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ABSTRACT: It is often difficult for pedologists to “see” topsoils indicating differences in 
properties such as soil particle size. Satellite images are important for obtaining quick 
information for large areas. However, mapping extensive areas of bare soil using a single 
image is difficult since most areas are usually covered by vegetation. Thus, the aim of this 
study was to develop a strategy to determine bare soil areas by fusing multi-temporal 
satellite images and classifying them according to soil textures. Three different areas 
located in two states in Brazil, with a total of 65,000 ha, were evaluated. Landsat images of 
a specific dry month (September) over five consecutive years were collected, processed, 
and subjected to atmospheric correction (values in surface reflectance). Non-vegetated 
areas were discriminated from vegetated ones using the Linear Spectral Mixture Model 
(LSMM) and Normalized Difference Vegetation Index (NDVI). Thus, we were able to fuse 
images with only bare soil. Field samples were taken from bare soil pixel areas. Pixels 
of soils with different textures (soil texture classifications) were used for supervised 
classification in which all areas with exposed soil were classified. Single images reached 
an average of 36 % bare soil, where the mapper could only “see” these points. After using 
the proposed methodology, we reached a maximum of 85 % in bare areas; therefore, 
a pedologist would have proper conditions for generating a continuous map of spatial 
variations in soil properties. In addition, we mapped soil textural classes with accuracy 
up to 86.7 % for clayey soils. Overall accuracy was 63.8 %. The method was tested in 
an unknown area to validate the accuracy of our classification method. Our strategy 
allowed us to discriminate and categorize different soil textures in the field with 90 % 
accuracy using images. This method can assist several professionals in soil science, from 
pedologists to mappers of soil properties, in soil management activities.

Keywords: bare soils, satellite images, spectral sensing, multi-temporal images, digital 
soil mapping, soil remote sensing.
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INTRODUCTION
Orbital remote sensing in a country of continental dimensions, such as Brazil, is an indispensable 
tool for understanding and monitoring natural resources (Lima et al., 2001). Soils play a very 
important role in plant development and global food production, but soils have typically been 
used without proper knowledge, characterization, and studies. Improper land use results in 
soil degradation, low crop yield, and high costs from unsustainable production.

One of the most important soil properties is texture, due to its relationship with other properties, 
such as structure, porosity, permeability, fertility, chemistry, and moisture content (Brady 
and Weil, 2007). Soil texture is obtained from soil particle size distribution, which is mainly 
analyzed and mapped using traditional approaches in which pedologists make boreholes in 
the field or collect samples from soil profiles and analyze their findings in a laboratory. This 
procedure is costly and time-consuming. However, areas with high intensity agriculture need 
this information. Thus, there is the need for a more effective method of mapping soil texture.

Remote sensing is an important tool for soil surveying. In particular, many studies have 
found that texture can be quantified by spectral reflectance under laboratory conditions 
(Nanni and Demattê, 2006). Nanni et al. (2012) have also observed the importance of 
orbital images for clay estimates. These studies have shown that it is possible to determine 
soil particle distribution (clay, silt, and sand percentages) by spectral data. Identification 
of bare soils by satellite imaging is not new (e.g. Demattê et al., 2009; Ghaemi et al., 
2013; and Masoud, 2014), but continuous information on bare soils in an area is still an 
important difficulty for soil scientists, especially pedologists. 

Spectral data from orbital levels usually show vegetated areas where it is not possible to 
detect soil information. Therefore, how can a pedologist map an area if only certain spots 
of bare soil are shown in a single image? This problem has been observed in field studies; 
if we had one image with all the information from bare soil, the survey would certainly 
be easier. Methodologies that are well-performed have been restricted to spots of bare 
soil. Brazil and African countries, in tropical regions, have extensive areas of agriculture, 
and information on soil texture from orbital data can assist soil surveying and mapping.

In this context, the aim of the present study was to develop a strategy to identify continuous 
areas of bare soil by fusing multi-temporal orbital images of the same location and by 
mapping the topsoils according to soil textural classification. The hypothesis of our research 
is that changes in soil texture affect spectral data, which can be detected and mapped 
by satellite images. In addition, the strategy we propose is based on field observation of 
conventional agricultural areas with bare soils in different periods of the year, where the 
fusion of images from different years can provide a complete “picture” of bare soil.

MATERIALS AND METHODS

Description of study sites 

Three sites were chosen: two in the state of São Paulo and one in the state of Goiás 
(Figure 1). The study sites covered a total of 30,000 ha in São Paulo (15,000 ha each) 
and 35,000 ha in Goiás. All sites are at altitudes ranging from 450 to 900 m; the climate 
is temperate with dry winters (Aw - Köppen classification system), with average annual 
rainfall ranging from 1,000 to 1,800 mm and average temperature of 20 °C. The lithology 
is mainly represented by the Serra Geral, Botucatu, and Pirambóia (São Bento Group) 
Formations, and Serra de Santana covers (Taubaté Group). The rocks from the Serra Geral 
Formation are volcanic of basaltic origin; the rocks from the Botucatu Formation are eolic 
sandstones; and the rocks from the Pirambóia Formation are composed of sandstones 
from river deposits and floodplains (Bistrichi et al., 1981). The soils at the sites are mainly 
classified as Arenosols and Ferralsols (WRB, 2014) and Neossolos Quartzarênicos and 
Latossolos, respectively (Santos et al., 2013).
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Database

This study was divided into three steps: (1) to determine a methodology for measuring exposed 
continuous soil areas with no vegetation in Area 1 from the state of São Paulo; (2) to perform 
a theoretical validation in Area 2 from the state of São Paulo; and (3) to perform a practical 
validation in an unknown area from a different region (Area 3 in the state of Goiás) to check 
the potential of the method. First, we needed to understand the textural condition of the 
target areas at the terrestrial level before analyzing it at the satellite level. For that purpose, 
topsoil samples were obtained along toposequences (transect method). We collected 300 soil 
samples at a depth of 0.00-0.20 m from 20 toposequences (Figure 2) and their georeferenced 
images. After that, we analyzed soil particle distribution to determine the contents of coarse 
and fine sands, silt, and clay in the soil samples (Camargo et al., 1987). Clay contents were 
grouped into five textural classes, according to Santos et al. (2013): sandy (<150 g kg-1 of 
clay), sandy loamy (150 to 250 g kg-1 of clay), clayey loamy (250 to 350 g kg-1 of clay), clayey 
(350 to 600 g kg-1 of clay), and heavy clayey (>600 g kg-1 of clay). Soils in these areas were 
mostly classified as Arenosols and Ferralsols (WRB, 2014). Then, the 300 sampling points 
were positioned in pixels corresponding to bare soils.

Satellite data acquisition and processing – fusion preparation

Five TM/Landsat-5 images were used in order to obtain consecutive years in the same 
season. September was chosen since the soil is usually dry in this month. In large 
agricultural areas cultivated with sugarcane, traditional tillage resulting in bare soils was 
practiced in different areas from one year to the next. This is a five-year cycle, which 
means that an area tilled in a given year will only be tilled again five years later. Within 
a five-year period, all parts of a given area should have bare soil. Thus, our strategy was 
to collect images from different years to detect spots of bare soils and construct a map 
like a “puzzle”, where each piece is related to bare soil from a specific year.

The images were georeferenced using ground control points obtained from GPS, and the 
nearest neighbor was used as an interpolation method (RSI, 2006) to maintain the pixel 

Figure 1. Location of the study area. Area 1: Calibration; Area 2: Validation stage 1; Area 3: 
Validation in practice (Field).
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value similar to its original value. After that, atmospheric correction was performed by the 
6S program (Second Simulation of the Satellite Signal in the Solar Spectrum) to convert 
digital numbers into surface reflectance values (Vermote et al., 1997). The 6S program 
allows geometric configuration of specific satellites, such as Landsat 5, to be selected. 

For each satellite image, the Linear Spectral Mixture Model (LSMM) was used to discriminate 
vegetated areas from images of bare soil (Demattê et al., 2009), reducing pixel mixture and 
quantifying proportions of pure elements that constitute the pixel mixture (Shimabukuro 
and Smith, 1991). After using the LSMM, the following image-processing procedures 
were performed to indicate the true nature of the pixel: A) determination of NDVI 
images (Equation 1), B) evaluation of the pixel position at the soil line, C) display of the 
false-color band combination of bands 5 (1.55 to 1.75 µm), 4 (0.76 to 0.90 µm), and 3 
(0.63 to 0.69 µm) as red, green, and blue, respectively, D) display of the true-color band 
combination of bands 3, 2 (0.520 to 0.600 µm), and 1 (0.450 to 520 µm) as red, green, 

Figure 2. Distribution scheme of sampling points in Area 1 (calibration phase) as well as in Area 
2 (validation phase), and determination of eight sub-areas for the validation phase.
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and blue, respectively, and E) determination of the pixel spectral manifestation (spectral 
shape), as described by Demattê et al. (2009). Thus, only when all these procedures 
simultaneously indicated a pixel as bare soil was the pixel used for subsequent analysis. 
Pixels were rejected if at least one of these procedures, such as NDVI, indicated any 
possibility of contribution from vegetation in their spectral reflectance (Demattê et al., 
2009). Only pixels that met all the requirements were used to establish the library for 
a certain soil class. With the information on bare soil positions for each image, a mask 
was made excluding all vegetated areas using the following equation: 

NDVI =
IV – VIS
IV + VIS

								            Eq. 1

where IV is the spectral pixel response in the near infrared (TM 4) and VIS is the spectral 
response in the visible pixel (TM 3). The images corresponding to different seasons were 
individually classified using the Gaussian Maximum Likelihood algorithm (supervised 
classification), where bands 1, 2, 3, 4, 5, and 7 were used in the classification. The vector 
file containing the 300 sampling points with information related to soil textural classes was 
overlaid with the surface reflectance images. The reflectance of pixels at each sampling 
point was obtained, and five regions of interest (ROIs) were designated, corresponding to 
each soil texture class. All pixels that were not identified by supervised classification as 
belonging to any specific textural class were defined as “NoData” and were reclassified 
to zero value. The images displayed only pixels related to classes of interest. After that, 
a fusion of all five classified images with their respective portions of bare soils was obtained 
by overlapping them. We suggested the name of fused image (FI) for this final product. 
A mosaic with five supervised classification images (SCI) was designed to show the largest 
possible area covered by the supervised classification in a single image. Thus, a mosaic 
of exposed soils was generated and soil texture was classified.

In the validation stage (Step 3), data from Area 1 were tested in Area 2. Area 2 was 
subdivided into smaller continuous areas (Figure 2). Both SCI and the fused image were 
cut off based on these sub-areas and were subjected to the “Zonal Geometry” routine of 
the ArcGis 9.2 program to calculate the percentage of bare soil obtained by supervised 
classification. We positioned 204 other sampling points over this unknown area. These 
soil samples were collected, analyzed (as described earlier), and classified according 
to textural classes. We considered these data points as “reference data” and compared 
them with pixels obtained from the fused image. From this comparison, a contingency 
table (error or confusion matrix) was obtained. In addition, we performed correlation 
between the test results and determined the percentages of correct answers for each 
class, as well as overall accuracy and the Kappa index (Cohen, 1960) (Equation 2).

K̂ =
θ1 – θ2

1 – θ2
									             Eq. 2

θ1 =
1
N Ʃn

i = 1 mn 									             Eq. 3

θ2 =
1
N2 Ʃn

k = 1 (Ʃn
i = 1 mik × Ʃn

j = 1 mkj) 							           Eq. 4

where K̂ is the Kappa coefficient, n is the number of columns and rows of the matrix 
confusion, mij is the element (i,j) of the matrix confusion, and N is the total number 
of observations. Finally, an in situ field validation was performed. For this validation, 
we analyzed a third area (Area 3) located in the state of Goiás, quite distant from the 
other sites (Figure 1). This validation was performed as follows: a) the previously described 
fusion method was used to obtain a single image of bare soil distribution; b) 200 pixels 
inside this area (35,000 ha) were chosen to obtain different spectra; c) we went to the 
field and identified soil texture using field methodology (by feel) of each topsoil at the 
spots (pixels); and d) correlations between spectra from fused images and topsoil texture 
were performed.
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RESULTS AND DISCUSSION

Fused image of bare soils

The sand class showed the largest number of observations (83) and the highest coefficient 
of variation (Table 1). The contents of organic matter (OM) analyzed in the sites had 
low variation, from 0.5 to 0.7 %. Chemical analysis also indicated very low fertility and 
cation exchange capacity (CEC) (Table 1). However, particle size distribution was the 
soil property that most influenced the spectra. Considering all textures within an area of 
15,000 ha, we found high and similar numbers of samples. The only exception was for 
heavy clayey. In fact, heavy clayey is a very specific class and does not occur in this site.

The SCI obtained from Landsat images and classified according to the four soil texture 
classes covered only areas of bare soil, which was evident when we simultaneously 
observed satellite images, NDVI images, and the SCI (Figure 3). The satellite image 
was visualized with the following composition: R (band 3), G (band 2), and B (band 1), 
whereas the NDVI image represented exposed soil by a dark color and vegetation by a 
light color. The fact that SCI involved only areas of exposed soil is very important because 
this exposure is necessary to perform analysis of soil texture by satellite imaging.

Table 1. Clay contents of 300 samples in phase 1 (area 1)

Class Criterion n(1) Minimum Maximum Average Amplitude SE(2) CV(3)

g kg-1 %
Clayey >600 02 613.0 745.0 679.0 132.0 93.3 13.7
Very clayey 351-600 71 353.0 587.0 427.8 234.0 58.8 13.7
Clayey loamy 251-350 64 251.0 350.0 295.3 99.0 28.4 9.6
Sandy loamy 151-250 80 151.0 250.0 201.2 99.0 31.2 15.5
Sandy ≤150 83 72.0 150.0 113.8 78.0 19.4 17.1

(1) n: number of samples; (2) SE: standard error; (3) CV: coefficient of variation.

Figure 3. Sequence of observations from Landsat image, NDVI image, and supervised classification 
image (Demattê et al., 2009).

NDVI image

Textural classes
2 - Clayey (yellow)
3 - Clayey loamy (blue)
4 - Sandy loamy (green)
5 - Sandy (red)

Landsat TM image
R3G2B1 composition

Classified image
(supervised)

Bare soil

Vegetation
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When we analyzed images for each year, areas that were classified as N.Class (Not 
classified) were larger than the useful area to which we applied the supervised 
classification (Table 2, Figure 4). N.Class areas were not classified (in the respective 
season) because they had vegetation cover. We determined that, on average, 63 % of 
the total area of each sub-area showed N.Class values compared with only 37 % of the 
total area with bare soils. When we used a single image, we had an average of 36.2 % 
considered as bare soils. On the other hand, using the fused image, we obtained an 
average of 75.2 %, a minimum of 59 %, and a maximum of 85 % considered as bare 
soil. The study sites were cultivated; therefore, they have some type of plant cover 
through most of the year, hindering analyses by satellite imaging. Such information 
highlights the problem of working with images from only one season. For example, 
in the case of an image dated from Aug. 17, 2003, sub-area 7 showed a percentage 
of useful area of 72 %, while sub-area 8 showed a percentage of only 1 % (Table 2). 
Thus, it is impossible to use images of Area 3 for soils using this date (Figure 5). On the 
other hand, the importance of evaluating images in different years can be observed 
in sub-area 8. From 2002 to 2007 (with exception of 2003), the bare soil rate was 
1, 56, 42, 63, and 3 %, respectively. In practice, a pedologist could obtain a maximum 
area with 63 % bare soil analyzing only one image. When we used the proposed method, 
we obtained 75 % bare soil (Table 2, Figure 5).

Table 2. Quantitative statistics of exposed soil areas in each study sub-area and in different years

Image
08/17/2002 08/14/2004 08/17/2005 09/05/2006 09/08/2007 Fused 

Image
Area % Area % Area % Area % Area % Area %

ha ha ha ha ha ha
Sub-area 1

N. Class.(1) 1905 67 1906 67 1649 58 1257 44 1999 71 741 26
Class. (2) 919 33 919 33 1175 42 1568 56 825 29 2083 74
Total 2824 100 2824 100 2824 100 2824 100 2824 100 2824 100

Sub-area 2
N. Class. 2573 58 3203 72 3146 71 2307 52 2897 65 887 20
Class. 1872 42 1242 28 1299 29 2139 48 1548 35 3558 80
Total 4445 100 4445 100 4445 100 4445 100 4445 100 4445 100

Sub-area 3
N. Class. 3017 57 3706 71 3560 68 3285 63 4002 76 1661 32
Class. 2232 43 1543 29 1689 32 1965 37 1247 24 3588 68
Total 5249 100 5249 100 5249 100 5249 100 5249 100 5249 100

Sub-area 4
N. Class. 709 45 1051 67 1088 70 706 45 619 40 298 19
Class. 856 55 513 33 477 30 859 55 946 60 1266 81
Total 1564 100 1564 100 1564 100 1564 100 1564 100 1564 100

Sub-area 5
N. Class. 686  98 510 73 512 73 214 30 647 92 116 16
Class. 17  2 193 27 191 27 489 70 56 8 588 84
Total 703 100 703 100 703 100 703 100 703 100 703 100

Sub-area 6
N. Class. 574 84 650 95 618 90 456 67 364 53 280 41
Class. 111 16 35 5 68 10 229 33 321 47 405 59
Total 685 100 685 100 685 100 685 100 685 100 685 100

Sub-area 7
N. Class. 108 28 235 61 273 71 77 20 214 56 57 15
Class. 275 72 149 39 110 29 306 80 169 44 326 85
Total 383 100 383 100 383 100 383 100 383 100 383 100

Sub-area 8
N. Class. 163 99 72 44 95 58 59 36 158 96 47 29
Class. 1 1 92 56 69 42 105 64 6 4 117 71
Total 164 100 164 100 164 100 164 100 164 100 164 100

(1) Non-classified area not to be considered as exposed soil; (2) Area classified as exposed soil.
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When data on fused images were analyzed, we observed an increase in useful area for 
all sub-areas (Table 2). The FI for sub-area 6 showed the lowest percentage of useful 
area (59 %). However, when comparing this value with the best result achieved in a 
single image (dated from Sept. 08, 2007 with 47 % of useful area), there was a gain 
of 26 %. The FI of sub-area 7 showed the largest percentage of useful area (85 %) 
(Figure 5), followed by sub-areas 5, 4, and 2 (84, 81, and 80 %, respectively) (Figures 4 
and 5). Comparing these values with the best results in a single image, it appears that 
for sub-areas 7, 5, 4, and 2, there were increases of 6, 20, 34, and 66 %, respectively. 
These increases were associated with the size of the total area, that is, the larger the 
total area, the greater the increase the FI provides. The importance of the FI was evident 
when we analyzed the average useful area of bare soils, which increased from 36 to 75 %, 
representing a gain of more than 100 % with the use of the mosaic. Thus, there was an 
increase in the useful area compared with data related to single images.

Theoretical validation stage (soil surface texture classification by satellite data)

To validate our results and determine the ability to predict topsoil textural class, the clay 
content of 204 sampling points was analyzed by the conventional method (reference 
data) and compared to values obtained by supervised classification (estimated values). 
These points were distributed over four textural classes (Table 3) and their clay content 
ranged from 48 to 554 g kg-1. 

The confusion matrix represented the relationship between texture reference data (soil 
analysis) and values estimated by supervised classification (Table 4). Classification accuracy 
indicated that the clayey class attained the highest level of success (86.7 %), followed 
by the clayey loamy (60.6 %), sandy loamy (56.6 %) and sandy (52.2 %) classes. These 

Figure 4. Coverage of the supervised classification image in each image by sub-areas (1, 2, 3, and 4) and mosaic of all the images. 
Yellow color is for clayey soils, blue for clayey loamy soils, green for sandy loamy soils, and red for sandy soils.
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Figure 5. Coverage of the supervised classification image in each image by sub-areas (5, 6, 7, and 8) and mosaic of all the images. 
Yellow color is for clayey soils, blue for clayey loamy soils, green for sandy loamy soils, and red for sandy soils.
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Table 4. Confusion matrix generated from the similarity between values determined by the 
conventional method and by the supervised classification method (estimated values)

Texture classes
Supervised classification (% agreement with image)

Clayey Clayey 
loamy

Sandy 
loamy Sandy

Clayey 86.7 11.1 2.2 0.0
Clayey Loamy 33.3 60.6 6.1 0.0
Sandy Loamy 11.3 28.3 56.6 3.8
Sandy 6.5 10.9 30.4 52.2
Overall accuracy (%) 63.8
Kappa index 0.52

Table 3. Descriptive analysis of database used to validate the method of determining the soil 
texture class, at the surface, by supervised classification (204 samples in Area 2)

Class Criterion n(1) Minimum Maximum Average Amplitude SE(2) CV(3)

g kg-1 %
Clayey >600 - - - - - - -
Very clayey 351-600 53 353.0 554.0 418.0 201.0 53.3 12.7
Clayey loamy 251-350 39 259.0 350.0 308.5 91.0 25.5 8.3
Sandy loamy 151-250 63 151.0 249.0 201.9 98.0 26.5 13.2
Sandy ≤150 49 48.0 148.0 114.1 100.0 26.3 23.1

(1) n: number of samples; (2) SE: standard error; (3) CV: coefficient of variation.
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values were higher than those found by Demattê et al. (2005) for a similar area. Some 
confusion was observed, such as 33.3 % of the clayey class was mixed with the clayey 
loamy class. The sandy loamy class with 56.6 % agreement had 28.3 % misclassified as 
the clayey loamy class. The confusion in supervised classification was mostly related to 
the correct texture class.

Topsoils of clayey texture were discriminated from soils of the sandy class in 100 % of 
the classification, that is, none of the clayey soils were classified as sandy texture. Okin 
et al. (2001) had considerable success in discriminating clayey from sandy soils, with 
approximately 90 % accuracy. However, the authors conducted the experiment with the 
high spectral resolution Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) 
using the MESMA method. This sensor has 224 spectral bands and is considerably 
more powerful than the Landsat, which explains their better results. Coleman et al. 
(1993) started with 0.4 R² for clay using Landsat. Nanni and Demattê (2006) reached 
67 % accuracy for the clayey class when evaluated an area with full exposure of 
non-vegetated areas (bare soils). Demattê et al. (2009) reached 90 % accuracy 
evaluating 224 pixels in a 300,000 ha area, but in this case, it was all done in a single 
image. The fact is that the present methodology reached a classification accuracy 
ranging from 60 to 86 % for some soil texture classes using multi-spectral Landsat 
images (only six bands) and fused images from several seasons. Moreover, the 
methodology used in this study generated continuous areas with bare soil that can 
provide more sustainable information to pedologists. Still, we have to keep in mind 
that the soil sample was collected in a single spot that corresponds to a 0.20 m2 (the 
borehole) and the pixel of the image covers 30 m2. Moreover, the sensor is located 
at a distance of 800 km from the target.

The overall accuracy (63.8 %) (Table 4) was lower than the minimum acceptable value 
(85 %) according to Guptill and Morrison (1995). Considering the classes individually, 
we observed that clayey texture was the only class whose value was higher than the 
minimum acceptable value, and the Kappa index obtained (0.52) was considered 
appropriate by the Landis and Koch (1977) classification, suggesting that the method 
can be used to indicate soil texture on the surface.

In situ evaluation

In areas located in the state of Goiás, we created a fused image of exposed soils, 
as mentioned in the methodology. We used a 543 RGB color composition based on 
the image and an unsupervised classification. We then went to the field using GPS, 
and with the image in a Palmtop, we went to spots already expecting to see the soil 
texture. This in situ approach was illustrated in figure 6. For each validation spot, 
we went to the field and determined its texture (at 200 points). We determined that 
the different spectral information detected in the image enabled differentiation of soil 
texture. The soils of these areas are mostly Arenosols and Ferralsols, which have no 
texture variation with depth. Thus, determining surface texture represents most of the 
soil. Since these are very large areas, determining soil texture as “continuous” would 
be highly cost-effective. The OM content did not influence the results, because it was 
similar in all areas, ranging from 0.3 to 0.5 %. In many situations, we observed light 
colors in the 543 RGB image and expected to “see” sandy soils. In fact, upon reaching 
the spot, we made the borehole, and a sandy texture was detected. We observed that 
90 % of the soil samples in situ were in the same texture classification as indicated 
by the image. The image also indicated spatial variation (Figure 6). This information 
can assist farmers in making a texture map to assist agriculture practices, such as 
the use of herbicides. 

Soil texture is one of the most important features in production of many crops as it is 
related to water retention, soil aggregation, and soil exchange capacity. Our method shows 
that it is possible to have excellent, detailed information on soil texture in these areas. 
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The use of hyperspectral images is clearly the best choice because of the great number 
of bands. However, these data are still under development, and they are difficult to use 
and somewhat costly. AVIRIS, with its 224 bands, is a private sensor and is not available 
to users. Hyperion has low quality (high noise information) and does not have high 
temporal information. Thus, we need an easy and inexpensive method to assist users. 
In this context, Landsat has high temporal information and free access, achieving fairly 
good results, as presented in this study.

CONCLUSIONS
Using the fused image (FI) methodology of multi-temporal images of the same region, 
the bare soil area was increased from 36 to 75 %, representing a gain of more than 
100 %. There is wide variation in the amount of bare soil in satellite images at the same 
site in different seasons, ranging from 1 to 65 %. This range indicates the importance of 
evaluating images in different years (time series). In our methodology, the use of images 
from different periods enabled us to map more than 75 % of the total area studied, 
an increase of up to 60 % when compared with the use of a single image. 

Figure 6. Illustration of field work: (a) Landsat image indicating areas with bare soils, sandy and 
clayey; (b) soil variability and sampling in the field; (c) Soil variability in an area with bare soil; (d) Soil 
variability in an area with vegetation cover; and (e) Landsat image indicating variations in soil texture.

Sandy soils
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Limit of
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The validation study indicated that clayey and clayey loamy texture classes had the best 
performance, with 86.7 and 60.6 % success, respectively. Discrimination of clayey from 
sandy soil was 100 % successful. 

The in situ field approach and validation indicated 90 % agreement of surface soil texture 
compared with the pixel information from the fused image in an unknown area.

The method achieved promising results considering that we used a multispectral sensor 
800 km distant from the target and a 30 m2 pixel. This can assist users by means of an 
easy and inexpensive method since Landsat information is free on the Internet.
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