2011) presented 
techniques for local influence for spatial analysis of soil physical properties and soybean 
yield using Student’s t-distribution. Grzegozewski et al. (2013) considered a Gaussian 
spatial linear model (GSLM) and information about soil macro- and micronutrients in 
evaluating the effects of influential observations on spatial model selection, parameter 
estimation by maximum likelihood, and characterization of spatial continuity of soybean 
yield. In these studies, the authors emphasized that influential values can modify the 
interpolated maps and may generate inaccurate predictions. 
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The aim of this study was to propose a spatial linear model based on the slash distribution 
(SSLM) to characterize the spatial variability of soybean yields as a function of soil 
chemical properties.

MATERIALS AND METHODS

Experimental site

We gathered data from a field experiment set up in a commercial grain production 
area in which the no-tillage system has been practiced since 1994. The area is located 
in the municipality of Cascavel, in the west of the state of Paraná, Brazil. It lies at 
the geographical coordinates of approximately 24.95° S, 53.57° W, with an average 
altitude of 650 m. Soil at the location is classified as a Latossolo Vermelho Distróférrico 
(Santos et al., 2013), which corresponds to Rhodic Hapludox (Soil Survey Staff, 2014), 
with an average slope of around 4 %. The temperate climate is mesothermal and 
highly humid, classified as Cfa (Köppen system); and mean annual temperature is 
21 °C. Samples were taken during the 2014/2015 crop season in a 127.18 ha area. For 
this study, we used a lattice plus close pairs design (Diggle and Ribeiro Junior, 2007), 
with a distance of 141 m between points belonging to the regular grid and, in some 
random locations, shorter distances of 75 and 50 m between points, thereby obtaining 
78 locations. All the collected data was georeferenced by a GPS (Global Positioning 
System) receiver, Geoexplorer® 3 (Trimble®), under a UTM coordinate system, zone 
22 south and datum WGS 84 (Figure 1).

The response variable considered in the model was soybean yield, which was estimated 
by the quantity of grains harvested in an area of 0.90 m² centered on each georeferenced 
point. After harvest, the grain from each plot was weighed and moisture level was 
corrected to 13 %; this weight was then converted into t ha-1. As explanatory variables 
(covariates), we selected P (mg dm-3), K (mg dm-3), pH, and organic matter (OM) (g dm-3). 
Five samples were collected at a depth of 0.00-0.20 m to determine the chemical contents. 
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Figure 1. Location map of the study site.
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These samples were taken near each georeferenced point and were then mixed in order 
to have a representative composed sample for each plot. Analysis was carried out in the 
laboratory of the Cooperativa Central de Pesquisa Agrícola (Coodetec, Brazil), whose 
methodology is available in Costa and Oliveira (2001).

These covariates were chosen based on the following considerations: (i) high kurtosis 
associated with indexes outside the range of -2 to +2 (Casella and Berger, 2010); 
(ii) structure of spatial dependence of soil chemical properties, identified from the 
construction of omnidirectional experimental semivariograms using the Matheron 
estimator (Soares, 2014; Cressie, 2015); (iii) P increases crop yield at early reproductive 
stages and is applied in large amounts since Brazilian soils are poor in this element; 
(iv) K plays an important role in plant photosynthesis and respiration, assists in 
formation of starch and sugars, and produces vigorous and resistant plants; (v) Brazilian 
soils are acidic (low pH), which limits crop yield; and (vi) OM provides nutrients for 
sustainable crop production and increases water infiltration into the soil, reducing 
erosion (Santos et al., 2013).

Spatial modeling and parameter estimation

In order to build the data model from the spatially correlated variables, we considered a 
stochastic process {Y(si), si) ∊ S} defined in a region S ⊂ ℛ2, where each element Y (si) 
related to soybean yield has known locations si, i = 1, ..., n. We also consider the process 
as stationary, wherein Y = (Y (si), ..., Y (sn))T follows a multivariate slash distribution (Lange 
and Sinsheimer, 1993) in which the second moment is finite, being that Y~SLn (Xβ, ∑, η), 
where E(Y) = Xβ and Coν(Y) = ∑. In addition, X is a matrix formed by the vector 1's and 
the covariates P, K, pH, and OM; β = (β0, ..., βq)T, the vector of unknown parameters 
associated with each covariate; and η, the parameter of kurtosis adjustment. Under 
these conditions, the SSLM was expressed by equation 1:

Y (si) = β0 + β1P (si) + β2K (si) + β3pH (si) + β4OM (si) + ε(si)			       Eq. 1

in which ε(si) is the random [ε~SLn (0, ∑, η)].

Spatial dependence was determined by the covariance matrix ∑, whose parametric 
form is given by ∑ = ϕ1 In + ϕ2 R(ϕ3), where In is the identify matrix; ϕ1 ≥0 is the nugget 
effect; ϕ2 ≥0 is the partial sill; ϕ3 is the parameter related to the spatial dependence 
radius (range); and R(ϕ3) = [(rij)] is the correlation matrix for the soybean yield dataset 
observed between the points located at si and at sj  (Uribe-Opazo et al., 2012).

We considered the Matérn family covariance function (Matérn, 1986) to explain spatial 
dependence with the smoothness parameter κ ∊ {0.5, 1.5, 2.5}, whose relationship 
to the practical range is given by 3 ϕ3, 4.75 ϕ3, and 5.92 ϕ3, respectively (Diggle and 
Ribeiro Junior, 2007).

We estimate the unknown vector of parameters of the model θ = (βT, ϕT)T, with ϕ = (ϕ1,ϕ2,ϕ3)T, 
by maximizing the log-likelihood function (ML), whose form is expressed by the equation 2:

l(θ) = –log(η) + n
2

log c(η)
2π

– 1
2

log|Σ| + log(∫0
1 νa–1 exp{–νb}dν)	 Eq. 2

in which a = (n/2 + η–1) and b = c(η)δ/2, with δ = (Y – Xβ)T ∑–1 (Y – Xβ) and c(η) = (1 – η)–1, 
for 0 < η < 1, where η stands for the parameter of kurtosis adjustment. Here, the ML 
method defines the estimator θ̂  of θ as being the vector that maximizes l(θ) in the 
parametric space Θ.

The ML estimator was calculated using an expectation-maximization (EM) algorithm, 
which consists of a computational method that generates approaches iteratively by 
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maximizing expectation of the logarithm of the likelihood function for the completed 
data set, called the Q-function, which is expressed by the equation 3:

Q(θ|θ^) = –log(η) + n
2

log c(η)
2π

– 1
2

log|Σ| – wδ +1
2

+n
2

– 11
η

d,	     Eq. 3

in which w = c(η)E{V|Y, θ̂ } and d = E{log(V|Y, θ̂ }. Here, V ~ Beta(η–1, 1) and 
(Y|V = ν) ~ Nn(Xβ , c(η)ν–1 ∑). For further details, see Lange and Sinsheimer (1993) and 
Osorio et al. (2009).

To avoid identifiability problems in ML estimations, the parameters of kurtosis adjustment 
(η) and smoothing (κ) of the Matérn family model were determined through cross-validation 
(CrV) (De Bastiani et al., 2015) and Trace criterion (Tr) (Kano et al., 1993).

Significance (hypothesis) testing on the estimated parameters βs was carried out by the 
likelihood ratio statistic (LR), given by the equation 4:

LR = 2[l(θ̂ )–l(θ~)],								            Eq. 4

where l(θ̂ ) is the log-likelihood value of the model with all covariates and l(θ~) is the 
log-likelihood value of the model without a certain covariable. At a significance level α, 
if |LR| ≥ χ2

(k1, α/2), we should reject the null hypothesis, meaning that the covariate tested 
was significant in the composition of the model (Dagenais and Dufor, 1991).

Local influence analysis

After defining the parameters, an interpolation map was built by regression-kriging in 
order to visualize soybean yield variability as a function of the covariates (P, K, pH, and 
OM) (Soares, 2014). To investigate the presence of observations that may have interfered 
in the process of interpolation, a local influence analysis was performed.

As proposed by Cook (1986), we examined possible influential observations on the soybean 
yield response variable by considering the likelihood displacement (Equation 2) after we 
insert a perturbation vector ω (noise). We used the expression LD(ω) = 2[l(θ̂ )–l(θ~ω)], 
where l(θ~ω) is the log-likelihood value of the model perturbed by ω. High values of LD(ω) 
means that l(θ̂ ) and l(θ~ω) differ considerably, with the the i-th influential observation being 
considered if |h[L]maxi| > D‾ + 2sd(D), where D‾ denotes the mean of the elements of the vector 
|h[L]max|, and sd(D) is the standard deviation. Here, |h[L]max| corresponds to a normalized 
unit eigenvector associated with the largest eigenvalue of the matrix BL = ΔT

Lω [L(θ)–1]ΔLω, 
in which L(θ) is a Hessian matrix evaluated at θ = θ̂ , and ΔLω = ∂l2(θ,ω)/∂θ∂ω is a 
perturbation matrix (q + 4) × n evaluated at θ = θ̂ ω.

In a similar manner, influence analysis was performed on the Q-function (Equation 3), 
which was considered the reference measure |h[Q]max|. For more details, see Zhu and Lee 
(2001) and Assumpção et al. (2011, 2014).

To evaluate the influence on the linear predictor, we considered the methodology 
presented by Assumpção et al. (2011) applied to the SSLM (Equation 1). In this case, 
maximum influence directions were denoted by Lp and Qp. Analysis was carried out using 
R software 3.3.2 for Windows (R Development Core Team, 2016).

RESULTS AND DISCUSSIONS
Table 1 shows the exploratory data analysis for the response variable and covariates, i.e., 
the soil chemical properties (P, K, pH, and OM). Average soybean yield was 2.37 t ha-1, which 
is lower than the national average (3.03 t ha-1) for the 2014/2015 season (IBGE, 2016). 
Standard deviation and coefficient of variation were 0.87 t ha-1 and 11.48 %, respectively, 
exhibiting low data dispersion around the mean and homogeneity (Carvalho et al., 2003). 
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Quartile analysis indicated an atypical value of 3.18 t ha-1, corresponding to sample 
33. Standard analysis of the directional semivariograms (omitted here) towards 0°, 
45°, 90°, and 135° showed similar behavior for all directions, indicating that the spatial 
dependence structure is isotropic.

Descriptive statistics of soil chemical properties (Table 1) indicate very high levels of 
P and K for soybean (Costa and Oliveira, 2001). Moreover, the standard deviation and 
coefficient of variation for both P and K suggested average dispersion around the mean 
and heterogeneity (Warrick and Nielsen, 1980). High variations in P and K contents may 
be due to continuing fertilization at a fixed rate along the plant row, affecting micro and 
macro spatial variability (Amado et al., 2009). Another factor may be the mobility of 
these chemical elements in the soil. For example, as a monovalent cation, K is easily 
leached absorbed, fixed, adsorbed, or stabilized in the soil solution, generating large 
variability. Therefore, these variations may reflect the effects of the complex interaction 
between soil chemical properties and crop management practices (Bottega et al., 2013; 
Pereira et al., 2016).

Soil pH was classified as highly acidic (from 4.31 to 5.00), with low dispersion around the 
mean. Organic matter contents, in turn, were rated as high (from 35.01 to 60.00 g dm-3), with 
a coefficient of variation of 12.50 % (Warrick and Nielsen, 1980; Costa and Oliveira, 2001).
Large amounts of OM and high acidity might be associated with the no-tillage system (NTS) 
implemented in the area since 1994. The amount of straw increases on the soil surface in 
areas under NTS for long periods, which shifts the quantity and quality of OM and gradually 
alters pH due to basic cations and soluble organic carbon (Dalchiavon et al., 2013). In addition, 
NTS may have limited the action of liming, restricting it to the areas of application, i.e., in the 
surface soil layers (Nunes et al., 2011; Paganiand Mallarino, 2015; Dalla Nora et al., 2017).

All variables showed high kurtosis (Table 1) (Casella and Berger, 2010). A process modeled 
under this condition may produce a model of interpolation with biased parameters and, 
consequently, generate overestimated/underestimated regions in the map. Our proposed 
model based on the slash distribution is able to reduce this impact by determining the 
shape parameter η, which will allow kurtosis adjustment of the data.

All the samples and the SSLM were considered in studying the dataset, assuming 
Y~SLn (Xβ, ∑, η). For comparison, a Gaussian spatial linear model (GSLM) was also used, 
in which Y~Nn (Xβ, ∑). Thus, we could assess the model robustness and the effect of 
outliers and/or influential values on parameter estimates and mapping. Both criteria, 
CrV and Tr, indicated that for an SSLM, the adequate value for kurtosis adjustment was 
η = 0.25, and for the Matérn model, smoothing was κ = 0.25. For a GSLM, an adequate 
model for explaining spatial dependence was also the Matérn model, with a smoothing 
parameter of κ = 0.25.

Table 2 shows the parameter estimated by the ML estimator. The asymptotic standard 
errors (in brackets) were calculated from Fisher’s information matrix. It may be noted 

Table 1. Descriptive statistics of soybean yield (Y) and of the soil chemical properties 

Variable Y P K pH(H2O) OM
t ha-1 (1) mg dm-3 mg dm-3 g dm-3

Mean 2.37 19.19 0.31 4.82 50.63
Standard deviation 0.07 123.56 0.02 0.17 40.05
Coefficient of variation (%) 11.48 57.91 45.35 8.43 12.50
Skewness 0.51 1.34 0.60 1.08 0.02
Kurtosis 3.11 4.73 2.44 4.31 2.44

(1) The units of measure refer only to the mean and standard deviation. P and K: extractor Mehlich-1; pH(H2O): 
pH in water at a ratio of 1:2.5 v/v; OM: organic matter (Walkley and Black, 1934).
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that the estimated values of the parameter vector β were similar in both models, with 
the lowest standard deviations observed for the GSLM, except for β̂ 1, which was equal. 

It is noteworthy that the large values of coefficient of the parameters were associated 
with K (β̂ 2) content, but with a negative signal, and pH (β̂ 3) with a positive signal. This 
relationship may have contributed to the estimation of average soybean yield (t ha-1) 
showing lower values than the national average, since an increase in soil acidity implies 
an increase of Al3+, which inhibits root development and, consequently, decreases uptake 
of nutrients, such as K.

Another issue that may be related to pH is the low value of the β̂ 1 coefficient, since soil 
acidity decreases release of available P in organic matter of the soil (Santos et al., 2013; 
Passos et al., 2015).

Comparing values estimated for parameters related to the covariance of the spatial 
process, relevant differences were found, with the lowest standard deviations being 
registered in the SSLM. By calculating the relationship ϕ1/(ϕ1 + ϕ2), we found that SSLM 
had an index of 0.66, while GSLM had an index of 0.75. The smoothing parameter 
was κ = 0.25 for both models, and this confirms that the practical range of SSLM was 
485.37 m, whereas that of GSLM was merely 311.78 m. For Cambardella et al. (1994), 
the best estimates are reached when models are based on covariance functions with 
the lowest “nugget effect/sill” ratio and the highest range.

Using data from table 2, we were able to establish the GSLM of the soybean yield at si 
for the area under study, which was expressed by equation 5:

Y(si) = 2.030 + 0.003 P(si) – 0.121 Κ(si) + 0.033 pH(si) + 0.003 OM(si) + ε(si)	     Eq. 5

with i = 1, ..., 78 and the covariance matrix given by ∑̂  = 0.053 I78 + 0.018 R̂(52.666).

The SSLM was expressed by the equation 6:

Y(si) = 1.993 + 0.003 P(si) – 0.109 Κ(si) + 0.034 pH(si) + 0.004 OM(si) + ε(si)	     Eq. 6

with i = 1, ..., 78 and the covariance matrix given by ∑̂  = 0.051 I78 + 0.026 R̂(81.988).

In both cases, the correlation matrix elements R were determined by the correlation 
function of the Matérn family with κ = 0.25. 

The hypothesis test to assess the significance of parameter vector β was applied jointly 
and individually for both models. Table 3 displays the results of the LR and respective 
p-values. The null hypothesis β1 = β2 = β3 = β4 = 0 was rejected at 5 % probability for 
both models. Individual testing also showed the parameter values of (β’s) as significant. 
Therefore, the covariates P, K, pH, and OM remained in the modeling.

Table 2. Values of parameters for kurtosis adjustment (η) and of smoothing (κ) selected from CrV (Cross-validation) and Tr (Trace) 
criteria; estimated values of parameters of the Gaussian spatial linear model (GSLM) and slash spatial linear model (SSLM) by 
maximum likelihood using the EM algorithm with respective asymptotic standard deviations (in brackets)

Model Structure
Estimated parameter(1)

β̂ 0 β̂ 1 β̂ 2 β̂ 3 β̂ 4 ϕ̂ 1 ϕ̂ 2 ϕ̂ 3

GSLM Matérn κ = 2.5 2.030 
(0.412)(2)

0.003 
(0.003)

-0.121 
(0.228)

0.033 
(0.076)

0.003 
(0.005)

0.053 
(0.059)

0.018 
(0.059)

52.666 
(0.007)

SSLM η = 0.25 Matérn κ = 2.5 1.993 
(0.516)

0.003 
(0.003)

-0.109 
(0.288)

0.034 
(0.095)

0.004 
(0.006)

0.051 
(0.036)

0.026 
(0.013)

81.988 
(0.006)

(1)βi: parameters associated with the variable i = [soybean yield (Y), P, K, pH, and OM]; ϕ̂ 1  nugget effect, ϕ̂ 2 partial sill, ϕ̂ 3 parameter that defines 
the spatial dependence radius.(2) The lowest values of the asymptotic standard deviations are underlined. 
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Local influence was diagnosed to evaluate the sensitivity of estimates from the model 
and from the predictive process to atypical and/or influential values. For GSLM, we used 
a perturbation scheme fitted to a normal distribution, as presented by De Bastiani et al. 
(2015). For the GSLM, the samples exerting influence on the response variables were 
15 and 72 (Figure 2a). Conversely, for the linear predictor, the number of influencing 
samples was higher, namely, samples 15, 58, 65, and 72 (Figure 3a). 

The figure regarding local influence on the response variable perturbing the SSLM shows 
that no observations were identified when considered measure |h[L]max| (Figure 2b). 
However, sample 71 was influential for measure |h[Q]max| (Figure 2c). Considering 
perturbation of the linear predictor, samples 1 and 71 were influential (Figure 3b) when 
measure Lp was used. And, for perturbation of the Q-function, measure Qp, samples 1, 
3, 62, and 71 were identified as influential (Figure 3c).

It is noteworthy that atypical sample 33 was not identified as influential on soybean yield 
response in any of the cases. These results corroborate those of Uribe-Opazo et al. (2012), 
who used a GSLM, tested different influence diagnostics techniques, and observed that 
not every atypical value could have an influence on model determination in a covariate 
study. Assumpção et al. (2014), based on Student’s t-distribution, also found differences 
between the atypical and the influential values; they highlighted the relevance of the 
local influence method as opposed to a simple box-plot analysis. Furthermore, the 
smaller number of influential cases found here when SSLM is fitted is consistent with 
the results of De Bastiani et al. (2015); these authors used distributions with heavier 
tails and obtained greater modeling robustness.

Figure 4 displays the post-plot graph of the experimental area, highlighting the position 
of each influential sample. For GSLM (Figure 4a), the yield value of sample 72 was from 

Table 3. Likelihood ratio statistic (LR) of the parameter vector β of the Gaussian spatial linear 
model (GSLM) and slash spatial linear model (SSLM) at 5 % probability

Hypothesis(1) GSLM SSLM
LR p-value LR p-value

β1 = 0 6.687 0.036* 11.659 0.004*

β2 = 0 7.001 0.032* 15.215 0.001*

β3 = 0 5.953 0.050* 8.567 0.016*

β4 = 0 6.257 0.044* 9.113 0.013*

β1 = β2 = β3 = β4 = 0 7.865 0.039* 13.897 0.003*

(1) Parameters associated with the variable: β1 - P, β2 - K, β3 - pH, and β4 - OM.* : significant at 5 % probability.

Figure 2. Graphs of local influence perturbing the response variable considering: (a) the Gaussian spatial linear model (GSLM) and 
measure |h[L]max|; (b) the slash spatial linear model (SSLM) and measure |h[L]max|; and (c) the slash spatial linear model (SSLM) and 
measure |h[Q]max|. Observations above the dotted line are classified as influential.
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1.87 to 2.18 t ha-1 and the yield values of samples 58 and 65 were from 2.18 to 2.33 t ha-1. 
Note that nearest observations of these samples showed soybean yield highs values. 
Sample 15 was found within a region with high values. When considering SSLM (Figure 4b), 
we found that the values of samples 1, 62, and 71 were from 2.55 to 3.18 t ha-1 and that 
of sample 3 was from 2.33 to 2.55 t ha-1. Spatial analysis of the samples showed that 
neighboring observations to the left of sample 71 had values lower than the values of 
samples 1 and 3, which are close to the contour of the plotting domain.

In diagnostic analysis, when one or more influential values are detected, they are 
removed from the dataset to understand how their removal affects model selection, 
parameter estimates, and construction of the interpolation maps (Assumpção et al., 
2011). For GSLM, samples 15 and 72 were removed from the dataset since they were 
identified as influential when applying measures |h[L]max| and Lp. Using the same criterion 
for SSLM and considering measures |h[L]max|, |h[Q]max|, Lp, and Qp, samples 1 and 71 were 
removed. Table 4 shows the values of η and κ, which were selected by CrV and Tr criteria; 
this table also shows the estimated values of parameters for both models after sample 
removal. Furthermore, it is notable that there was no change in the choice of the model 

Figure 3. Graphs of local influence perturbing the linear predictor considering: (a) the Gaussian spatial linear model (GSLM) and 
measure Lp; (b) the slash spatial linear model (SSLM) and measure Lp; and (c) the slash spatial linear model (SSLM) and measure Qp. 
Observations above the dotted line are classified as influential.
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Figure 4. Post-plot graph of soybean yield (t ha-1) in the experimental area identifying influential 
samples: (a) the Gaussian spatial linear model (GSLM) and (b) the slash spatial linear model (SSLM).
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to describe spatial dependence. Nevertheless, after removing the influential samples, 
the estimated values of parameters changed, and especially asymptotic standard 
deviation showed higher values compared to the model without sample exclusion (Table 
2). Moreover, we note a reduction in ϕ1 values and in the estimated spatial dependence 
radius, which is 170.73 m for GSLM and 348.57 m for SSLM. 

Figure 5 shows the interpolated maps of yield as a function of the covariates studied 
using regression-kriging, and the estimated values of parameters are shown in tables 2 
and 4. The maps were generated based on the following scenarios: S1- using the entire 
dataset and the GSLM (Figure 5a); S2 - using the entire dataset and the SSLM (Figure 5b); 
S3 - removing the influential observations for GSLM (Figure 5c); and S4 - removing 
the influential observations for SSLM (Figure 5d). Four classes of the same size were 
considered to build the interpolated maps; these classes were obtained by dividing the 
estimated range of yield variation.

Comparing figure 5b to 5a, similar regions could be observed. However, the SSLM 
generated map (with ϕ̂ 1 = 0.051 and 485.37 m range) exhibited a continuous structure, 
whereas the GSLM map (with ϕ̂ 1 = 0.053 and 311.78 m range) had image formats of 
small dimensions. One of the problems related to maps whose modeling generates 
small regions is the difficulty of homogenizing the area to define management zones for 
localized application of fertilizers (Al-Kaisi et al., 2016). Soares (2014) affirmed a direct 
relationship of this effect with the parameters describing spatial dependence structure. 
According to this author, when the nugget effect is low or null, the influence of all samples 
is greater, and the map surface becomes smoother for larger ranges. When looking at 
figure 5c, an interpolated map that was built considering a GSLM without influential 
samples, a variation could be observed for short distances. This behavior is related to a 
structure with a sill and no nugget effect, showing a “screen effect” that is characterized 
by major weights around the point, as well as by almost null or even negative weights due 
to samples that are remote or beyond the practical limits (Soares, 2014). With respect to 
figure 5d, empirical analysis indicated that the removal of influential samples caused small 
alterations in the interpolated map. Thus, when the data set contains influential values, 
the maps generated using SSLM can prevent problems that cause misinterpretation in 
defining management zones.

To quantify the similarity between the interpolated maps, the global accuracy (GA) and 
kappa indexes were used. According to the classification of Krippendorff (2004), maps show 
low similarity if kappa < 0.67, medium similarity if 0.67 ≤ kappa ≤ 0.80, and high similarity 
if kappa > 0.80. With respect to GA, as stated by Anderson et al. (1976), maps are similar 
if the GA index is greater than 0.85. Table 5 shows the values associated with each index. 
Comparing scenario S1 to S2, the kappa index indicated medium similarity, whereas the 
GA index assigned similarity to the maps. However, comparing S1 to S3, the index values 
mark dissimilarity between the maps, i.e., upon removal of samples 15, 58, 65, and 72, 
the map outlines changed. In the case of comparing S2 to S4, the maps were similar.

Table 4. Values of the parameter of kurtosis adjustment (η) and of smoothing (κ) selected by CrV (Cross-validation) and Tr (Trace) 
criteria; estimated values of parameters of the Gaussian spatial linear model (GSLM) and slash spatial linear model (SSLM) by maximum 
likelihood using the EM algorithm with respective asymptotic standard deviations (in brackets) after removal of influential samples

Model Structure
Estimated parameter(1)

β̂ 0 β̂ 1 β̂ 2 β̂ 3 β̂ 4 ϕ̂ 1 ϕ̂ 2 ϕ̂ 3

GSLM Matérn κ = 2.5 2.066 
(0.423)(2)

0.003 
(0.003)

-0.102 
(0.238)

0.039 
(0.078)

0.002 
(0.006)

0.000 
(0.986)

0.074 
(0.987)

28.840 
(0.003)

SSLM η = 0.20 Matérn κ = 2.5 2.172 
(0.493)

0.004 
(0.003)

-0.164 
(0.277)

0.053 
(0.009)

-0.002 
(0.006)

0.050 
(0.030)

0.010 
(0.007)

58.880 
(0.003)

(1) βi: parameters associated with the variable i = [soybean yield (Y), P, K, pH, and OM]; ϕ̂ 1: nugget effect, ϕ̂ 2: partial sill,  ϕ̂ 3: parameter that defines 
the spatial dependence radius. (2) The lowest values of the asymptotic standard deviations are underlined.
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Therefore, the accuracy indexes of the maps showed the lower sensitivity of those generated by 
the slash distribution when removing an influential value, in contrast to a normal distribution. 
Thus, the SSLM enabled more robust modeling in the presence of influential observations, 
avoiding unnecessary exclusion of samples. From the interpolated maps, the yield potential 
of the area and its relationship to sub-regions can be investigated. This allows definition of 
better soil management and production system strategies, such as acidity correction. 

CONCLUSIONS
The map of soybean yield variability as a function of soil chemical properties generated 
from the SSLM was less sensitive to the high kurtosis of the data set and the presence 
of influential and/or atypical values, which shows the robustness of the proposed model.

Figure 5. Interpolation maps showing the soybean yield (t ha–1) as a function of soil chemical 
properties [P, K, pH, and OM] for: (a) S1: Gaussian spatial linear model (GSLM) with the complete 
dataset; (b) S2: slash spatial linear model (SSLM) with the complete dataset; (c) S3: Gaussian 
spatial linear model (GSLM) removing samples 15 and 72; (d) S3: slash spatial linear model (SSLM) 
removing samples 1 and 71.

(c) (d)

N N

Yield (t ha–1)
2.05 |-- 2.19
2.19 |-- 2.33
2.33 |-- 2.47
2.47|-- 3.61

239500 240000 240500 241000 239500 240000 240500 24100072
36

50
0

72
37

00
0

72
37

50
0

72
38

00
0

(a) (b)

N N

72
36

50
0

72
37

00
0

72
37

50
0

72
38

00
0

Table 5. Index of similarity between the maps after local influence analysis

Maps analyzed
Index

kappa Global accuracy (GA)
S1 against S2 0.78 0.88
S1 against S3 0.59 0.67
S2 against S4 0.87 0.86

S1: using the complete dataset and the GSLM; S2: using the complete dataset and the SSLM; S3: removing the 
influential observations for the GSLM; S4: removing the influential observations for the SSLM.
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Diagnostic of local influence on the response variable and on the linear predictor based 
on the SSLM confirmed that an atypical value might not be influential since spatial 
modeling takes the position of the variable within the space into account. This finding 
may be a determining factor in the prediction process, avoiding exclusion of samples 
when using this method of modeling.
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