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ABSTRACT: Soil is an important carbon repository in terrestrial ecosystems, serving 
a fundamental role in the intricate cycling of this elemental component. Wetlands are 
crucial components of the global carbon cycle, playing a significant role in carbon 
sequestration due to their remarkable productivity and unique sedimentary structures. 
Our study focuses on the wetlands east of Marajó island, recognized as the largest 
fluvial-marine plain in South America. In this study, we applied a methodological 
framework to optimize SOC content prediction in the wetlands of Marajó island using 
readily available environmental covariates. We collected and analyzed 81 soil samples 
from the most representative geoenvironments on the island at a layer of 0.00-0.20 m. 
Our database included vegetation indices, morphometric maps, and covariates based 
on distance from water bodies and archaeological sites. We tested five machine learning  
algorithms - Cubist, Linear Model, Random Forest, K Nearest Neighbor, and Support Vector 
Machine - to obtain the best prediction performance. Cubist model demonstrated the 
highest performance for training (R2 = 0.483) and testing (R2 = 0.505) datasets, making 
it the optimal choice for SOC prediction in the topsoil. The most important covariates 
selected by Cubist using recursive feature elimination were digital elevation model, 
topographic heterogeneity index, vertical distance between the summit and base of 
the slope, and Euclidean distance from water bodies. Geoenvironments characterized 
by dense alluvial rainforest with palms on Plinthosols and Gleysols, mangroves with 
Gleysols, and coastal muddy plains exhibited the highest SOC content in the topsoil.
Keywords: soil organic carbon, machine learning, spatial prediction, climate change.
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INTRODUCTION
Soil is an important carbon repository in terrestrial ecosystems, playing a key role in the 
intricate cycling of this elemental component (Doetterl et al., 2015). On a global scale, 
soil organic carbon (SOC) storage is responsive to shifts in environmental conditions and 
climate (Nottingham et al., 2020), potentially accelerating climate change by releasing 
CO2 and CH4 into the atmosphere.

Wetlands play a crucial role in the global carbon cycle within natural systems, serving 
as key contributors to this complex process (Sjögersten et al., 2021; Zhang et al., 2023; 
Adame et al., 2024). Their remarkable productivity and sedimentary structure contribute 
to the highest carbon sequestration rate per unit area among all-natural systems (Rogers 
et al., 2019). Ecosystems in coastal wetlands, including tidal marshes, mangroves, and 
seagrasses, arouse wide attention and are given high hopes for carbon sinks in the 
current phase for their particularly efficient carbon sequestration (Duarte et al., 2013; 
Macreadie et al., 2021). Consequently, accurately assessing the spatial distribution of 
SOC content in wetlands is imperative for comprehending and monitoring the cycling of 
this elemental component (Zhang et al., 2023).

The carbon in soils primarily exists in organic form and is regulated by the equilibrium 
between input (deposition) and output (decomposition) of organic matter (Wiesmeier 
et al., 2019). In addition to inherent soil characteristics such as mineralogy and texture, 
SOC distribution is significantly influenced by local factors, including topography, slope, 
vegetation, and hydrology (Chen et al., 2020; Hein et al., 2020; Zhao et al., 2021).

Determining SOC content often involves manual soil sampling procedures and laboratory 
analysis, making the process time-consuming, labor-intensive, and challenging to 
implement in flood-prone and remote areas (Cui et al., 2021). This limitation results in 
a scarcity of data, particularly in areas of difficult to access (Chi et al., 2021).

The development of digital soil mapping (DSM) and its applications (McBratney  
et al., 2003) has been employed as a tool in the spatialization of SOC at wetlands 
and mangroves in various scales (Chi et al., 2021; Hidayatullah et al., 2023; Maxwell  
et al., 2023; Muñoz et al., 2024). Terrain attributes derived from digital elevation models 
(DEMs) are among the most commonly used predictor variables in the wetland DSM 
(Leonard et al., 2012; Kloiber et al., 2015). The topography is particularly important in 
wetlands because it directly influences the distribution and flow of water, affecting the 
hydrology of these environments and, consequently, their ecological dynamics, including 
the formation and maintenance of habitats for wildlife and carbon sequestration (Mitsch 
et al., 2000). However, predicting SOC remains challenging due to the high variability of 
factors influencing soil organic carbon (Scharlemann et al., 2014).

Nonlinear models, such as machine learning, are increasingly being used in DSM. However, 
it is necessary to incorporate more pedological knowledge for reasonable modeling from 
both scientific and technical perspectives (Chen et al., 2022). Machine learning-based 
models, including Random Forest (Muñoz et al., 2024), Cubist (Rudiyanto et al., 2018), 
and Support Vector Machine-SVM (Sun et al., 2023), have demonstrated successful 
applications in this domain.

The focus of our study includes the wetlands east of Marajó island, recognized as the 
largest fluvial-marine plain in South America (Rossetti and Valeriano, 2007; Francisquini 
et al., 2014). Climate projections suggest the eastern portion of the island could face 
permanent flooding in the coming decades (Barros and Albernaz, 2014). This transformation 
poses a threat to the livelihoods of the island’s population, which is strongly connected 
to local practices such as hunting, fishing, buffalo breeding, rice cultivation, extractivism, 
and agriculture (Murrieta et al., 1999; Cohen et al., 2009; Lisboa, 2012).

It is crucial to ascertain the spatial distribution of surface SOC levels using readily 
accessible environmental covariates. This endeavor holds significant importance for 
informed decision-making, formulation of public policies concerning environmental 
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recovery and conservation, and the identification of alternative scenarios for SOC 
sequestration (Fernandes et al., 2021; Lembaid et al., 2022; Liu et al., 2022). Moreover, 
these assessments may furnish valuable information to underpin the initiation of new 
research endeavors, particularly pertinent to Marajó island, characterized by one of the 
lowest Human Development Index (HDI) values in Brazil (IBGE, 2010).

This study aimed to model the spatial distribution of SOC in the topsoil, considering 
various environments and utilizing easily obtainable environmental covariates. Our 
research addresses existing knowledge gaps through innovative approaches, such 
as utilizing readily accessible environmental covariates, diverse machine learning 
algorithms, advanced techniques for external validation, and an ecologically sustainable 
methodology. These contributions can potentially enhance the monitoring of wetland 
areas, particularly those vulnerable to global climate change. By contributing to improving 
and maintaining terrestrial ecosystem quality, our investigation aligns with the broader 
goals of environmental conservation within the soil science domain.

MATERIALS AND METHODS

Study area

Marajó island covers an area of 40,100.00 km2 and is divided into two main parts: the 
highlands with better drainage, ranging from 10 to 40 m above sea level, located in the 
south and west and covered by tropical forest; and the wetlands to the east, ranging 
from 0 to 9 m above sea level and experiencing annual floods, with savanna vegetation, 
sandy ridges, paleochannels, savannas, and mangroves (Lisboa, 2012) (Figure 1a). The 
focus area of this study is the eastern part of Marajó island, which corresponds to the 
wetlands and covers an area of 14,464.455 km2. 

Figure 1. Location of the sampling points in different environments in the wetlands of Marajó island, Pará State, Northern Brazil (a); 
and the topographic section of wetlands of the island (b).
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In the wetlands with fluvial or fluvio-marine influence, Gleissolos (Entisols) predominate 
(Correa et al., 1974), in areas corresponding to ancient mangroves in the central-east 
of the island (França et al., 2012; Smith et al., 2012), as well as Vertissolos (Vertisols) 
and Cambissolos (Inceptisols) distributed sporadically (Correa et al., 1974; Cerri and 
Volkoff, 1988; Murrieta et al., 1999; Lisboa, 2012). Sandy ridges also stand out in the 
wetlands, sediments influenced by fluvial or aeolian processes, distributed as Neossolos 
Quartzarênicos (Psamments) in elevated areas and Espodossolos (Spodosols) (Tatumi 
et al., 2008), as well as Cambissolos Flúvicos (Fluvents), consistent with paleochannels 
(Correa et al., 1974; Rossetti and Valeriano, 2007).

Numerous archaeological sites are distributed in these areas, dating to at least 3,000 years 
before the present (Meggers and Roosevelt, 1992). Many of these sites are concentrated 
in alluvial paleodykes, also called Tesos, which may reach several hundred meters in 
length with up to 12 m in height and may occur scattered across the wetland areas.

According to Köppen classification system (Alvares et al., 2013), the climate is monsoon 
and savannah, transitioning between Am and Aw with an average annual temperature 
ranging from 25 to 29 °C and average precipitation between 2,000 and 4,000 mm (Lima 
et al., 2005).

Soil sampling, SOC quantification, and obtaining environmental covariates

A total of 81 composite samples were collected, covering the main geoenvironments of the 
eastern sector of Marajó island: fluvio-lacustrine plains with grassy vegetation on Gleysols, 
old salt-plain terrace with fluvio-lacustrine sediments, transition zone between savanna 
and rainforest, fluvio-lacustrine plains with grassy vegetation on Entisols (Paleolake 
Arari), terraces with hydromorphic Plinthosols on fluvio-lacustrine sediments, sandy 
flats with Spodosols under savanna, dense alluvial rainforest with palms on Plinthosols 
and Gleysols, plateau with Oxisols and secondary vegetation, apicum with Gleysols and 
halophytic plants, salt-plain with paleodunes, and mangrove with Gleysols (Figure 2). 
Subsamples were collected in the center and in each cardinal direction (N, S, E, and W) 
at about 3 to 5 m from the central point and at a depth of 0.00-0.20 m.

Figure 2. Distribution of sampling points in the wetlands of Marajó island over different geoenvironments.
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Due to the difficulty of accessing much of the island’s geoenvironments, many of which 
remain flooded even during the dry season, we focused the sample collection on areas 
near the roads. However, we did not overlook the flooded environments during this 
process. Under these circumstances, the samples were obtained near the roads to 
ensure a comprehensive representation of the various soil types found on the island, 
including those subject to permanent flooding. Collections were made in November 2019, 
at the peak of the dry period. Samples were air-dried, ground, and sieved through a  
2 mm mesh to obtain the air-dried fine earth fraction (ADFE) for SOC determination. Soil 
organic carbon was determined using the Walkley-Black method (Teixeira et al., 2017). 

Covariates employed in this study are easily accessible and pertain to factors that 
regulate the SOC dynamics in wetland areas, such as topography, slope, vegetation, 
and hydrology (Chen et al., 2020; Hein et al., 2020; Zhao et al., 2021). Soil samples 
geographic coordinates (X and Y) were used as covariates for spatializing SOC contents. 
The SIRGAS 2000/UTM zone 22S projected coordinate system (EPSG: 31983) was used 
as the standard during the SOC spatialization process.

Topographic covariables were derived from the NASADEM SRTM-Shuttle Radar Topography 
Mission digital elevation model (DEM) (LP DAAC, 2003), with a spatial resolution of 
approximately 30 m (1 arc-second). To obtain the covariables, R software version 4.10 
(Team, 2021) was used, using the “RSAGA” (Brenning, 2008), “raster” (Robert, 2019), 
and “rgrass7” (Bivand et al., 2019) packages. The attributes generated based on DEM 
are described in table 1 (Sena et al., 2021; Paes et al., 2022). Covariate Y was also 
created and represents the latitude of the data collection points, measuring the distance 
in degrees from the Equator along the meridian.

Due to the complex drainage network (Rossetti and Valeriano, 2007), and the common 
presence of archaeological sites with “Terra Preta de Índio” - Amazonian Dark Earth 
(Anthrosol) (Meggers and Roosevelt, 1992), two covariables were created based on the 
Euclidean distance between the drainage channels and the sampling point, and the 
Euclidean distance between the archaeological sites and the sampling point (Figure 3).

Landsat 8 images, captured in the same period as the soil samples (November 2019), 
were employed to calculate the Normalized Difference Vegetation Index (NDVI) using the 
formula (Band 5 - Band 4) / (Band 5 + Band 4), as introduced by Rouse Jr et al. (1973). 
This index normalizes spectral data from the near-infrared and red bands. Despite being 
one of the earliest indices developed, its widespread use and proven efficacy make it one 
of the most frequently employed indices in the analysis and prediction of SOC (Gomes 
et al., 2019; Padilha et al., 2020; Zhang et al., 2023).

Variable selection and comparison of predictive models

The process of covariate removal/selection is designed to construct a model that requires 
lower computational cost, adhering to the principle of parsimony (Gomes et al., 2019; 
Reis et al., 2021; Paes et al., 2022). The elimination of covariates involved a three-stage 
process: firstly, considering variance; secondly, analyzing correlations; and thirdly, 
evaluating prediction importance for each algorithm (Figure 4).

Elimination based on variance involves removing covariates with minimal variance, as 
they do not significantly contribute to the predictive model. Additionally, these covariates 
have the potential to impact certain model performances and increase computational 
costs (Kern et al., 2017; Hujoel et al., 2018). The “nearZeroVar” function available in 
the R software Caret package (Kuhn, 2008) facilitated the removal of covariates with 
very low variance. The eliminated covariables were Hill (HI), Hill index (HINDEX), Valleu 
Index (VA) and Valley (VA).

Covariate removal based on correlation targets highly correlated variables, as they can 
impact final model performance and the efficiency of subsequent covariate elimination. 
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Table 1. Terrain variables generated from a digital elevation model
Terrain attribute Abbreviation Brief description
Convergence index CI Convergence index/divergence in relation to flow
Cross sectional curvature CSC Measure curvature perpendicular to slope direction
Digital elevation model DEM Represents the elevation in each cell of the model
Diurnal anisotropic heating DAH Continuous exposure-dependent energy measurement
Flow line curvature FLC Represents the projection of a gradient line on a horizontal plane
General curvature GC The combination of plane and profile bends
Geomorphons GEO Associated geometry using machine vision approach
Hill HI Analytical choline shading
Hill index HIINDEX Analytical index choline shading
Longitudinal curvature LC Scares curvature in the direction of the slope
Mass balance index MBI Balance index between erosion and deposition
Maximal curvature MAXC Maximum curvature in the local normal section
Morphometric Protection Index MPI Exposure/protection measure of a surrounding relief point
Mid-slope position MSP Represents the distance from top to valley, ranging from 0 to 1
Minimal curvature MINC Minimum curvature for local normal section
Multiresolution index of ridge top 
flatness MRRTF Indicates flat positions in high-altitude areas

Multiresolution index of valley 
bottom flatness MRVBF Indicates flat surfaces at the bottom of the valley

Normalized height NH Vertical distance between the base and the ridge of the normalized slope

Plan curvature PLANC Described as the curvature of the hypothetical contour line that passes 
through a specific cell

Profile curvature PROC Describes the curvature of the surface in the direction of the steepest slope
Real surface area RSA Actual calculation of cell area
Slope S Represents local angular slope
Slope height SH Vertical distance between the base and the ridge of the slope
Slope Index SI Represents a local angular slope index
Solrad Diffuse1 SolDiffuse1 Diffuse heatstroke for January
Solrad Diffuse2 SolDiffuse2 Diffuse heatstroke for July
Solrad dur 1 SolDur1 Duration of heat stroke for January
Solrad dur 2 SolDur2 Duration of Heat stroke for July
Solrad Direct1 SolDiret1 Direct heat stroke in January
Solrad Direct2 SolDiret2 Direct heat stroke in July
Solrad Ration1 SolRation1 The ratio between Direct Heat stroke and Diffuse Heatstroke in January
Solrad Ration2 SolRation2 The ratio between Direct Heat stroke and Diffuse Insolation in July
Solrad Sunrise1 SolSunrise1 Average sunrise time for January
Solrad Sunrise2 SolSunrise2 Average sunrise time of July
Solrad Sunset1 SolSunset1 Average sunset time of January
Solrad Sunset2 SolSunset2 Average sunset time in July
Solrad total1 SolTotal1 Total insolation for the month of January
Solrad total2 SolTotal2 Total insolation for the month of July
Standardized height STANH Vertical distance between the base and the standardized slope index
Surface specific points SSP Indicates differences between specific surface offset points
Tangencial curvature TANC Measured in the normal plane in a direction perpendicular to the gradient

Continue
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Spearman correlation coefficients were initially calculated for all covariates to eliminate 
highly correlated covariates. Subsequently, pairs of covariates exhibiting a correlation 
of 95 % or higher were examined, and the covariate with the highest mean absolute 
correlation value with other variables was removed from the analysis (Paes et al., 2022). 
The “findcorrelation” function, available in the Caret package of the R software (Kuhn  
et al., 2020), was employed to remove highly correlated covariates. Eliminated covariables 
were: Cross sectional curvature (CSC), General curvature (GC), Longitudinal curvature 
(LC), Total curvature (TC), and Terrain ruggedness index (TRI).

Elimination of covariates with low importance, for each assessed model, aims to achieve 
a more concise model by identifying the optimal set of covariates. This process is defined 
by the importance of covariates compared to others in model fitting, through the Recursive 
Feature Elimination (RFE) tool of the Caret package (Kuhn and Johnson, 2013). Thd RFE 
is an interactive method for covariate selection/removal, following the Backward type 
approach. It determines the optimal set of covariates by assessing various subsets with 
different quantities of covariates (Kuhn and Johnson, 2013). These subsets are defined by 
the operator and the complete set, always undergoing evaluation from the largest set to 
the smallest set, as outlined in Ferreira et al. (2021). Due to their unique characteristics, 

Continuation
Terrain attribute Abbreviation Brief description
Terrain ruggedness index TRI Quantitative index of topographic heterogeneity

Terrain surface convexity V The ratio between the number of cells that have positive curvature and the 
number of all valid cells within a specified search radius

Terrain surface texture TST Divide surface texture into 8, 12, or 16 classes
Total curvature TC General measurement of surface curvature

Topographic position index TPI Difference between the elevation of the point A and the surrounding 
elevation

Valley depth VD Calculation of vertical distance at the level of the drainage base
Valley VA Nebulous valley of calculation using the Cartola approach
Valley Index VA Calculation of Diffuse valley index using the Cartola approach
Vector ruggedness measure VRM Roughness of the terrain

Topographic wetness index TWI Describes the tendency of each cell to accumulate water as a function of 
relief

Figure 3. Euclidean distance between the sampling point and the hydrography and the sampling point and archaeological sites.
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RFE was applied separately to each algorithm under consideration. The defined subsets 
comprised various combinations of covariates, including the complete set of 38 covariates 
that passed the elimination steps for very low variance and correlation. The tested 
models included Cubist (CUB), Random Forest (RF), Support Vector Machine (SVM) with 
Radial Kernel, Linear Model (Lm) and K Nearest Neighbor (KKNN). Each algorithm has an 
important calculation methodology, and the functions are listed and considered “support 
functions” of the RFE (Kuhn and Johnson, 2013).

The dataset was divided into training and testing sets after eliminating covariates with 
minimal variance and highly correlated ones. Given the limited sample size (81), the 
Nested leave-one-out cross-validation (“LOOCV”) technique was employed for DATA 
partitioning (Ferreira et al., 2021; Paes et al., 2022). This method involves two loops: 
an inner loop and an outer loop. In the inner loop, one sample is excluded (resulting in  
n - 2 samples), while the remaining sample forms the outer loop. This process is repeated 
n times, where n is the total sample size. All samples traverse the outer loop, enabling the 
calculation of predicted values. These predictions are then matched with the observed 
values for the samples, facilitating the evaluation of the model’s performance in the 
final prediction encompassing the entire set of samples from the outer loop (Figure 4).

Model training was conducted using the optimal set of covariates identified for each 
selected algorithm through RFE. The final model was fine-tuned using the leave-one-out 
cross-validation (LOOCV) method, testing five values of internal hyperparameters for 
each algorithm under evaluation. Mean Absolute Error (MAE) served as the performance 
parameter for selecting the optimal hyperparameter values. The hyperparameters 
for each algorithm were sourced from the Caret package manual, chapter 6 (“Models 
described”), accessible at https://topepo.github.io/caret/train-models-by-tag.html. The 
study evaluated various performance metrics, including MAE (Equation 1), Root Mean 
Squared Error (RMSE) (Equation 2), Coefficient of Determination (R²) (Equation 3), Lin’s 
Concordance Correlation Coefficient (LCCC) (Equation 4), and Nash-Sutcliffe Model 
Efficiency Coefficient (NSE) (Equation 5).

Figure 4. Flowchart showing the sequence of methodologies applied for spatial prediction of soil carbon.

https://topepo.github.io/caret/train-models-by-tag.html
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in which: pi is the predicted sample values; oi is the observed sample values; ō is the 
mean of observed values; σp is the variance of predicted samples; σp  is the variance 
of observed values; ρ is the correlation coefficient between predicted and observed 
samples; and n is the number of samples.

We also calculated null model values (NULL_RMSE and NULL_MAE). The null model 
involves using the average value determined by the collected samples (Equations 6 
and 7). It serves as the simplest model possible in the absence of specific training 
data, providing a single mean for numeric outcomes. The null model’s reference point 
is the percentage of samples with the most prevalent class when class probabilities are 
requested. Models comparable to or worse than the null model should be disregarded. 
The best models exhibited lower RMSE and MAE results than those observed for NULL_
MAE and NULL_RMSE. This indicates the final model surpasses the use of mean values, 
highlighting improved model quality.

If the NULL_RMSE and NULL_MAE values are lower than those seen during the algorithm’s 
validation phase, it indicates that using the means of the property samples aligns with 
the machine learning model created by the algorithms. The calculations for NULL_RMSE 
and NULL_MAE were performed using the “null mode” function in the caret package 
(Kuhn et al., 2020, Mello et al., 2021).

in which: Omt is the mean of training samples; Oi is the test sample; n is the number of 
samples (loop).

Final maps of SOC and coefficient of variation

Of the five evaluated algorithms used to create spatial prediction maps of SOC, we 
selected the best-performing model based on the mean MAE value from the 81 runs 
(Gomes et al., 2019; Reis et al., 2021; Paes et al., 2022). Based on the 81 predicted SOC 
maps, the mean and standard deviation of each pixel’s prediction were calculated within 
the study area to generate mean and standard deviation maps, respectively. Each pixel 
had a resolution of 30 m, and the maps were used for the discussion of the results. The 
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importance of covariates was also calculated from the results of the 81 runs, for which 
the mean covariate importance for each model was computed (Gomes et al., 2019).

The algorithm that performed the best (CUB) was used to generate maps predicting the 
SOC content in the study area. From the final map of SOC of the best model, the mean 
SOC values were determined for each geoenvironment, calculated from the mean value 
of all cells inserted in each geo-environment using the zonal statistics plugin of the QGIS 
package (https://qgis.org/en/site/).

RESULTS

SOC, selected covariates and performance of predictive models

The SOC contents in the topsoil (0.00-0.20 m) of the studied area ranged from  
0.2 to 12 dag kg-1, with a coefficient of variation (CV) of 77.6 % and skewness of 1.55 (Table 
2). The evaluated models could predict the SOC content determined by the Walkley-Black 
method. The analysis revealed, on average, about 12 covariates produced performance 
comparable to using 30 covariates (Figure 5). On average, around 12 covariates yielded 
comparable performance to utilizing 30 covariates (Figure 5).

Table 2. Descriptive statistics of soil organic carbon (SOC) in the study area (n = 81)
Min Max Mean SD Median CV Skewness

 dag kg-1 %
0.2 12.0 3.1 2.4 2.5 77.6 1.55

Figure 5. Performance of models in the process of selecting covariates for soil organic carbon (SOC), using Recursive Feature 
Elimination (RFE) methodology.

https://qgis.org/en/site/
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The CUB model demonstrated superior performance, with MAE and RMSE values lower 
than the null model (Null_Model) (Table 3). This suggests the CUB model surpasses the 
use of mean values. Additionally, the CUB algorithm achieved an R² of 0.483 for training 
and 0.505 for testing. The second-best performing model was Random Forest (RF), which 
also exhibited low MAE and RMSE values, though slightly higher than CUB. RF achieved 
an R² of 0.49 for training and 0.375 for testing (Table 3 and Figure 6). When comparing 
the validation R² of RF to CUB, there was only a 25.7 % decrease in performance. In 
contrast, the remaining algorithms—Lm, KKNN, and SVM—demonstrated moderate to 
poor performance (Table 3).

The machine learning algorithms selected covariates to predict SOC. Notably, the most 
crucial covariates for prediction were identified as elevation (MDE) and slope_height, both 
intricately linked to topography, each with an importance rating of 100 %. Additionally, 
Terrain surface convexity (TSC) played a significant role, with an importance of 90 %, 
followed by hydro_eucl (50 %), MRVBF  (45 %), and Y (40 %), albeit with relatively lesser 
importance. In contrast, other covariables, such as MSP, VD, NH, MRRTF, and TWI had 
weaker impacts, while VRM proved negligible in predicting soil SOC (Figure 7).

Table 3. Performance of Cubist (CUB), Linear Model (Lm), Random Forests (RF), K Nearest Neighbor 
(KKNN), and Support Vector Machines (SVM) models in predicting carbon content, evaluated by 
mean absolute error (MAE), Lin’s Concordance Correlation (LCC), Nash-Sutcliffe Efficiency (NSE), 
root mean squared error (RMSE), and coefficient of determination (R²) of the training and testing 
datasets

Performance metrics
Carbon

Training Test
 dag kg-1 

MAE

CUB 1.217 1.218
Lm 1.735 1.986

KKNN 1.455 1.556
SVM 1.292 1.387
RF 1.245 1.362

Null_Model - 1.828

RMSE

CUB 1.803 1.745
Lm 2.724 3.018

KKNN 2.183 2.33
SVM 2.124 2.184
RF 1.752 1.932

Null_Model - 1.932

R2

CUB 0.483 0.505
Lm 0.103 0.035

KKNN 0.226 0.169
SVM 0.278 0.208
RF 0.49 0.375

NSE

CUB 0.679 0.499
Lm 0.24 -0.524

KKNN 0.427 0.091
SVM 0.376 0.193
RF 0.633 0.376

LCCC

CUB 0.679 0.691
Lm 0.24 0.187

KKNN 0.427 0.382
SVM 0.376 0.343
RF 0.633 0.547
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Prediction of final maps and uncertainty of SOC

The highest SOC contents were found in the geoenvironments of dense alluvial rainforest 
with palms on Plinthosols and Gleysols, followed by mangrove with Gleysols, coastal 
muddy plain, western Marajó plateau with dense alluvial rainforest, and old salt-plain 
terrace with fluvial-lacustrine sediments with high concentration of archaeological mounds 
(Figures 8 and 9). In these geoenvironments, the average surface SOC contents varied 
from 3.76 to 5.44 dag kg-1. The geoenvironments with intermediate SOC contents include 
active sandy dunes with marine and fluvial plains, plateau with Oxisols and secondary 
vegetation, grassy fluvio-lacustrine plains with Melanic or Haplic Gleysols, hills, and 
low tablelands on fluvial-lacustrine sediments with Plinthosols under alluvial rainforest, 
terraces with hydromorphic Plinthosols on fluvial-lacustrine sediments, and central inland 
paleoestuary under grassy fields with Gleysols. In these areas, SOC contents varied 
from 3.09 to 3.66 dag kg-1 (Figures 8 and 9). The lowest SOC contents corresponded to 
the geoenvironments of sandy flats with Spodosols under savanna, low terraces and 
plains with saline-sodic Gleysols, and salt-plain with paleodunes. SOC contents in these 
environments ranged from 2.49 to 2.55 dag kg-1.

The mean CV of the SOC predictions for the geoenvironments ranged from 19.51 to  
30.50 % (Figure 8). The greatest uncertainties, as reflected by the highest CV, corresponded 
to the geoenvironments of hills and low tablelands on fluvial-lacustrine sediments with 
Plinthosols under alluvial rainforest and sandy flats with Spodosols under savanna.

DISCUSSION

Model performance and uncertainty

The methodological framework employed in this study optimized the prediction of SOC 
contents through digital soil mapping methodologies for covariate and model selection, 
coupled with an assessment of prediction uncertainty. Notably, the application of Recursive 
Feature Elimination (RFE) did not enhance model performance, aligning with findings 
from previous studies (Stevens et al., 2013; Gomes et al., 2019). 

This framework facilitated the identification of the best-performing model based on a 
subset of covariates with higher confidence. These covariates were initially selected by 
their respective models using RFE. Furthermore, the framework provided a measure of 
prediction uncertainty, a valuable feature in DSM for modeling SOC contents. As a result, 
this methodological approach enables the creation of maps with known performance and 
is well-suited for mapping SOC contents in areas characterized by high environmental 
diversity.

Figure 6. Predicted values versus laboratory-determined values for soil organic carbon contents. Predicted value versus observed 
values of soil organic carbon using Cubist (a) and Random Forest (b) algorithms.
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Figure 7. Importance of covariates on predicting soil organic carbon (SOC) contents using the 
best-performing algorithm.

Figure 8. Soil carbon contents obtained from 81 runs using the best-performing algorithm (a); coefficient of variation - CV (%) of 
the 81 predictions with the Cubist model (b); mean organic carbon contents of soils per geoenvironment (c); and mean coefficient 
of variation - CV (%) per geoenvironment (d).
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Our findings validate the efficacy of the Cubist model as a robust machine-learning 
algorithm for predicting SOC, aligning with observations by Goydaragh et al. (2021) and 
Zeraatpisheh et al. (2022). The prediction statistics indicate overfitting is not a concern, 
as evidenced by the similarity in R², NSE, and LCCC values between the training and test 
sets (Table 3). This conclusion is further supported by the marginal differences observed 
in RMSE and MAE between the training and validation sets. Notably, the R² variation 
was less than 5 % when predicting SOC contents in the training set. The slightly greater 
variation in the test sets suggests an increase in prediction uncertainty, possibly attributed 
to the smaller number of samples utilized for cross-validation compared to training or 
to the internal data selection process of the Cubist model.

The scarcity of soil data emerges as a notable source of error in DSM (Malone et al., 2018). 
In this context, we attribute the limited representativeness of soil samples as a plausible 
reason for the elevated prediction uncertainty observed in specific geoenvironments. 
Furthermore, the natural variability of the study area, influenced by climate changes 
at the end of the Pleistocene and the beginning of the Holocene, neotectonic events 
(Rossetti and Valeriano, 2007; Rossetti et al., 2012), and relative sea level variations 
(Cohen et al., 2005), has transformed the region into a complex pedogeomorphological 
landscape. These factors may have contributed to uncertainties in the mapping process.

Distribution of SOC concentration in the geoenvironments of the eastern 
Marajó island

In the geoenvironments of dense alluvial tropical forests, primary productivity is high, 
favoring SOC accumulation through litter deposition, which tends to be cycled by 
microorganisms even during the wetter periods of higher decomposition rates, remaining 
in the soil (Sanches et al., 2008; Ritter et al., 2018; Sakai and Kitajima, 2019). Even with 
the partial suppression of vegetation by the local population for livestock, subsistence 
agriculture, and wood extraction (Lisboa, 2012), these soils maintain SOC concentrations 
for some time, as pre-existing litter decomposes (Barros and Fearnside, 2016). These 
areas are predominantly composed of loamy, aluminous, kaolinitic soils, poor in iron 
(Rêgo, 1986; Horbe and Costa, 1997). Additionally, dense alluvial rainforests with palms 
on Plinthosols and Gleysols are commonly affected by seasonal flooding (Japiassú and 
Filho, 1974; Rossetti and Valeriano, 2007). In the Amazon biome, seasonally flooded 
forests have higher SOC concentrations on average when compared to non-flooded 
forests due to slower decomposition rates (Barbosa et al., 2017).

Figure 9. Mean soil carbon contents per geoenvironment, obtained by averaging the cells within each geoenvironment.
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Located in floodplains, the old salt-plain terrace with fluvial-lacustrine sediments with 
high concentration of archaeological sites has a marked presence of paleochannels 
(Rossetti et al., 2009; Francisquini et al., 2014), with arboreal-shrub vegetation aligned 
with alluvial tropical forests (Japiassú and Filho, 1974). With naturally high SOC content, 
many of these areas were chosen as human settlements by pre-Columbian communities, 
both for their better drainage and proximity to water resources (Lisboa, 2012; Meggers 
and Roosevelt, 1992). These occupations increased the SOC through the deposition of 
bones and feces (Meggers and Evans, 1957).

Mangroves and coastal muddy soils are widely distributed in tropical and subtropical 
regions of the world, with high productivity and rapid deposition rates (Cui et al., 2021). 
In these geoenvironments, low oxygen concentrations result in a slow rate of SOC 
mineralization, favoring its long-term accumulation and stability (Sahrawat, 2003). In 
mangroves in the southeast and south areas, with greater fluvial influence, non-saline 
Gleysols predominate, while in the northeast and north areas, with greater marine 
influence, saline and sodic Gleysols predominate (Henriques et al., 2022).

The sandy plains with Spodosols under savanna (Cerrado) naturally have a low topsoil 
SOC content, either due to the natural occurrence of fire (Gomes et al., 2018), sandy 
texture low cationic adsorption capacity (Yost and Hartemink., 2019) or due to greater 
evapotranspiration and sparser vegetation in these areas (Henriques et al., 2022). The 
saline geoenvironments, Low Terraces and plains with saline-sodic Gleysols, Apicum 
with Gleysols and halophytes plants, and Salt-plain with paleo dunes also had low SOC 
content. Such environments have higher evapotranspiration and lower precipitation 
(Lisboa, 2012), resulting in soils affected by salts, such as Salic Gleysols (Henriques et 
al., 2022). Salinity and sodicity reduce primary productivity (Katerji et al., 2003), increase 
the potential for SOC decomposition (Setia et al., 2012), and the propensity for erosion 
(Wong et al., 2010).

Climate vulnerability of SOC in the geoenvironments of Marajó island

Impacts of climate change on SOC have been observed in various studies in the wetlands 
(Fitzgerald et al., 2008; Valiela et al., 2018; Alaniz et al., 2022; Hidalgo-Corrotea et al., 
2023), revealing intensification of coastal erosion and habitat loss, culminating in reduced 
primary productivity and consequent decrease in soil carbon absorption.

Soils beneath dense alluvial tropical forest geoenvironments, which have the highest 
levels of SOC in the study area, may also be subject to these changes. Even though 
increased CO2 may enhance primary productivity (Ainsworth and Long, 2005), intensifying 
dry and wet seasons would lead to increased tree mortality (Allen et al., 2010; Adams 
et al., 2017). Moreover, the global temperature increase of 1.5 °C predicted by IPCC 
(Stocker et al., 2014) would lead to a net increase in SOC release into the atmosphere 
via decomposition (Trumbore et al., 1996; Davidson and Janssens, 2006), as microbial 
activity tends to increase with temperature (He et al., 2010).

Supported by lateritic crusts, already in the process of dissolution under the humid climate 
of the island (Horbe and Costa, 1997), these forested areas will be subject to sea-level 
rise (Barros and Albernaz, 2014), which tends to undercut the base of lateritic slopes, 
causing the dissolution of Fe and Al oxyhydroxides and resulting in the dismantling of 
the relief (Henriques et al., 2022). The mortality of economically valuable tree species 
for local populations (Açaí, cupuaçu, murici), combined with the loss of suitable areas 
for the regeneration of these species, may lead to the disappearance of these plants, 
representing a burden for several extractive families that depend on these natural 
resources for survival (Lisboa, 2012; Evangelista-Vale et al., 2021).
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Climate projections for the island suggest, in the coming decades, a significant portion 
of Marajó’s wetlands may face permanent flooding (Barros and Albernaz, 2014). This 
anticipated inundation, particularly in geoenvironments with fluvial-lacustrine influence, 
currently sustained by freshwater (Santos et al., 2008; Rosário et al., 2009), could 
adversely impact soil microorganisms. The entry of saline water into these areas might 
directly harm soil microorganisms, leading to increased osmotic stresses and specific 
ionic toxicity (Wong et al., 2010). Additionally, it could indirectly affect microbial activity, 
diminishing SOC content and plant residue input (Singh, 2016). Moreover, the permanent 
flooding of these regions would render buffalo farming economically unviable and reduce 
the available areas for rice cultivation, which are crucial economic activities on Marajó 
island (Lisboa, 2012).

Considering the projected rise in sea levels, Marajó island may revert to conditions 
reminiscent of the mid-Holocene, when sea level rise facilitated the establishment of 
mangroves in the central regions of the floodplains (França et al., 2012; Smith et al., 
2012). In such conditions, and as biological communities adapt (Singh, 2016), the long-
term accumulation of SOC may be favored (Rogers et al., 2019; Watanabe et al., 2019). 
This is because the area of carbon deposition under anoxic conditions would likely 
increase (Sahrawat, 2003).

CONCLUSIONS
Machine learning algorithms have demonstrated their effectiveness in mapping SOC 
content and its associated uncertainty in topsoil, utilizing readily available covariates. 
The methodological framework outlined in this study optimizes the prediction process 
without compromising performance. It achieves this by selecting only the most crucial 
covariates and the best-fitting model, enabling the prediction of SOC content alongside 
its corresponding uncertainty. This approach opens avenues for conducting long-term 
monitoring studies of SOC, particularly in remote and challenging-to-access regions 
characterized by significant geoenvironmental diversity. Furthermore, the spatial 
visualization of mapping uncertainties holds potential for future research and mapping 
endeavors. It can be employed to identify priority areas for sample collection, enhancing 
the efficiency of soil data gathering and contributing to more accurate and reliable SOC 
mapping efforts.

The most influential covariates that shape the distribution of SOC stocks in the wetlands 
of Marajó island include the elevation of each cell, the distance between the base and 
the summit of the slope, the convexity of the terrain surface, and the proximity to water 
bodies. The Cubist model outperformed other machine learning methods in predicting 
surface SOC content in the wetlands of Marajó island, achieving higher accuracy.

Global climate change may directly impact SOC in the geoenvironments of the wetland 
areas of Marajó island and its local population, which traditionally relies on land use-related 
activities. However, surface SOC content alone does not fully reflect the soil’s actual 
capacity to store carbon. Modeling studies of carbon stocks in the diverse geoenvironments 
of the wetland areas of Marajó island are deemed necessary for a comprehensive 
understanding.
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