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ABSTRACT: Land-use effectiveness can be ensured by utilizing GIS and geostatistical 
tools in conjunction with land assessment methods to prevent soil erosion and salinization. 
This study employs a GIS-based LESA methodology, combined with geostatistics, to 
evaluate the land’s capacity to produce agricultural crops on calcareous soils. Land 
Evaluation for Agricultural Uses (LESA) key components are site assessment and land 
evaluation, with the former being non-soil-dependent and the latter being soil-dependent. 
Geostatical kriging was used to interpolate and generalize a GIS map of land capability. 
The study found that 27.88, 47.94, 18.76, and 5.41 % of the study area were unsuitable for 
crop farming, marginally suitable, moderately suitable, and highly suitable, respectively. 
Our research demonstrates that a flexible GIS framework can assist decision-makers in 
more accurately assessing land resources, including unsuitable, marginally-suitable, 
and reforested lands.
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INTRODUCTION
Land evaluation is the first step to provide suitability and limitations of the land resources. 
Farming systems have increased economic productivity due to advances in agricultural 
technologies, such as fertilizers, irrigation systems, and pest control. However, soil 
resources in large parts of Iran have high carbonate contents (Ostovari et al., 2020). 
Crop farming is complex with carbonate materials. Land management is negatively 
affected by soil salinization (Khajehzadeh et al., 2022) and land degradation (Mirzaee 
et al., 2017; Mirzaee and Ghorbani-Dashtaki, 2021) in many parts of Iran. Additionally, 
carbonates affect soil structure, potentially leading to hard layers and reduced water 
movement. While providing essential calcium and magnesium, their associated high 
pH poses challenges for crops favoring slightly acidic conditions. Thus, in a semi-arid 
climate, such as Iran, accurate methods are needed for identifying and determining the 
land potential for agricultural production.

Land capability has a significant impact on yield potential. Several models have been 
proposed to assess and determine land capability classes, including the FAO framework 
(FAO, 1976), ALES (Rossiter and Van Wambeke, 1994), LESA (LESA Handbook, 2011), and 
ALC (MAFF, 1988). For evaluating land capability using ALES, ALC or FAO methods, soil 
quality parameters are the most important variables. However, both soil-dependent and 
non-soil-dependent factors will be important to agricultural decision-makers. In addition 
to soil capability classes and yield potential, there are economic and social factors that 
play a role. As a result of considering both soil-dependent and soil-independent factors, 
the USDA NRCS developed the LESA method. The method consists of two components 
or subsystems: (1) LE (land evaluation) and (2) SA (site assessment), which consider 
non-soil-dependent factors impacting the classification type for farming activities (Hoobler 
et al., 2003).

One important advantage of the LESA method is it can be adapted to the local context, 
which means it is an effective method for assessing land capability because it can be 
tailored to local conditions (Dung and Sugumaran, 2005; Mathews and Rex, 2011). Because 
of urban development, road construction, natural disasters, and development pressures, 
non-soil-dependent factors tend to be unstable and dynamic in the SA component, while 
soil-dependent factors tend to be more stable and permanent in the LE component (LESA 
Handbook, 2011).

Integrating spatial analysis techniques with the Land Evaluation for Agricultural Uses 
- LESA method - within a GIS framework is pivotal for a nuanced comprehension of 
land capability characteristics, providing essential insights for informed agricultural 
decision-making. The amalgamation of land suitability analysis and GIS technology has 
been substantiated by prior research (Ostovari et al., 2019; Zhu et al., 2022). Notably, 
Hoobler et al. (2003) conducted a study in East Park County, Wyoming, illustrating 
enhanced accuracy in decision-making related to yield potential through the synergistic 
application of the LESA procedure and GIS. Furthermore, Dung and Sugumaran (2005) 
reported time-saving benefits when employing GIS and the LESA method to delineate 
land capability classes at the field scale. It is imperative to underscore the LESA method 
requires meticulous calibration to local conditions, exemplified in this study’s focus on 
calcareous soils and non-soil-dependent factors specific to Iran. Even on a national scale 
across Iran, Akbari et al. (2022) and Esmaeili et al. (2021) demonstrated variations in 
local conditions, emphasizing the significance of localized calibration for accurate and 
context-specific land capability assessments.

This study aims to evaluate the applicability of the Land Evaluation for Agricultural 
Uses (LESA) method in a semi-arid region. It begins with a thorough calibration of the 
LESA method, scrutinizing its performance considering the region unique environmental 
conditions. The focus then shifts to integrating the refined LESA method into a framework. 
This integration allows for the generation of detailed maps illustrating land capability 
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classes. These maps, supported by the calibrated LESA method and GIS technology 
can offer valuable insights for decision-making in land-use planning and sustainable 
agricultural development in a semi-arid context.

MATERIALS AND METHODS

Studied region

The studied area (Figure 1) cover approximately 3,235 km2 and is located in the Khuzestan 
province, Iran (30° 30’ 0” N – 31° 25’ 0” N and 48° 10’ 0” E - 49° 0’ 0” E). The elevation 
in this area varied between 1562 to 3099 m a.s.l. (Figure 1). Taxonomically, soil types 
in this area fall under Inceptisols, Mollisols, and Entisols according to Soil Survey Staff 
(2010) and carbonates are the most abundant parent material in this region. This area 
mostly is agricultural lands under cereal productions. Irrigated and rainfed winter wheat 
are the dominant agricultural productions. The native vegetation was replaced by farming 
crops. However, it persists and grows in steep, high-altitude areas.

Climate

Climate in the region is semi-arid, and the average annual rainfall and annual air 
temperature are 291.7 mm and 17.5 °C, respectively. Most rainfall is typically the result 
of irregular, but heavy, rainfall events during spring (Figure 2).

Sampling and analyzing in the laboratory

Soil samples were collected from 72 profiles employing a random sampling approach and 
were analyzed for the following soil properties: SOC (Soil Organic Carbon) contents were 
measured by applying wet-oxidation method (Nelson, 1983); EC (Electrical Conductivity) 
and pH were measured in the extraction of saturated soil; ESP (Exchangeable Sodium 
Percentages) contents were measured by applying ammonium acetate following the 

Figure 1. Sample point locations in Khuzestan province, Iran.



Wang et al. An evaluation of land-use capability using the LESA method coupled with…

4Rev Bras Cienc Solo 2024;48:e0230062

Lavkulich (1981) method; CCE (Calcium Carbonate Equivalent) contents were measured 
following the back-titration method (Nelson and Sommers, 1983); sand, silt and clay 
contents were measured following the hydrometer method (Gee and Bauder, 1986). 
Table 1 shows descriptive statistics for the determined soil properties.

Spatial analysis

Kriging is a family of methods for predicting a random variable based on the observed 
structure of spatial variability and can be used to generate unbiased interpolated maps 
for soil properties. In this study, we use Ordinary Kriging (OK), which assumes an unknown 
constant trend (Triantafilis et al., 2001; Mirzaee et al., 2016). Kriging is a two-step 
process: first, the covariance structure is characterized, and then the prediction is made 
with the estimated parameters of a semi-variogram function. Covariance structure, or 
experimental semi-variogram as it is termed, was calculated using equation 1 (Triantafilis 
et al., 2001; Mirzaee et al., 2016).

in which: Υ(h) is the semi-variance for a given lag separation h; and Z(xi) is the real 
value at sample location xi. Given a parameterized semi-variogram function, the next 
step is to apply OK to estimate soil properties at unsampled point locations. As shown in 

Table 1. Descriptive statistics of the studied soils (n = 72)

Properties Min Max Mean Std. dev
Clay (g kg-1) 17.9 40.0 26.5 4.53
Silt (g kg-1) 24.0 40.0 31.7 3.20
Sand (g kg-1) 30.1 55.0 41.8 4.94
SOM (%) 1.74 3.56 2.79 0.43
CCE (%) 11.5 66.3 43.5 12.05
pH(H2O) 7.0 7.8 7.6 0.21
EC (dS m-1) 0.04 12.7 2.4 2.24
ESP (%) 1.0 110.5 14.4 13.6
Soil depth (m) 0.553 1.981 1.458 0.330

ESP: Exchangeable Sodium Percent; EC: Electrical Conductivity; SOM: Soil Organic Matter; CCE: Calcium 
Carbonate Equivalent.
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Eq. 1

Figure 2. Monthly precipitation and average temperature from 2001 to 2022.
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equation 2, OK calculates a weighted sum of the available data (Triantafilis et al., 2001; 
Mirzaee et al., 2016):

in which: Wi represents the OK weights, Z(xi) is the real value at sample point location 
xi, and Ẑ(xo) indicates the model prediction at location x0. ArcGIS v10.3 was used to 
perform the geostatistical analysis.

LESA model

The LESA method, a numerical model for predicting land capability classification, can 
quantify land resources accurately to improve agricultural productivity (LESA, 2011). This 
method for assessing land capability classes was designed to include an understanding 
of local conditions based on local committee knowledge and experiences (LESA, 2011). 
The knowledge and experiences of 22 local experts were employed to form a local 
committee that would characterize local conditions. These local agricultural experts were 
best placed to help characterize the LESA method because they had been involved in 
local agriculture production for several years. These local experts informed the selection, 
weighting, and scaling of all the factors considered in the LESA method.

The LESA approach is composed of two distinct and important components, LE and SA, 
which are now discussed in greater depth (LESA, 2011).

Land evaluation component

The LE component is further subdivided into subcomponents or factors. These 
subcategories include land capability, prime farmland classification, and soil productivity 
index classification (LESA, 2011). These subcategories are now outlined in more detail.

(1) Land capability classification

A land capability classification system has previously been developed in 1970 for Iran 
(Mahler, 1979) by an expert from the FAO, P.J. Mahler, along with a team of experienced 
staff. Iranian capability classification system is still widely used for soil surveys and related 
projects in Iran. This Iranian system continues to be extensively employed for soil surveys 
and associated projects within the country. It has been well used during the past 40 years 
since being published and is considered a reliable source for classifying land capability 
and will be used in this study. The LC (land capability), classified by Mahler (1979), 
defines and describes six distinct classes and are designated by numbers I–VI. In class 
I, the soil resource is excellent for agricultural activities. In class II, soil resource creates 
some limitations for agricultural activities by diminishing the plant selection for farming 
and requiring some conservation practices for cultivation. In class III, soil resources are 
too limited for farming some specific plant which decreases the plant selection, requires 
some special conservation practice, or both for cultivation. In class IV, soil resource has 
very high limitation, restricts plant selection, and requires special management methods 
or both for agricultural activities. In class V, soil resources have high limitations and, in 
the current situation, are unsuitable for farming activities. In class VI, soil resources have 
severe limitations and, for permanent times, are unsuitable for agriculture.

(2) Soil Productivity Index (SPI)

As the name suggests, the SPI is a rating or measure of farmland productivity. Generally 
speaking, the higher the SPI, the better the productivity of an area, although it is important 
to understand how the SPI is calculated for a particular location. In the Khuzestan region, 
the main crops that are farmed are corn, wheat, and alfalfa, which are used as the basis 
of the SPI calculation. The SPI calculation is outlined in equation 3 and the potential yields 
are assumed based on the best crop management conditions for corn, wheat, and alfalfa 
are calibrated by the long-term mean yield for alfalfa (4.5 Mg ha-1), wheat (5.5 Mg ha-1), 
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and forage corn (62 Mg ha-1), as determined by a local committee of experts (Esmaeili 
et al., 2021). The SPI values at the sample point locations were in the range 0-100.

(3) Prime Farmland Classification

Prime Farmland Classification attribute described here is used to identify prime farmland, 
or farmland of regional importance. Conditional farmland is also considered, which takes 
into account drainage, flooding and irrigation conditions. This classification system 
considers a combination of physical and chemical soil properties necessary for high 
agricultural productivity (Gould et al., 2017). In this study, the sample point are located 
in six groups: P1 – prime farmland, P2 – important farmland, P3 – prime farmland if it has 
drainage network, P4 – prime farmland if it is protected against flood or flood not-occurred 
in this location, P5 – prime farmland if it has drainage network and either it is protected 
against flood or flood not-occurred in this location, especially in the season that plants 
are at the field, and P6 – not-prime farmland.

A local committee of experts prioritized the prime farmland classification as P1 > P2 > 
P3 > P4 > P5 > P6 by considering a number of factors, including economic conditions, 
crop yields, and energy requirements.

Site Assessment Component

The SA component was further subdivided into some factors that were selected based 
on the local expert committee’s knowledge and experiences. Factors in this section of 
the LESA method are non-soil characteristics that influence crop farming site application 
(LESA, 2011). Following the methodology of Akbari et al. (2022), the SA factors were 
divided into three groups, denoted as: SA-1, SA-2 and SA-3:

SA-1 factors: Crop farming influences

The first set of factors describes crop farming influences. Local expert committee selected 
measures of area and surrounding land-use. These measures were divided into five 
categories and a score was assigned to each (Table 2). These factors include: adjacent 
land-use compatibility, access to farming support services, and agricultural area within 
1.5 miles.

SA-2 factors: Development pressures on crop farming

The SA-2 factors were composed of factors that influence crop farming in the study 
area through networks such as drainage, irrigation, and road. Local expert committee 
determined four important distance factors such as public roads, water, drainage systems, 
and urban feeder highway. These data for these factors were divided into six categories 
and assigned scores (Table 3).

Table 2. Scoring of SA-1 factors: crop farming influences

Adjacent land use compatibility Score Area in agriculture 
applying within 1.5 miles Score Accessing farming 

support services Score

4 sides in agriculture use 100 80-100 % 100 <0.8 km 100
3 sides in agriculture use 80 60-80 % 75 0.8-1.6 km 80
2 sides in agriculture use 60 40-60 % 50 1.6-2.4 km 60
1 side in agriculture use 40 20-40 % 25 2.4-3.2 km 40
4 sides in non- agriculture applying 0 <20 % 0 >3.2 km 0

SPI = [(Corn yield/62) + (Wheat yield/5.5) + (Alfalfa yield/4.5)] × 100 Eq. 3
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SA-3 factors: Qualitative public values on crop farming

SA-3 factors include a number of qualitative factors related to public values, such as: 
environmentally sensitive zones, proximity of wetland and riparian zones, and proximity 
of historic buildings. Different subfactors were split into six categories and assigned 
scores as determined by the local expert committee, which are summarized in table 4.

Weight of factors in the LESA procedure

Based on local expert committee (22 local agriculture experts), weights were assigned 
to each factor, both LE and SA, to represent each factor’s relative importance in the 
LESA method. The LE component with a weight of 0.4 (i.e., 0.1, 0.06, and 0.24 for the 
soil productivity index, classification of prime farmland, and land capability, respectively) 
contains most soil features that indirectly characterize the environment costs and crop 
farming economy. As a result, according to the local expert committee opinion, the land 
capability classification got the highest relative importance in the LE component (0.24). 
Additionally, the committee characterized weights of 0.3, 0.2 and 0.1 for the SA 1, SA 
2 and SA 3 subcomponents, respectively. 

To calculate the final LESA score, a weighted sum of all of the factors was done using 
equation 4.

in which: n is the number of components used; Wi and μi (x) are weight and factor score, 
respectively, for a particular factor i, at a location x. The factor weights are constrained 
by Wi ∈ [0,1], i

n

�� 1Wi=1 and hence must sum to 1. Calculated final LESA score will be in 
the range 0 (not suitable for crop farming) to 100 (high capability for crop farming). To 
generate a final land capability map for crop farming, the Weighted Overlay tool, available 
in ArcGIS v10.3, was used (Basharat et al., 2016) according to figure 3.

Table 3. Scoring of SA-2 factors: development pressures on crop farming
Distance of urban 
feeder highway Score Distance of 

public water Score Distance of 
public road Score Distance of public 

drainage systems Score

<1.6 km 100 <60 m 100 <360 m 100 <60 m 100
1.6-3.2 km 80 60-360 m 80 360-1200 m 80 60-360 m 80
3.2-4.8 km 60 360-784 m 60 1200-1900 m 60 360-784 m 60
4.8-6.4 km 40 784-1200 m 40 1900-2700 m 40 784-1200 m 40
6.4-8.0 km 20 1200-2400 m 20 2700-3600 m 20 1200-2400 m 20
>8.0 km 0 >2400 m 0 >3600 m 0 >2400 m 0

Table 4. Scoring of SA-3 factors: qualitative public values on crop farming
Proximity of historic 
buildings Score Proximity of wetland 

and riparian Score Environmentally 
sensitive area Score

>2400 m 100 >800 m 100 >2400 m 100
2400-1200 m 80 800-400 m 80 2400-1200 m 80
1200-784 m 60 400-200 m 60 1200-784 m 60
784-360 m 40 200-100 m 40 784-360 m 40
360-60 m 20 100-300 m 20 360-60 m 20
<60 m 0 <30 m 0 <60 m 0

LESA score W x
i

n
i i � � �

�� 1
� Eq. 4
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Model performance

Standard summary statistics were used to quantify the performance of the derived 
models. Assuming N is the number of data sets, Yi is the measured data sets, and Ŷi is 
the estimated data sets, then the mean error (ME) is given by equation 5 and provides 
an indication of the bias in the model.

The root mean square error (RMSE) is defined by equation 6 and gives an indication of 
the magnitude of the error in the model.

Finally, the coefficient of determination (R2) is defined by equation 7 and provides insight 
into the goodness of fit of the model:

RESULTS AND DISCUSSION

Soil attribute maps

The estimated variogram model and best-fit parameters for each soil property are 
shown in table 5. Using these estimated variogram model and best-fit parameters, 
OK interpolated maps for each of the soil properties were generated and are shown in  
figure 4. Table 5 indicates that three different variogram models (spherical, Gaussian, 

Figure 3. The flowchart for this study.
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and exponential) were found to best describe variability in these soil properties datasets. 
The C0/sill (Nugget/Sill) ratio was calculated to indicate the spatial dependence and 
variability for each soil property data (Mirzaee et al., 2016). Spatial dependence refers 
to the degree to which the values or characteristics of observations at one location in 
space are related to the values or characteristics of observations at nearby locations. 
Using the system for spatial dependence by Cambardella et al (1994), the soil properties 
such as EC, silt, CCE, sand, pH, clay, soil depth and SOM presented a moderate spatial 
dependence (C0/sill = 0.25 - 0.75) (Table 5). However, the ESP factor showed a high 
dependency (C0/sill ≤ 0.25) (Table 5). The major to minor ranges (k parameter) ratio 
(Table 5) was calculated according to Mirzaee et al. (2016) for investigating anisotropy 
in the soil attribute data. The k parameter column shows that this value was calculated 
as a value of more than one for all soil features considered in this study (Table 5). This 
implies and demonstrates that anisotropy in the semi-variogram was observed for all 
soil features. Anisotropy indicates that the dependency values of the soil features is not 
the same in all geography directions.

Summary statistics were calculated (Table 6) for the OK interpolation prediction error 
for each soil property using the estimated variogram model parameters described in 
table 5. Significant evidence in soil science research indicates that OK interpolation is 
an extremely reliable method for generating maps of soil properties (Li, 2010; Pilevar 
et al., 2020). Figure 4 shows the OK interpolated maps for all measured soil properties 
within the study region.

Land capability evaluation

Land evaluation components

Figure 5 shows the interpolated maps generated for the soil-dependent factors (LE 
component). Soil features such as texture, organic matter, among other properties, are 
highly relevant variables for estimating the expected yield. Land capability classification 
component includes all attributes that directly impact soil for agricultural production. 
This study used the Iranian classification system of land capability formulated by Mahler 
(1979). Table 7 shows the classification yields of the land capability and indicates that 
27.88, 47.94, 18.76 and 5.41 % of this part of Iran were included in different classes 
such as I, II, III, and IV land capability classes of crop farming, respectively. By inspecting 
figure 5, most of the studied soils in the central and west parts are located in class I. 
Therefore, when only soil-dependent factors are considered, these areas of the study have 
the fewest constraints and the greatest potential for agricultural production. Evidently, 
the soil textures class in the western and central parts of this area are clay loam and 
loam classes that can the well area for crop farming. According to Kazemi et al. (2016), 
Ostovari et al. (2019) and, in agreement with local expert committee opinion, the soil 
texture has a great soil factor at crop farming.

Table 5. Estimated semi-variogram models and parameters of soil property data sets

Soil 
property Model

Range (km)
k*

Direction
Nugget Sill Nugget/Sill

minor major (degrees)
pH Gaussian 28.9 79.40 2.74 165.1 0.02 0.07 0.28
EC Spherical 21.2 31.4 1.48 58.8 1.71 4.61 0.37
CCE Gaussian 11.00 33.04 3.00 53.6 50.14 147.51 0.34
ESP Gaussian 22.7 31.6 1.39 55.7 39.02 300.78 0.13
SOM Spherical 5.40 16.31 3.02 117.1 0.06 0.18 0.33
Clay Gaussian 52.02 71.86 1.38 67.8 11.34 35.22 0.32
Silt Spherical 5.75 12.81 2.23 16.8 2.04 8.34 0.25
Sand Spherical 5.71 8.97 1.57 26.1 7.39 20.11 0.37
Soil depth Gaussian 10.80 32.34 2.99 85.7 871.31 2337.11 0.37

*: k is the ratio of the average major range to the average minor range.
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Figure 4. Generated maps for pH (a), salinity (EC) (b), exchangeable sodium percentage (ESP) 
(c), calcium carbonate equivalent (CCE) (d), soil organic matter (SOM) (e), sand (f), clay (g), silt 
(h) and soil depth (i).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Table 6. Yield of Ordinary Kriging (OK) method at predicting soil factors

Parameters R2 RMSE ME

pH 0.64 0.151 0.001

EC 0.71 0.694 0.012

CCE 0.52 12.78 0.165

ESP 0.61 15.98 0.961

SOM 0.73 0.46 -0.025

Clay 0.56 4.24 -0.044

Silt 0.55 3.40 -0.198

Sand 0.67 4.87 -0.063

Soil depth 0.51 39.24 0.741
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Other remaining soil-dependent factors in the LESA method are prime farmland classification 
and SPI. In table 7, the scoring of the SPI and prime farmland factors are shown. Maps of 
these individual factors are shown in figure 5. Based on the prime farmland classification 
and SPI maps in figures 5b and 5c, there seems to be evident good soil management in 
some parts of this region, such as the southwest.

Site assessment components

Components of SA part are the three individual non-soil-dependent factors. The generated 
maps of SA factors such as SA-3, SA-2 and SA-1 are shown in figure 6. Classification 
and scoring for each SA factor are summarized in table 8. As stated earlier, according 
to the local expert committee opinion, the SA-1 factor is composed of three sub-factors. 
The main reason for embedding these sub-factors is to capture information about 
commercial agricultural activities such as the agricultural support services and land 
area. Factor SA-2 shows pressures of development on crop productions. The SA-2 factor 
encompasses subfactors including networks like irrigation systems, roads, and drainage 
channels. These sub-factors have been taken into account when establishing the basis 
for creating a sustainable cropping system. The SA-3 factor incorporates subfactors such 
as existing historic infrastructure, wetlands, and other environmentally sensitive areas, 
which were included based on the recommendations of the local expert committee. 

Figure 5. LE components map for different prime farmland (c), soil productivity index (b) and classifications of: land capability (a).

(a) (b) (c)

Table 7. Areas with different types of land evaluation components

Prime 
farmland 
classification 
score

Area
Soil 

productivity 
class

Area Land 
capability 

class

Area

ha % % ha % ha %
0-10 - - 0-10 - - I 90,207 27.88
10-20 - - 10-20 - - II 155,116 47.94
20-30 - - 20-30 - - III 60,702 18.76
30-40 2,940 0.91 30-40 - - IV 17,511 5.41
40-50 11,310 3.50 40-50 813 0.25 - - -
50-60 100,513 31.07 50-60 9,231 2.85 - - -
60-70 98,068 30.31 60-70 110,741 34.23 - - -
70-80 90,810 28.07 70-80 153,001 47.29 - - -
80-90 15,052 4.65 80-90 33,693 10.41 - - -
90-100 4,845 1.50 90-100 16,058 4.96 - - -
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These sub-factors have the potential to diminish significantly, and threats crop farming. 
Wetlands, for example, may be the best habitat for various pests, which ultimately could 
threaten crop production.

In support of these findings, Dung and Sugumaran (2005) employed some SA factors, 
such as farm and development potential, to assess land capability by employing LESA 
method. In Hoobler et al. (2003), the study of SA included sewer lines, major roads, and 
distance from the city for predicting land capability by LESA method.

Employing LESA system

The scores of LESA were calculated by employing the linear additive weighted  
(Equation 4). The map of land capability generated by applying LESA method for the 
studied region is indicated in figure 7. In the basis of the recommendations of the local 
committee, LESA scores were divided into four land capabilities for crop production 
categories: highly-suitable (LESA score >80), moderately-suitable (LESA score 60-80), 
marginally-suitable (LESA score = 40-60) and not-suitable (LESA score <40). Table 9 
shows the area of land capability in the study region for the different LESA score classes. 
These results show that, based on the LESA score classes, 52.24 and 47.75 % of this 
region were classified as marginally-suitable and moderately-suitable for crop production, 

Figure 6. Maps of site assessment factors SA-2 (b), SA-3 (c) and SA-1 (a).

(a) (b) (c)

Table 8. Scores of all SA-components including SA-1, SA-2, and SA-3

SA-1 score
Area

SA-2 score
Area

SA-3 score
Area

ha % ha % ha %
0-10 - - 0-10 - - 0-10 - -
10-20 - - 10-20 - - -10-20 - -
20-30 - - 20-30 - - 20-30 - -
30-40 11,000 0.00 30-40 - - 30-40 - -
40-50 1,495 0.46 40-50 - - 40-50 127,000 0.04
50-60 12,693 3.92 50-60 687,000 0.21 50-60 14,279 4.41
60-70 92,030 28.44 60-70 22,746 7.03 60-70 98,728 30.52
70-80 154,222 47.67 70-80 89,652 27.71 70-80 30,595 9.46
80-90 56,035 17.32 80-90 210,452 65.05 80-90 157,953 48.82
90-100 7,052 2.18 90-100 - - 90-100 21,854 6.75
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respectively. Higher LESA score represents a better land capability for crop production. 
A land capability map was generated using the LESA method (Figure 7), which shows 
lower LESA scores along the north-east edge of the study area. Higher LESA scores are 
more apparent in the south and, to a lesser degree, in the west.

Previous studies emphasize the need for land capability evaluation methods for crop 
production. However, it is crucial to calibrate these methods to account for the unique 
characteristics of local conditions. This calibration ensures the accuracy and relevance 
of land capability assessments, considering the intricate interplay of soil characteristics, 
climate, and other region-specific factors (Kazemi et al., 2016; Zhang et al., 2015;  
Mohamed et al., 2018; Ostovari et al., 2019; Abdel Rahman and Arafat, 2020, 2022; Zakarya 
et al., 2021; Akbari et al., 2022; Wu et al., 2022; Zhu et al., 2022). Optionally, integrated 
with GIS technology, the system provides spatial insights, aiding in decision-making for 
land-use planning. By regularly monitoring and adapting the LESA system, stakeholders 
can make decisions to optimize agricultural practices, ensuring sustainable land utilization 
aligned with its inherent capabilities. This integration facilitates a streamlined and 
responsive procedure, enabling rapid assessments of land suitability for various agricultural 
purposes. By utilizing GIS technology, decision-makers are provided with a powerful tool 
that not only accelerates the analysis of spatial data but also enhances the quality of 
planning and management decisions through informed insights. The synergy between 
the LESA method and GIS expedites the evaluation process and empowers decision-
makers with valuable insights, fostering more effective and strategic approaches to 
land-use planning and agricultural management.

Figure 7. Map of land capability produced by LESA procedure.

Table 9. LESA score and associated area of cropland
LESA score LESA score class Area

ha %
40-50 Marginally-suitable 11,271 3.48
50-60 Marginally-suitable 157,759 48.76
60-70 Moderately-suitable 152,848 47.24
70-80 Moderately-suitable 1,659 0.51
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CONCLUSION
This study used a GIS-based approach for applying the LESA method to predict land 
capability for calcareous soils in the Khuzestan province, Iran. Land evaluation (LE) 
component, comprising soil-dependent factors that typically depend on soil measurements—
which are both costly and time-consuming to collect—can be effectively generalized 
across extensive geographic areas using GIS technology. The site assessment (SA) 
subcomponents utilized in this study were derived from support services for agricultural 
production and area, development pressures, and qualitative public values. This approach 
will enable agricultural managers to efficiently inventory extensive areas of farmland 
using straightforward, proven methodologies such as LESA and GIS. The GIS techniques 
in this project currently rely on applying geostatistics to a relatively sparse and small 
dataset (72 sample locations). In the future, using remotely sensed data (typically 
densely sampled data) as a covariate should be investigated as a potential approach 
for improving the accuracy of the generated kriged maps. Furthermore, we intentionally 
do not utilize the uncertainty estimates generated by the kriging models in this study. 
Future opportunities lie in improving GIS accuracy by incorporating remotely sensed 
data, potentially enhancing the precision and reliability of land capability predictions. 
This method helps decision-makers better interpret the generated maps.
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