Resumo em Inglês:
ABSTRACT: Traditional method of soil survey is expensive, slow, and must be carried out by experienced researchers. Thus, advances in soil observation technologies and the need to obtain information quickly by modern techniques have intensified the use of proximal sensing. This study characterized surface reflectance spectra (A horizon) and related them to traditional soil classification, based on morphological, physical, and chemical properties of representative pedogenetic profiles, developed in two toposequences of the Distrito Federal, Brazil. In the toposequences, 15 soil profiles were selected for a complete morphological description and sampling for laboratory analyses. Soil-landscape relationships were established, and profiles were classified to the fourth level of the Brazilian Soil Classification System (SiBCS). Classes of similar soils were grouped based on their surface spectra, resulting in spectral curves of 10 representative soils in the studied area. The Morphological Interpretation of Reflectance Spectrum (MIRS) and second derivative of the Kubelka-Munk (KM) function were applied to the soil spectra. The clustered soils were similar, mainly in terms of color, textural class, and organic matter content. Groups based on soil physical and chemical properties and on surface and subsurface colors were similar to those determined by surface reflectance. The identification of soil-landscape relationships was fundamental to understand the genesis and distribution of the soils, which had similar chemical and physical properties to their parent materials. The analysis of clusters based on soil surface reflectance proved efficient in determining groups of soil classes with similar properties. Surface reflectance data were related to the soil surface and subsurface properties determined by traditional soil sample analyses, since the two approaches formed similar groups. The simultaneous interaction of soil properties was assessed by MIRS analysis, while the second derivative of the KM function adequately quantified the mineralogy of the spectra.Resumo em Inglês:
ABSTRACT: In geostatistical modeling of soil chemical properties, one or more influential observations in a dataset may impair the construction of interpolation maps and their accuracy. An alternative to avoid the problem would be to use most robust models, based on distributions that have heavier tails. Therefore, this study proposes a spatial linear model based on the slash distribution (SSLM) in order to characterize the spatial variability of soybean yields as a function of soil chemical properties. The likelihood ratio statistic (LR) was applied to verify the significance of parameters associated with the model. We evaluated the sensitivity of the maximum likelihood estimators by means of local influence analysis for both the soybean response and the linear predictor. In the proposed model, we analyzed data gathered from a commercial grain production area (127.18 ha) located in the western part of the state of Paraná (Brazil). The results showed that the slash distribution allowed us to adjust the high kurtosis of the data set distribution and the LR test confirmed that the soil chemical properties of phosphorus, potassium, pH, and organic matter were significant for the SSLM. Diagnostic analysis indicated that the atypical value of the sample set was not influential in the parameter estimation process. Construction of the interpolation map based on the proposed model is not affected when considering the atypical and/or influential observations. Thus, SSLM becomes a robust alternative in the study of soybean yield variability as a function of soil chemical properties, making it possible to investigate the productive potential of the areas.Resumo em Inglês:
ABSTRACT: Seagrass meadows are considered one of the most important and valuable ecosystems on the planet, but also one of the most threatened. Missing knowledge about their existence and their subtidal nature are the main reasons for the lack of information about seagrass soils, especially in Brazil and other tropical areas. This study discussed the paradoxical lack of information about subaqueous soils, with a view to stimulate research on soil properties of seagrass meadows. This short communication provides information about the ecosystem and first descriptions of seagrass soils along the Brazilian Coast, marked by gleyzation, sulfidization, salinization, paludization, solonization, and classified as Gleissolos tiomórficos. Pedological studies on these ecosystems provide useful tools for their management, protection, and restoration. Thus, it is fundamental that soil scientists increase their knowledge about subaqueous soils, not only as a contribution to the Brazilian Soil Classification System, but for the conservation of these ecosystems.Resumo em Inglês:
ABSTRACT Soil surveys often contain multi-component map units comprising two or more soil classes, whose spatial distribution within the map unit is not represented. Digital Soil Mapping tools supported by information from soil surveys make it possible to predict where these classes are located. The aim of this study was to develop a methodology to increase the detail of conventional soil maps by means of spatial disaggregation of multi-component map units and to predict the spatial location of the derived soil classes. Three digital maps of terrain variables - slope, landforms, and topographic wetness index - were correlated with the soil map and 72 georeferenced profiles from the Porto Alegre soil survey. Explicit rules that expressed regional soil-landscape relationships were formulated based on the resulting combinations. These rules were used to select typical areas of occurrence of each soil class and to train a decision tree model to predict the occurrence of individualized soil classes. Validation of the soil map predictions was conducted by comparison with available soil profiles. The soil map produced showed high agreement (80.5 % accuracy) with the soil classes observed in the soil profiles; Ultisols and Lithic Udorthents were predicted with greater accuracy. The soil variables selected in this study were suitable to represent the soil-landscape relationships, suggesting potential use in future studies. This approach developed a more detailed soil map relevant to current demands for soil information and has potential to be replicated in other areas in which data availability is similar.Resumo em Inglês:
ABSTRACT: Users of soil survey products are mostly interested in understanding how soil properties vary in space and time. The aim of digital soil mapping (DSM) is to represent the spatial variability of soil properties quantitatively to support decision-making. The goal of this study is to evaluate DSM techniques (Regression Trees - RT and Multiple Linear Regressions - MLR) and the ability of these tools to predict mineral fraction content under a wide variability of landscapes. The study site was the entire Guapi-Macacu watershed (1,250.78 km2) in the state of Rio de Janeiro in the Southeast region of Brazil. Terrain attributes and remote sensing data (with 30 m of spatial resolution) were used to represent landscape co-variables selected as an input in predictive models in order to develop the explanatory variables. The selection of sampling sites was based on the Latin Hypercube algorithm. A representative set of one hundred points with feasible field access was chosen. Different input databases were tested for prediction of mineral fraction content (harmonized and original data). The Spline algorithm was used to harmonize data according to the GlobalSoil. Net consortium standards. The results showed better performance from the RT models, using input from an average of six covariates; the simplest MLR model used twice as many input variables, creating more complex models without gaining precision. Furthermore, better R2 values were obtained using RT models, irrespective of harmonization of soil data. The harmonized dataset from the 0.00-0.05 and 0.05-0.15 m layers, in general, presented better results for the clay and silt, with R2 values of 0.52 (0.00-0.05 m) and 0.69 (0.05-0.15 m), respectively. Prediction of sand content showed better results when the original depth data was used as an input, although all regression tree models had R2 values greater than 0.52. The RT models provided a better statistical index than MLR for all predicted properties; however, the variance between models suggests similarity of performance. Regarding harmonization of soil data, both input databases (harmonized or not) can be used to predict soil properties, since the variance of model performance was low and generalization of the soil maps showed similar trends. The products obtained from the digital soil mapping approach make it possible to integrate the factor of uncertainties, providing easier interpretation for soil management and land use decisions.Resumo em Inglês:
ABSTRACT Plinthite and petroplinthite occur frequently in Brazilian soils, but there is little information on the behavior of these materials. The aim of the present study was to assess the effect of different drying periods on the hardening and stability of plinthic materials of soils in the floodplain of the Araguaia River and the João Leite stream in Goiás. Soil samples were collected, with the aid of 0.10 m high and 0.15 m diameter PVC cylinders, directly from the plinthic horizons of five profiles of Plintossolos Argilúvicos (Plinthosols). Plinthite and soil matrix subsamples were obtained from these samples. Homogeneous petroplinthite samples were collected from the concretionary horizon of a Plintossolo Pétrico (Plinthosol) profile, and these were separated into subsamples with the aid of a rock hammer. All subsamples were dried in two manners: air drying and drying in a forced ventilation oven for 10, 20, 40, 80, and 160 days. Compressive strength and degree of stability were assessed. The results show a considerable variety of responses to the compressive force applied to the plinthite and petroplinthite samples in the same horizon and among the different profiles examined.Resumo em Inglês:
ABSTRACT Digital soil mapping (DSM) has been increasingly used to provide quick and accurate spatial information to support decision-makers in agricultural and environmental planning programs. In this study, we used a DSM approach to map soils in western Haiti and compare the performance of the Multinomial Logistic Regression (MLR) with Random Forest (RF) to classify the soils. The study area of 4,300 km2 is mostly composed of diverse limestone rocks, alluvial deposits, and, to a lesser extent, basalt. A soil survey was conducted whereby soils were described and classified at 258 sites. Soil samples were collected and subjected to physical and chemical analyses. Recursive Feature Elimination (RFE) was used to select the most important covariates from auxiliary data, such as climate, lithology, and morphometric properties to describe the soil-landscape relationship. Mapping performance was assessed by the Kappa index and overall accuracy derived from a confusion matrix generated using a 5-fold cross validation process. In addition, an external mapping validation was carried out using an independent soil dataset. Accordingly, the soil dataset was split into 80 % and 20 % for training and validation of the models, respectively. No significant statistical difference (Z = 0.56< |1.96|) was found between maps generated with both classifiers (Kappa index 0.45 for MLR and 0.42 for RF). Based on the Kappa values, the classification performance can be characterized as moderate for both algorithms. Surprisingly, the RF classifier outperformed MLR in the validation process (Kappa values of 0.55 and 0.33, respectively). These results suggest a higher generalization ability of RF. However, no significant statistical difference (Z = 1.83< |1.96|) was observed. The soil map derived from RF indicated the occurrence of Leptosols (48.5 %), Gleysols (19.6 %), Chernozems (8 %), and Fluvisols (6.6 %) in most of the study area. The DSM approaches proved suitable for mapping soils in western Haiti and could be used in other parts of the country, thereby closing information gaps with regard to Haitian soils.Resumo em Inglês:
ABSTRACT Although ferruginous materials occur frequently in soils of tropical regions, information about the reversal of the hardening process of these materials is scarce. This study assessed the influence of different chemical treatments and periods of immersion on the reversibility of the hardening process of plinthite and petroplinthite in soils of the Araguaia River plain. Soil samples were collected from the plinthic horizons in 0.10 m high and 0.15 m diameter PVC cylinders and divided into subsamples with a rock hammer. Homogeneous petroplinthite samples were also collected and broken into subsamples with a rock hammer. The plinthite and petroplinthite subsamples were subjected to five immersion treatments: distilled water, calcium carbonate solution, sodium hydroxide solution, sodium hydroxide solution + sodium hexametaphosphate, and acidic solution. The subsamples were immersed for 20, 40, 80, and 160 days. The dispersion and stability degrees and compressive strength in these subsamples were assessed. The wet aggregate stability test indicated no impact on the structural stability of plinthite and petroplinthite subsamples subjected to the treatment with different chemical agents, demonstrating the non-reversibility of the hardening process of these materials of the Araguaia River floodplain, under the studied conditions.Resumo em Inglês:
ABSTRACT Although the physical environment of the Atlantic Forest realm is well known, studies on the soil-landform relationships are fundamental to improve the management of soil resources to facilitate sustainable development. The purpose of this study was to evaluate a representative topossequence on the “Mares de Morros” landscape of deeply weathered regolith on leucocratic granite rocks and demi-orange convex slopes. The soils varied along the topossequence according to drainage and were classified as Acrudox, Pseudogleysol, and Epiaquent. The clay fraction was composed by kaolinite, in association with gibbsite, goethite, hematite, and traces of vermiculite and hydroxy-Al interlayered vermiculite (HIV). The kaolinite crystallinity index obtained by different methods showed high structural disorder throughout the sequence, indicating that long-term pre-weathering has produced a homogenous regolith with little differences in terms of mineralogy, despite the changes in drainage. On the other hand, micromorphological features showed a complete change from the typical, well-developed microaggregate structure of upland, well-drained soils, to a massive, poorly developed structure downslope, consistent with the morphological description. Changes in microstructure development and micropedological features occurred both vertically and laterally along the topossequence and indicate that mineralogy alone cannot account for the microaggregate structure of kaolinitic Latossolos (Oxisols) well-drained with low Fe contents. Soils from the “Mares de Morros” landscape of the Alegre river basin on leucocratic granitic rocks highlight an inheritance of a deep pre-weathered regolith, showing subtle chemical and mineralogical changes, but marked morphological and physical differences along the topossequence, basically controlled by soil drainage in the past or present.Resumo em Inglês:
ABSTRACT Archaeological Dark Earth (ADE) pedogenesis and pre-Columbian history are fundamental for understanding the biodiversity and pedodiversity of the Neotropical rainforest in the Amazon region. This study aimed to evaluate the morphological, physical, chemical, and mineralogical properties as well as NaOH-extractable organic matter [OM(NaOH)] in ADE and Mulatto Earth (ME) overlying volcanic rocks along a toposequence (four soil profiles) in western Amazonia, Brazil. The soil profiles show anthropic A horizons over an argic horizon (Bt) in the ADE (Humic, Pretic Luvisols) and Bi in the ME (Clayic, Dystric Cambisols). The soil-forming processes in all of the profiles are associated with organic matter accumulation, such as humification and melanization, besides the formation of organometallic complexes. Calcium, Mg, P, and organic carbon contents were higher in ADE compared to ME. High-activity clays are derived from parent volcanic material, distinguishing the soils studied from Amazonian soils (Tertiary Plateau, Terra Firme) and most Amazonian anthropic soils. The anthropic horizons generally have a large contribution from OM(NaOH), predominantly humin and humic acids associated with Ca, Mg, and poorly crystalline Al hydroxides. The results suggest that the anthropic driving-forces caused greater differences in pedogenesis than the soil location in the landscape.Resumo em Inglês:
ABSTRACT: The study of soils, including their physical and chemical properties, is essential for agricultural management. Soil quality must be maintained to ensure sustainable production of food and conservation of natural resources. In this context, soil mapping is important to provide spatial information, which can be performed using remote sensing (RS) techniques. Modeling through use of satellite data is uncertain regarding the amplitude of replicability of the models. The aim of this study was to develop a quantification model for soil texture based on reflectance information from a continuum of bare soils, obtained by overlapping multi-temporal satellite images, and apply this model to an unknown region to evaluate its applicability. Spectral data were extracted from two Landsat TM 7 satellite images containing only bare soil, representing two distinct regions in Brazil (Area 1 and Area 2). The spectral data (obtained from six bands) and laboratory data (particle size from the 0.00-0.20 m layer) of Area 1 were modeled and extrapolated to Area 2. The bare soil images differentiated textural classes as sandy, sandy loam, clayey loam, clayey, and very clayey soil. The coefficients of determination between the determined and estimated values were higher than 0.5 and errors lower than 13 % for Area 1 and 30 % for Area 2, indicating applicability of the model to unknown areas.Resumo em Inglês:
ABSTRACT: Planning sustainable use of land resources requires reliable information about spatial distribution of soil physical and chemical properties related to environmental processes and ecosystemic functions. In this context, cation exchange capacity (CEC) is a fundamental soil quality indicator; however, it takes money and time to obtain this data. Although many studies have been conducted to spatially quantify soil properties on various scales and in different environments, not much is known about interactions between soil properties and environmental covariates in the Brazilian semiarid region. The goal of this study was to evaluate the efficiency of random forest and cokriging models applied to predict CEC in the Brazilian semiarid region. The covariates used to predict CEC consist of images from Landsat 5 TM and a legacy soil map (scale 1:10,000). The sample set comprises 499 samples from the topsoil layer (0.00-0.20 m), where 375 samples were used in training processes and 124 as validation samples. The cokriging model (R2 = 0.57 and RMSE = 7.22 cmolc kg-1) performed better in predicting CEC than the random forest model (R2 = 0.47 and RMSE = 7.89 cmolc kg-1). The approach used showed potential for estimating CEC content in the Brazilian semiarid region by using covariates obtained from orbital remote sensing and the legacy soil map.Resumo em Inglês:
ABSTRACT: Records of changes in the phytosociological structure of vegetation can be observed more clearly in soils that have more significant accumulation of organic matter, like those occurring in high-mountain environments. The aim of this study was to characterize soils formed in high-mountain environments in the Itatiaia National Park (INP), state of Rio de Janeiro, southeastern Brazil, and to discuss the potential of preserved phytoliths as markers of vegetative history and environmental factors. Four profiles were selected, which were morphologically described and evaluated for their physical and chemical properties. For phytolith analysis and high-resolution determination of the stable carbon isotopes, samples were collected at 0.10 m intervals. The profiles showed highly similar morphological characteristics, with peat deposits and colluvial sediments as source material, produced in the highest parts of the landscape. High-mountain soils in the INP have properties related to high contents of organic matter, like high acidity, low base saturation, and high CEC values due to high H+ contents. The soils are formed by the addition of plant residues, which accumulate due to the cold and humid climate during most of the year in these environments. The phytolith assemblage had a high frequency of morphotypes characteristic of temperate, cold, and high elevation intertropical regions, especially of Pooideae plants. The phytolith indexes indicated open vegetation environments with a predominance of C3 grasses, suggesting cold climate conditions, and corroborating the δ13C isotopic values. The results of phytolith analysis of the profiles reflected characteristics related to soil genesis. Organism is the main soil formation factor, conditioned by the factors relief (elevation) and climate, which resulted in low temperatures and lead organic matter accumulation.Resumo em Inglês:
ABSTRACT: Increasingly, applications of machine learning techniques for digital soil mapping (DSM) are being used for different soil mapping purposes. Considering the variety of models available, it is important to know their performance in relation to soil data and environmental variables involved in soil mapping. This paper investigated the performance of eight machine learning algorithms for soil mapping in a tropical mountainous area of an official rural settlement in the Zona da Mata region in Brazil. Morphometric maps generated from a digital elevation model, together with Landsat-8 satellite imagery, and climatic maps, were among the set of covariates to be selected by the Recursive Feature Elimination algorithm to predict soil types using machine learning algorithms. Mapping performance was assessed using the confusion matrix, and the Z-test among the Kappa indexes of the matrices. In a conventional soil survey, the soils described and classified in the Brazilian System of Soil Classification [Argissolos Vermelho-Amarelos Distróficos – PVAd (Acrisols), Cambissolos Háplicos Tb Distróficos - CXbd (Cambisols), Gleissolos Háplicos Háplicos Tb Distróficos - GXbd (Gleysols), Latossolos Amarelos Distróficos - LAd (Xanthic Ferralsos), Latossolos Vermelho-Amarelos Distróficos - LVAd (Rhodic Ferralsols), and Neossolos Litólicos Distróficos - RLd (Neossols)] were grouped into composite mapping units (MU) using the conventional method. The eight algorithms showed similar performance without statistical difference (Kappa 0.42-0.48). The mapping of soils with varying slopes (LAd, LVAd, CXbd) showed lower accuracy, whereas soils on hydromorphic lowlands (GXbd) were classified more accurately. In map algebra, the result was rather satisfactory, with 63-67 % agreement between the conventional soil map and maps produced by machine learning. The areas with the largest disagreement in the DSM occurred in the LAd unit due to subtle color variation in the Latossolos mantle without a clear relation to any environmental variable, highlighting difficulties in DSM regarding hill slope landforms. Model performance was satisfactory, and good agreement with the conventional soil map demonstrates the importance of the DSM as a potential complementary tool for assisting soil mapping in mountainous areas in Brazil for the purpose of land use planning.Resumo em Inglês:
ABSTRACT Quantification of soil properties is essential for better understanding of the environment and better soil management. The conventional techniques of laboratory analysis are sometimes costly and detrimental to the environment. Thus, development of new techniques for soil analysis that do not generate residues, such as spectroscopy, is increasingly necessary as a viable way to estimate a wide range of soil properties. The objective of this study was to predict the levels of organic carbon (OC), clay, and extractable phosphorus (P), from the spectral responses of soil samples in the visible and near infrared (Vis-NIR), medium infrared (MIR), and Vis-NIR-MIR using different preprocessing methods combined with five prediction models. Soil samples were collected in Iconha, Espírito Santo State, Brazil, in the Ribeirão Inhaúma basin. A total of 184 samples were collected from 92 sites at two depths (0.00-0.10 and 0.10-0.30 m). Physical, chemical, and spectral analyses were performed according to routine soil laboratory methods. Random selection was made of 70 % of total samples for training and 30 % for validation of the models. The coefficient of determination (R2) and root mean square error (RMSE) were calculated in order to assess model performance. The standardized indexes of prediction error RPD and RPIQ were also calculated. For clay and OC, the best R2 was found in the MIR spectrum, at 0.69 and 0.65, respectively, and for P, it was 0.57 in Vis-NIR. The MSC (Multiplicative Scatter Correction), CR (Continuum removal), and SNV (Standard Normal Variate) preprocesses were most efficient for predicting clay, OC, and P, respectively, while the PLSR - Partial Least Squares Regression (OC and P) and SVM - Support Vector Machine (clay) gave the best predictions and are therefore recommended for modeling these properties in the study area. The models identified in this study can be used to discriminate soils according to a critical test value for clay, OC, and P.Resumo em Inglês:
ABSTRACT A large number of predictor variables can be used in digital soil mapping; however, the presence of irrelevant covariables may compromise the prediction of soil types. Thus, algorithms can be applied to select the most relevant predictors. This study aimed to compare three covariable selection systems (two filter algorithms and one wrapper algorithm) and assess their impacts on the predictive model. The study area was the Lajeado River Watershed in the state of Rio Grande do Sul, Brazil. We used forty predictor covariables, derived from a digital elevation model with 30 m resolution, in which the three selection models were applied and separated into subsets. These subsets were used to assess performance by applying four prediction algorithms. The wrapper method obtained the best performance values for the predictive model in all the algorithms evaluated. The three selection methods applied reduced the number of covariables in the predictive models by 70 % and enabled prediction of the 14 soil mapping units.Resumo em Inglês:
ABSTRACT: Ultisols are the most common soil order in the Brazilian Amazon. The Legal Amazon (LA) has an area of 5 × 106 km2, with few accessible areas, which restricts studies of soils at a detailed level. The pedological properties can be estimated more efficiently using statistical procedures and machine learning techniques, tools which are capable of recognizing patterns in a large soil database. We analyzed the main chemical and physical properties of the B horizons of the Ultisols of the Brazilian Amazon, as well as the spatial variability of the most explanatory properties of these horizons. Physical and chemical data of 1,068 profiles of the RadamBrasil Project were used. A principal component analysis (PCA) was applied and the most explanatory variables were separated by morphostructural units and climate zones. The technique of machine learning was used for spatialization of the explanatory variables based on predictive covariates. In general, the horizons are thick, clay, with a predominance of negative charges, and low levels of exchangeable cations. The variables retained in the PCA were: sum of bases (SB), Al3+, degree of flocculation (Floc), ∆pH, and organic carbon content (C). Areas of greater precipitation have low SB, with higher values in the basement complex (BC) and in areas under the Andean influence. Higher levels of Al3+ and degrees of flocculation were also associated with greater precipitation. However, the soils are predominantly electronegative, showing a kaolinitic mineralogy. The C contents in general were low, with an increase in more humid zones due to the process of mineralization and illuviation (podzolization), and in the BC due to the protection of C by the aggregation of clay. The use of multivariate analysis allowed a better understanding of the Ultisols’ main properties in different morphostructural and climatic domains, and its spatialization facilitated the interpretation of properties and their relationships with environmental characteristics in the Legal Amazon.Resumo em Inglês:
ABSTRACT The study of the relationships between the yield potential of forest stands and the conditions offered for plant development is fundamental for the adequate management of the forest when aiming at sustainable high yields. However, these relations are not clear, especially in commercial forests, on rugged terrain where relationships between the landscape, soil, and plants are more complex. Considering this, we tested the hypothesis that the morphological aspects of the soil conditioned by topography are the main limiting factors for tree development. Our objective was to evaluate the edaphic and topographic influence on the dendrometric variation of Pinus taeda L. of a forest stand in a subtropical climate at high altitude. For that, Spearman’s correlation analysis and canonical correspondence were performed on two data datasets containing pedological, topographic, and dendrometric information of a commercial plantation of Pinus taeda, in the Campo Belo do Sul, Santa Catarina state, Brazil. Soil sampling and characterization was performed in two distinct designs. The first design was based on the morphological description of 11 soil profiles. The second was performed with intensive prospecting of the area, with 102 sampling locations determined through conditioned Latin hypercube sampling. For each sampling point, the height and diameter of the four nearest trees were measured and the terrain attributes were calculated from the digital elevation model. The solum depth, the thickness of the superficial horizon, elevation, and vertical distance to channel network were the main conditioning factors of the dendrometric variation, wherein taller trees were found in deeper soils, with a thicker surface horizon, in lower areas that are vertically closer to the drainage network. Our results showed that the selection of topographic and morphological variables has a significant effect on the tree height and should therefore be used to select homogeneous areas for the development of the species. In addition, we showed the importance of using an intensive sampling survey to understand dendrometric variation.Resumo em Inglês:
ABSTRACT The CO2 emission from the soil surface, commonly referred to as soil CO2 efflux (ECO2) or soil respiration, is the sum of processes that include root respiration and microbial activity. Measuring this evolution is important to establish sustainable land use models and to estimate global fluxes of carbon, which affect climate change. Despite its importance, few measurements have been made in areas of the semiarid Brazilian Northeast region, and most of them were made using the alkali absorption method (AA), which can underestimate ECO2. Measurements using AA were compared to measurements using the infrared gas analyzer method (IRGA) over ten months (in rainy and dry seasons), during the day and night, in areas of Caatinga (xeric shrubland and thorn forest) and pasture in the Agreste region of the state of Pernambuco. The ECO2 measurements from AA varied little from night to day and throughout the year or in the rainy and dry seasons. However, those obtained from IRGA were higher in the rainy than in the dry season, but also without significant differences from day to night. The values of both methods were similar in the dry season, but in the rainy season they were higher with the IRGA. Therefore, AA seems to have little sensitivity to seasonal variations, in contrast with measurements from the IRGA, and it may underestimate soil ECO2 when it attains higher values. This result indicates that some of the soil ECO2 values determined in areas of the Brazilian semiarid region, and consequently annual C losses, may have been underestimated.Resumo em Inglês:
ABSTRACT Microorganisms are excellent soil quality indicators because their properties within the soil community change quickly in response to changes in the surrounding environment. The aim of this study was to determine if the structure and diversity of soil bacterial and fungal communities were useful for discriminating cut flower cultures under conventional (CM), ecological (EM), and intermediate (IM) management practices. Results obtained by PCR-DGGE revealed that bacteria had lower similarity in structure and higher diversity under EM than under CM. Sites under IM showed greater similarities in structure and diversity to the site under CM, although there were still significant differences between them. Fungal structure showed higher similarity among sites, with differences in diversity only between EM and CM. In the sites studied, bacteria, rather than fungi, were good indicators of changes in soil quality. The results of this study confirmed that EM and IM promote soil bacteria diversity.Resumo em Inglês:
ABSTRACT Soil temperature is a physical property of great agricultural importance in the soil-plant relationship and in energy exchange with the atmosphere. This study was conducted in a degraded Cambissolo Háplico Ta Eutrófíco (Cambisol; Inceptisol) in the Irecê Identity Territory, Bahia, Brazil, aiming to evaluate the hourly, daily, and monthly fluctuations of soil temperature at depth, and soil thermal diffusivity in the castor bean crop. Hourly soil temperature data from February 4, 2014, to September 30, 2015, were obtained by using thermocouple sensors (copper-constantan) horizontally installed at 0.05, 0.10, and 0.20 m depths. Soil thermal diffusivity was estimated by phase and amplitude methods. Results showed that, for most days, the soil temperature was at the level recommended for castor bean. The maximum and minimum hourly and daily soil temperatures were observed in October and July, respectively, and the maximum soil temperature values occurred at 4 p.m. (0.05 m), 5 p.m. (0.10 m), and 7 p.m. (0.20 m). Soil temperature variability is low, requiring few measurement points to estimate this factor in an area. The amplitude method led to soil thermal diffusivity values compatible with results in the literature. The absence of a relationship between thermal diffusivity and soil moisture was attributed to the clay-loam soil texture, predominance of micropores, and iron oxides allowing greater approximation to the soil particles, with high thermal diffusivity even under low soil moisture conditions.Resumo em Inglês:
ABSTRACT: Evaluating soil geochemical diversity in the Amazon Basin has been a challenge largely because most study sites have been at the edge of the basin and it is difficult to get samples in such a region. Here we show that even among the most weathered soils, physicochemical soil properties express lithology. Our results are based on topsoil samples collected from different locations in minimally disturbed areas in the state of Amazonas, Brazil. Soil properties were measured using methods which are suitable for highly developed soils. The Chemical Index Alteration and Weathering Index of Parker was calculated based on the content of metal(loid)s in soils determined by X-ray fluorescence. Descriptive statistics, Pearson correlation, and Principal Component Analysis (PCA) were performed on data. In general, Amazon rainforest soils are more deeply weathered than soils in other Brazilian biomes and tropical rainforests in Asia and Africa. The high coefficient of variation of metal(loid) contents express pedogenesis and parent material diversity. Correlation analysis indicated that the tri-pentavalent elements are strongly associated with Al and Fe contents in the topsoil. In contrast, mono-divalent elements are correlated with sand and silt fractions. According to PCA, five soil groups with defined geochemical compositions and degrees of weathering could be identified: i) acidic sandy podzolized soils; ii) acidic loamy ferralitic soils with the highest content of tri-pentavalent ions; iii) acidic clayey kaolinitic soils with low metal(loid) contents; iv) acidic loamy kaolinitic soils with low metal(loid) contents; and v) silty neutral 2:1 clay soils. This study is the first effort to analyze the geochemical diversity in Amazon rainforest soils. These data are extremely valuable in determining the geochemical background for these soil types and this region. Geochemical variability can be predicted to some extent by lithology and pedogenesis, which can be applied to define the sampling required in future studies.Resumo em Inglês:
ABSTRACT Isotopic labeling of plants is useful in tracking the fate of carbon (C) from different plant parts in a soil-plant system when these parts decompose simultaneously. Pulse labeling is a relatively simple technique and is amenable for use in the field. Therefore, we evaluated a 13CO2 pulse-labeling method to label crop plants under subtropical field conditions for simultaneous root and shoot decomposition studies. Wheat (Triticum aestivum L.), pea (Pisum sativum L.), and vetch (Vicia sativa L.) plants were grown inside polyvinyl chloride (PVC) cylinders and pulse labeled once a week for a total of 11 times. After harvest, “paired” treatments were designed by combining 13C-labeled shoots with unlabeled roots and unlabeled shoots with 13C-labeled roots, resulting in six treatments (2 combinations × 3 species), plus an unamended control treatment. The 13C enrichment of plant parts, chemical fractions, 13C recovery, and distribution in roots, shoots, and soil were determined. Soil CO2 emissions were measured continuously by the alkaline trap method for 180 days. Plant dry matter production and chemical composition were not modified by 13C labeling. The maximum level of 13C enrichment (δ13C) in plants was +495 %o in wheat, +426 %o in pea, and +378 ‰ in vetch plants. All three crops showed similar patterns of 13C distribution in the following order: shoots > roots > soil. On average, 81 to 89 % of the recovered 13C was in the shoots, 7 to 14 % was in the roots, and 2.7 to 4.3 % was in the soil. The rate of C mineralization and cumulative C mineralization were not different between “paired” treatments of the three crops, showing that the paired treatments were equally degradable. The pulse-labeling technique used under field conditions allowed for production of sufficiently labeled wheat, pea, and vetch plants. Therefore, it is a practical approach with respect to resource demand (tracer and labor costs), and it is suitable for in situ labeling.Resumo em Inglês:
ABSTRACT A commonly accepted concept holds that highly fertile, shallow soils are predominant in the Basaltic Hillsides of Santa Catarina State, in southern Brazil, but their agricultural use is restricted, either by excessive stoniness, low effective depth or steep slopes. Information about soil properties and distribution along the slopes in this region is, however, scarce, especially regarding genesis and clay fraction mineralogy. The objective of this study was to evaluate soil properties of 12 profiles distributed in three toposequences (T) of the Basaltic Hillsides in the State of Santa Catarina, two located in the valley of the Peixe River (Luzerna - T1 and Ipira - T2) and one in Descanso, in the far West of the state (T3). The main focus was the mineralogical composition of the clay fraction, identified by X-ray diffractometry (XRD), and its relations with the soil chemical properties. The morphological, chemical, and mineralogical properties of the soils of the toposequences differed from each other. In most soils, the position of the most intense XRD reflections indicated predominance of kaolinite (K) however, for being broad and asymmetric, a participation of interstratified kaolinite-smectite (K-S) was assumed. Soils of T2 and T3, located in regions with higher temperatures, lower water surplus, and lower altitude than those of T1, were more fertile, mostly redder, and contained higher proportions of smectites (S) and interstratified K-S mineral, accounting for a higher activity of the clay fraction of most soils. The T1 soils were generally less fertile, with lower clay activity and, aside from kaolinite, contained smectites with interlayered hydroxy-Al polymers (HIS). The low estimated smectite contents of the most fertile soils of all toposequences disagree with the high values of cation exchange capacity (CEC) and clay activity related to pure kaolinite soils. The broad and asymmetric reflections of most of the supposed kaolinites identified as dominant minerals indicate the presence of K-S interlayers, most likely contributing to raise the CEC of the soils.Resumo em Inglês:
ABSTRACT Termites have peculiar activities in the soil, inducing significant changes in the soil properties. The objective of this study was to assess physical and chemical properties and soil organic matter to evaluate the effect of termite activity and termite mounds on the soil. Two toposequences were selected and divided in slope thirds (shoulder, backslope, and footslope). In each of these, four termite mounds were selected. Samples were taken from the soils and termite mounds (top, center, and base) along with a variety of termites for identification. Analyses were carried out for physical, soil texture, and chemical properties, as well as for particle size and chemical fractioning of organic matter. The species Cornitermes cumulans was found in all mounds. Soil with termite mound presented higher clay content, acidity, and Al3+ content. Phosphorus contents differed considerably between mound material and soil. Sum of bases and cation exchange capacity of the soil were higher in mounds, and differed within the mounds, according to the sampling height. Total organic carbon and particulate carbon content were highest at the mound base. A marked disparity was observed between the contents of humic substances in the mounds and surrounding soil, with humin fraction differences in distinct topographic position. The high nutrient contents detected in the termite mounds confirm the importance of termites in concentrating nutrients.Resumo em Inglês:
ABSTRACT Preliminary results of in vitro experiments with multicontaminated soils and solid media indicated that nodulating diazotrophic bacteria of the genus Cupriavidus are promising for the remediation of contaminated environments due to their symbiosis with legumes and metal tolerance. Thus, strains of Cupriavidus spp. (LMG 19424T, UFLA 01-659, UFLA 01-663, and UFLA 02-71) were tested for their ability to tolerate and bioaccumulate cadmium (Cd), copper (Cu), and zinc (Zn) in Luria-Bertani broth. Changes in the growth pattern of Cupriavidus strains in the presence or absence of heavy metals were analyzed by scanning electron microscopy and metal allocation by transmission electron microscopy, to clarify the mechanisms of bioremediation. Highest tolerance was detected for strain UFLA 01-659 (minimum inhibitory concentration of 5, 4.95, and 14.66 mmol L−1 of Cd, Cu, and Zn, respectively). Among the removal rates of the metals tested (9.0, 4.6, and 3.2 mg L−1 of Cd, Cu, and Zn, respectively), the bacterial activity was clearly highest for Cd. The efficiency of strain UFLA 01-659 in removing the heavy metals is associated with its high biomass production and/or higher contents of heavy metals adsorbed and absorbed in the biomass. In response to the presence of heavy metals in the liquid culture medium, the bacteria produced exopolysaccharides and small and aggregated cells. However, these responses varied according to the strains and heavy metals. Regarding allocation, all heavy metals were adsorbed on the cell wall and membrane, whereas complexation was observed intracellularly and only for Cu and Zn. These results indicate the possibility of using C. necator UFLA 01-659 for remediation in areas with very high Cd, Cu, and Zn contents.Resumo em Inglês:
ABSTRACT Studies of heavy metals are concentrate on clay fractions, but coarser fractions of the soil can constitute significant sources of structural forms of heavy metals. The aim of this study was to evaluate the occurrence of heavy metals in the structure of minerals of the sand and silt fractions of soils from three different parent materials (metamorphic rocks and granite) in southern Brazil using SEM/EDS - Scanning Electron Microscopy with Energy Dispersive Spectroscopy and with WD-EPMA - with Wavelength Dispersive-Electron Probe Microanalysis. We sampled soils from two areas naturally rich in heavy metals, with high mineral deposits (galena - PbS) hosted in carbonate rocks and phyllite/mica schist. The main form of Ba in the sand and silt fractions was as barite (BaSO4). The precipitation of Ba and S from the soil solution occurred on the surface of silicate mineral particles. Due to the proximity of ionic radius of Ba-Pb, there was isomorphic substitution of Ba for Pb in the barite structure. The only primary mineral source of Pb in the coarse soil fractions was trioctahedral mica. Several secondary minerals in the silt and sand are sources of structural Pb: plumbogummite, plumboferrite, magnetoplumbite, and cerussite. There was a strong geochemical association of Pb-Fe-Mn. Zinc was also associated with Fe. The SEM/EDS/WD-EPMA techniques are important analyses to complement standard procedures, such as X-ray diffraction and total chemical digestion, in geochemical studies.Resumo em Inglês:
ABSTRACT Geostatistics allows the evaluation of the distribution pattern of data with high spatial variability in agricultural systems. This study aimed to evaluate the spatial variability of biological diversity indices of soil fauna under different land (agriculture and forest). Samples were collected in seven areas (millet, soybean, corn, eucalyptus, pasture crops, and preserved and disturbed Cerrado), in Maranhão state, Brazil. The soil fauna was caught trapped in pitfall traps, installed 3 m away from each other. In each area, 130 traps were maintained for seven days. After this period, they were removed and their content transferred to bottles and taken to the laboratory, where the insects were screened and identified at the level of orders and families. Eight indices were calculated, namely: individuals trap-1 day-1, Jackknife richness estimator, the Simpson, McIntosh, Shannon, and total diversity, and Simpson dominance, and Pielou equitability indices. The spatial variability was derived from the semivariograms fitted to Gaussian, spherical, and exponential geostatistical models. Statistical analysis showed medium values of the coefficient of variation for millet, except for the indices individuals trap-1 day-1 and McIntosh diversity, which were considered high. The values of the correlation matrix were negative for some indices, suggesting an inverse relationship. For millet, corn, eucalyptus, disturbed Cerrado, and pasture areas, the Shannon diversity index exhibited a pure nugget effect. For the areas of millet, corn, disturbed Cerrado and pasture, the total diversity index was adjusted to the Gaussian model. The degree of spatial dependence was considered high for the individuals trap-1 day-1 and Pielou equitability indices for millet. Only for soybean and pasture similarity in the scaled semivariograms was observed for the spatial variability of the indices, indicating similarity of performance. Soil management and land use affect the patterns of soil fauna abundance, richness, and diversity. The presence of groups such as Araneae, Diplura, and Poduromorpha are related to ecological equilibrium, quality, and sustainability of the agricultural systems studied.Resumo em Inglês:
ABSTRACT: Determination of soil physical quality (SPQ) is very important because it is related to many important soil processes. However, it is not clear which indicators should be considered in this evaluation, and information about temporal variation of SPQ under different soil tillage systems is scarce. The aim of this study was to determine the effects of no tillage (NT) and conventional tillage (CT) on temporal variation of capacity SPQ indicators [bulk density (BD), macroporosity (Pmac), air capacity (AC), plant available water capacity (PAWC), relative field capacity (RFC), Dexter's (S), and structural stability index (SSI)], and dynamic SPQ indicators [field saturated hydraulic conductivity (K0), water-conducting macroporosity (εma), and mesoporosity (εme); and pore continuity indexes based on water flux of total porosity (CWTP), of macroporosity (CWmac), and of mesoporosity (Cwmes)]. Additionally, the effect of the soil management system on corn yield was evaluated. Measurements and determinations were made at four different moments/cropping stages in the corn growing season (BS: before seeding; V6: six leaf stage; R5: physiological maturity; and AH: after harvest). Capacity SPQ indicators were derived from the soil water retention curve determined using sand box and pressure chambers, and dynamic SPQ indicators were derived from field infiltration data measured using a tension disc infiltrometer. Most capacity SPQ indicators were affected by the moment/cropping stage in which samples were taken, but followed similar trends and had similar values under both treatments, particularly in the AH stage. Dynamic SPQ indicators varied differently during the growing season depending on the management system. Under NT, most dynamic indicators increase from BS to V6 and decrease again at AH, whereas under CT, they follow a different trend, decreasing from BS to V6, remaining constant until R5, and increasing at AH. Corn yield was lower under CT (NT: 10,939 kg ha−1; CT: 8,265 kg ha−1). These results emphasize the need to include dynamic SPQ indicators, and their temporal variation when evaluating cropping systems with the aim of modeling crop yields. The capacity SPQ indicators were not able to distinguish between treatments.Resumo em Inglês:
ABSTRACT Soil microbial biomass plays a significant role in soils, and it is often used as an early indicator of change in soil quality. Soil microbial biomass is affected by different fertilization management practices. Therefore, the impact of different long-term fertilization management practices on the soil organic carbon (SOC) content, soil microbial biomass carbon (SMBC), and soil microbial biomass nitrogen (SMBN), as well as the soil microbial quotient (SMQ) in the tilled layer (0.00-0.20 m) were studied in the present paper, together with grain yield, in a double-cropping rice (Oryza sativa L.) system. The experiment in NingXiang county of Hunan Province, China, begin in 1986, and the experiment included five fertilization treatments: without fertilizer input (CK), mineral fertilizer alone (MF), rice straw residues and mineral fertilizer (RF), 30 % organic matter and 70% mineral fertilizer (LOM), and 60% organic matter and 40 % mineral fertilizer (HOM). The results showed that there is no significant difference in effect on SOC, SMBC, and SMBN contents and on the SMQ in the paddy field with MF treatment compared with the CK treatment at the main growth stages of early and late rice. The SOC, SMBC, SMBN contents, and the SMQ in the paddy field were highest in the LOM and HOM treatments, followed by the RF treatment, at the main growth stages of early and late rice. The results indicated that grain yields of early and late rice with the LOM, HOM, and RF treatments were higher than the yields under the MF and CK treatments. As a result, combined application of organic matter or rice straw residues with mineral fertilizer is a practice available for increasing SOC and microbial biomass contents in double-cropping rice paddy soils.Resumo em Inglês:
ABSTRACT The “Visual Evaluation of Soil Structure” (VESS) is a method used primarily to evaluate the soil structural quality of Oxisols in Brazil and secondly for more specific research, consultancy, and teaching purposes. Since the methodology was never applied and compared with laboratory evaluations of physical properties of hydromorphic soils of the Pampa biome in the south of Brazil, this study evaluated the use of VESS as a visual indicator of the structure quality of a typic eutrophic Albaqualf soil under native grassland, crop-livestock integration, no-tillage, and conventional management systems. Experimental areas with these different management systems were subjected to visual (VESS) and laboratory evaluation of the soil structure. The laboratory evaluation was based on traditional methods and on measurements of bulk density, porosity, aggregate mean weight diameter, aggregate tensile strength (ATS), and total organic carbon (TOC). It was concluded that VESS was efficient in differentiating the management system. The management systems based on minimum soil disturbance and mulching with crop residues improved the soil quality, as evidenced by the VESS scores, bulk density, porosity, aggregation, and organic carbon. The TOC content was inversely related with ATS. The quality of a typic eutrophic Albaqualf was benefitted by organic matter in the surface layer.Resumo em Inglês:
ABSTRACT: Organic fertilization effect on physical-chemical properties in no-tillage systems in tropical soils has been widely investigated, but little is known about the effects of this practice on the mineralogy of the clay fraction. This study aimed to evaluate the clay-fraction mineralogy of two subtropical soils, fertilized with organic residues in long-term no-tillage systems. An Alfisol fertilized with 0, 40, and 80 m3 ha-1 yr-1 pig slurry was evaluated for eight years, and an Oxisol with 0, 8, and 16 Mg ha-1 of wood shavings with pig slurry, for six years. Soil samples from the layers 0.00-0.04, 0.04-0.08, and 0.16-0.20 m were collected and subjected to chemical extractions with DCB and oxalate, X-ray diffractometry, and thermal analysis. No mineralogical changes in the clay fraction were observed in either the Alfisol or Oxisol. The chemical dissolution data indicated no significant differences among the tested treatments with regard to the re-precipitation of low-crystallinity oxides. However, the increase in zinc extracted by DCB and zinc extracted by oxalate in the treatments with residue application was clear. The crystallinity data efficiently indicated the effects of residue rates on soil mineralogy only in the Alfisol; the increasing slurry rates induced a reduction in the percentage of hematite, increase in the percentage of goethite, increase in the Gt/Gt+Hm ratio and decreased the mean crystal diameter of goethite and hematite.Resumo em Inglês:
ABSTRACT Water and oxygen deficiencies in the soybean crop cultivated on lowland soils are an important topic of research. The objective of this study was to investigate changes in water and oxygen supply and soybean yield caused by soil management in lowland soils. A soybean crop was grown under four soil conditions: no-tillage (NT), chiseling (CH), ridge tillage on no-tillage (NTR), and ridge tillage on chiseling (CHR). Soil bulk density, total porosity, macro- and microporosity, air permeability, and saturated hydraulic conductivity were measured at 0.05, 0.15, 0.25, and 0.35 m depths. Soil volumetric water content was monitored at the same depths every 30 min during the soybean cycle. The transpiration coefficient was calculated from volumetric water content to express both water and oxygen deficiency. The groundwater level was monitored throughout the soybean cycle. Plant performance was evaluated by measuring plant population, shoot dry matter, yield, and taproot depth. Soil porosity, air permeability, and saturated hydraulic conductivity were most improved in CH and CHR, and less in NTR. Nonetheless, expected improvement in soil aeration in CH, CHR, and NTR was eliminated when the water table raised to near the soil surface. The transpiration coefficient indicated that CH decreased oxygen deficiency, but caused little water deficit. The CH also provided the highest yield (4,610 kg ha-1), which was not surpassed by the addition of ridge tillage on chiseled soil (CHR) (4,001 kg ha-1). The lowest yields were observed in NT (2,842 kg ha-1), and NTR (3,565 kg ha-1), in which oxygen deficiency was more severe. Lower oxygen deficiency for soybean in chiseled lowland soil is regulated by the water table. As the transpiration coefficient is dependent on all the processes determining soil water dynamics, it is more informative than soil structural properties regarding water and oxygen deficiency in soybean in lowland soil.Resumo em Inglês:
ABSTRACT Among the equations available to describe the relation between matric potential and soil water content, the soil water retention function, the most commonly used is the equation proposed by Van Genuchten in his 1980 landmark paper. In soil physics literature, especially in Brazil, several authors relate the inverse of the Van Genuchten parameter α to the air-entry pressure. This study aimed to show this common interpretation to be erroneous, as 1/α corresponds to water contents lower than saturation. The deviation depends on the m parameter. In fact, α is merely a scaling parameter relative to the matric potential axis. Recognizing this mathematical fact may improve the interpretation of soil hydraulic properties based on water retention parameters.Resumo em Inglês:
ABSTRACT Catharanthus roseus (L) G. Don (Madagascar periwinkle) belongs to the Apocynaceace family and is widely spread throughout tropical and subtropical regions of the world. The plant produces several important alkaloids, such as ajmalicine and serpentine, which are used in the treatment of circulatory diseases. The potential of inoculation with arbuscular mycorrhizal fungi (AMF) and nitrogen fertilization to enhance the production of alkaloids was investigated in periwinkle. A greenhouse experiment was carried out to evaluate the effects of arbuscular mycorrhizal fungi and N fertilizer dosages on plant growth, production of ajmalicine, and nutrient content in roots. The concentration of ajmalicine was determined by reverse-phase high-performance liquid chromatography with UV detection. The experiment was designed in randomized blocks in a 4 × 4 factorial scheme with four microbiological treatments (control - without mycorrhiza; Claroideoglomus etunicatum; Rhizophagus intraradices; mixed inoculum - Rhizophagus clarus + Gigaspora margarita), and four N fertilizer dosages (15, 30, 60, and 120 mg kg-1) with four replications. Catharanthus roseus growth was higher when plants were inoculated with mixed inoculum (R. intraradices + G. margarita) and C. etunicatum. The mixed inoculum (R. intraradices + G. margarita) and C. etunicatum, combined with N fertilization, enhanced ajmalicine yield. Catharanthus roseus inoculated with mycorrhiza showed increased P absorption and reduced N content.Resumo em Inglês:
ABSTRACT Wildfire events cause considerable environmental disturbance but few studies have examined changes in soil properties due to fire. This study aimed to assess the effect of a wildfire event on chemical, physical, and biological properties of the soil in a eucalyptus forest in the Pampa biome. Part of a seven-year-old eucalyptus forest was affected by a wildfire event that lasted for two days. Soil and plant litter sampling was performed in three areas: in the forest that was not affected by the fire, in the forest affected by it, and in an adjacent natural pasture area (the original vegetation). Seven samples were collected from the 0.00-0.05 and 0.05-0.20 m layers of each plot for biological analysis, and three samples were collected for chemical and physical analyses. Disturbed soil samples were collected in order to determine pH, organic matter, acidity, and nutrient content. Undisturbed samples were collected to determine soil microporosity, macroporosity, total porosity, and density. Soil macrofauna was assessed through the Tropical Soil Biology and Fertility method, and biological activity was tested through substrate consumption in the bait-lamina test. The fire increased soil pH values, CEC, and base saturation, as well as K, Ca, and Mg content; it decreased potential acidity and P content in the soil. Soil physical properties were not altered by the wildfire. The total abundance of macrofauna and of annelids, arachnids, coleoptera, and isoptera decreased due to the wildfire, resulting in lower soil diversity. Hymenoptera abundance increased because of the fire event. The feeding activity of organisms in the soil surface layer decreased due to the fire. The wildfire in the eucalyptus forest in the Pampa biome altered soil chemical and biological properties.Resumo em Inglês:
ABSTRACT Soils of the Quadrilátero Ferrífero are rich in mineral resources, especially gold and iron. Soil management and mining activities greatly impact soil biology. However, studies addressed to the diversity of microorganisms and their ecological role in the recovery of these areas are scarce. This study aimed to assess the yeast occurrence in soils with natural vegetation (Atlantic Forest, neotropical savanna, and iron outcrop) and areas with anthropogenic modifications (Eucalyptus stand and rehabilitated area) in the Quadrilátero Ferrífero region. We isolated and identified a total of 68 yeast. Partial sequencing of the 26S ribosomal gene revealed the presence of six genera: Saitozyma, Pseudozyma, Meyerozyma, Debaryomyces, Lipomyces, and Aureobasidium. Overall, the yeast community was more diverse in the area with greater anthropic modification. Environmental variables, especially pH, soil organic matter, texture, and Al saturation index, explained 60 % of the variability. Saitozyma podzolica was the dominant species and was positively correlated with the presence of Al in soils. This study is the first report of the occurrence of yeast species in soils of the Quadrilátero Ferrífero region in the State of Minas Gerais and one of the few studies of yeast diversity in Brazilian soils.Resumo em Inglês:
ABSTRACT Changes in land use management in agricultural areas can affect the biodiversity of spider families. This study aimed to evaluate spider diversity in different land use systems with capture by two sampling methods, and to identify soil properties that can modulate the occurrence of spiders. Five land use systems, representative of traditional agricultural areas, were evaluated in the west of Santa Catarina, Brazil, to establish a scale of land use intensity: native forest, eucalyptus reforestation areas, pastures, crop-livestock integration areas, and annual crops under no-tillage. The collection methods were manual from soil monoliths and soil traps. Altogether 479 individuals were captured, which were distributed among 20 families, 40 genera, and 8 species. Principal component analysis separated the land use systems and showed an association of spider families with land use in the two sampling methods. There was reduction in spider diversity as the intensity of land use increased. The manual collection method was more efficient for families of soil spiders, whereas traps were more efficient for epigeic spiders. The Lycosidae family was more resistant to environmental pressures, while Oonopidae and Amaurobiidae were more sensitive to environmental modifications. The differences in the spider communities were explained by the following soil properties: organic matter, mean weight-diameter of soil aggregates, and resistance to penetration, which were associated with the degree of anthropic intervention in the land use systems.Resumo em Inglês:
ABSTRACT: Areas affected by coal mining can be recovered by revegetation with leguminous plants associated with nitrogen-fixing bacteria. This study addressed the isolation and characterization of native nitrogen-fixing bacteria from coalmine wasteland under different vegetation restoration approaches using Macroptilium atropurpureum (DC) Urb and Vicia sativa L. as trap plants. The bacteria were characterized and identified on the basis of 16S rRNA sequences. Additionally, nitrogen-fixing strains were characterized for tolerance to high heavy metal and low pH levels, as well as for their effect on growth, nodulation, and symbiotic efficiency of M. atropurpureum and V. sativa. Soil samples were taken from the rhizosphere of eight areas, between 6 and 20 years under vegetation restoration, in the coal mining area of Candiota, RS-Brazil. The following properties were evaluated: colony characterization on solid “79” culture medium; pH (3.0-9.0) and heavy metal (Cr, Cd, Zn, Cu, and Ni) tolerance; partial sequencing of 16S rRNA gene; presence of nodA and nifH genes and symbiotic efficiency. A total of 115 isolates, i.e., 77 from M. atropurpureum and 38 from V. sativa, were obtained. The tolerance of these isolates is high for a wide range of pH levels and heavy metal contents, and 18 among them were selected for symbiotic efficiency and 16S rRNA sequencing. Inoculated with M. atropurpureum, the strains UFSM-B53, UFSM-B64, and UFSM-B74 had high symbiotic efficiency. The nitrogen-fixing bacteria were classified in the genera Rhizobium, Bradyrhizobium, and Burkholderia. The results indicate the potential of these native rhizospheric bacterial strains as inoculants and biofertilizers for legume species under pH and heavy metal stress in coal mining degraded areas in Southern Brazil.Resumo em Inglês:
ABSTRACT: Springtails (Collembola) are soil organisms with wide morphological diversity and are sensitive to alterations in the soil, regardless of whether they are human-caused or not. The aim of this study was to evaluate the influence of land use on the morphological diversity of springtails and verify their relationships with soil physical, chemical, and microbiological properties. Samples were collected in the eastern region of Santa Catarina, in three municipalities: Joinville, Blumenau, and Timbó. They included the following land use systems (LUSs): native forest (NF), Eucalyptus plantation (EP), pasture (PA), integrated crop-livestock (ICL), and no tillage (NT). Samples were collected to determine soil properties, and pitfall traps were set in the winter and summer at the same points. The captured springtails were counted and morphotyped, observing features such as presence or absence of ocelli and setae, pigmentation, antenna length, and furcula length. The data were analyzed based on abundance, the Shannon-Wiener (H') and Margalef diversity indices, Pielou's evenness index (J), morphotype richness, modified Soil Biological Quality index (QBS), and Principal Component Analysis (PCA). Springtails abundance was higher in ICL and PA, whereas morphotype richness was higher in NF and ICL in the winter. The Shannon-Wiener and Margalef indices were higher in the winter in NF. In the summer, only H' differed significantly among the LUSs and was higher in NF. The QBS values did not precisely follow the human intervention gradient in either of the two periods. The PCA showed difference among the periods and LUSs. In the winter, the occurrence of morphotypes was related to soil microbiological and chemical properties, whereas in the summer, the distribution of morphotypes was explained by soil physical and chemical properties. Morphological diversity analysis is a good alternative to study springtail distribution and soil biological quality, especially when associated with multivariate techniques.Resumo em Inglês:
ABSTRACT: Extremely kaolinitic soils of Tertiary age elevations on the Brazilian east coast present a wide range of texture, which is recognized as one of the main factors controlling the soil organic matter contents. This study aimed to investigate the organic C storage of different compartments of kaolinitic soils. The studied soils had a wide particle size gradient, were under native forest vegetation, and located on Brazil's eastern coast (Coruripe - CF, Umbaúba - UF, Nova Viçosa - VF, Sooretama - SF, and Itaboraí - IF). The forest cover of all sites allows to record soil properties reference values for a land use condition closer to that of the original sites. We determined soil organic C (SOC) content and SOC stock up to a depth of 1 m, C of topsoil (0.00-0.08 m), aggregate size classes, and dissolved organic carbon (DOC) of the soil surface horizon (A horizon). Soil C stocks at the 0.00-1.00 m depth ranged from 105 to 137 Mg ha−1 and were not regulated by soil texture. The SF soils stored more C up to a depth of 1 m, while lower mean C stocks were found for UF and CF soils. Soil texture was not a reliable index to predict the C contents of the aggregate size classes of the 0.00-0.08 m layer (within each class and in total, using equivalent soil mass of the classes). The most clayey soils had a high percentage of 2-4 mm aggregates and, as a consequence, high aggregate stability indices, which are positively correlated to silt plus clay contents of the soil surface horizon. The proportion of DOC in relation to the total organic C of the surface soil horizon was high for IF and UF areas, which are the less preserved forest fragments among all studied fragments.Resumo em Inglês:
ABSTRACT Chemical speciation of the soil solution is an important tool to identify Al species related to phytotoxicity. In some Brazilian acid soils, the Al extractable by the KCl 1.0 mol L -1 solution (Al-KCl) exceeds 10 cmol c kg -1 and even then, in some situations, it does not cause toxicity to the plants. This study aimed to evaluate the relationship between these high concentrations of Al-KCl found in some Brazilian acid soils and the activity of the different Al chemical species in the soil solution, as well as the response of soybean and corn plants to lime application. Subsurface horizon (B) samples of five soils were collected in four states of Brazil (AC, PE, RS, and SC) from areas that had never been cultivated. The samples were then given increasing rates of limestone, equivalent to that required to neutralize 0, 0.25, 0.5, and 1.00 times the contents of H+Al and were incubated for 98 days. After that period, the soils were fertilized and planted to soybean and corn in the greenhouse for 60 and 45 days, respectively, in 2015. The experimental units consisted of 8 L pots, filled with 5 kg of soil (dry basis). After each crop, the plants and soil samples were collected to determine the leaf, stem, and root dry matter, and chemical composition. In the soil solution, cations and anions, pH, electrical conductivity, and dissolved organic carbon were quantified. The distribution of the Al species was evaluated using the program Minteq. Free Al (Al 3+ ) was the species found in highest proportion in treatments without limestone, in all soils. Application at the lowest limestone rate, equivalent to 25 % of that required for H+Al neutralization, was sufficient to decrease Al activity in the soil solution to levels considered non-toxic to plants in four of the five soils. High levels of Al-KCl are not related to manifestation of toxicity and to Al 3+ activity in the solution of Hapludult (Acre profile 9; AC9) and Hapludult (Rosario do Sul; RS) since dry matter (DM) production in these soils was little influenced by liming, unlike what occurred in the Hapludult (Pernambuco; PE), Humudepts (Bom Retiro; BR), and Kandiudox (Curitibanos; CB) soils, in which Al-KCl contents were related to Al activity in the solution and to DM production of the plants grown in them.Resumo em Inglês:
ABSTRACT: Soil water retention and availability are important properties for agricultural production, which can be measured directly or estimated by pedotransfer functions. Some studies on this topic were carried out in Santa Catarina, Brazil. To improve the estimates, it is necessary to evaluate other properties, to analyze more soil types, as well as to use other analysis techniques such as artificial neural networks and regression trees. Thus, the objective of the study was to estimate the field capacity (FC), permanent wilting point (PWP), and available water (AW) in soils of Santa Catarina (SC), through multiple linear regressions (MLR), artificial neural networks (ANN), and regression trees (RT), more efficiently than the current pedotransfer functions. For this, samples of the horizons A and B of 70 profiles were collected to determine the texture, plasticity limit, FC, PWP, AW, specific surface (SS), organic carbon (OC) content, and microporosity. Pedotransfer functions were generated through MRL, ANN, and RT, considering as dependent variables the FC, PWP, and AW, and as independent variables the content of clay, silt, OC, plasticity limit, SS, and microporosity, through the test of four models, for surface and subsurface horizons. The RT estimated FC, PWP, and AW better than ANN and MRL. The best models to estimate water retention were those that used microporosity. When the database has few input variables, the model with clay, silt, and OC content is an alternative to estimate FC, PWP, and AW.Resumo em Inglês:
ABSTRACT: The thermal wave amplitude method is used to determine soil thermal diffusivity in situ for a sandy soil in Mexico (Coatzacoalcos, Veracruz). Soil diurnal temperature fluctuations were measured from depths of 0.05 to 0.65 m, in 0.01 m increments, during the months of April and August. Five mean diffusivity values were obtained experimentally, corresponding to the different depths combination. The soil thermal diffusivity ranged between 2.26 × 10−7 and 8.71 × 10−7 m2 s−1. The diffusivity values obtained are within the absolute ranges reported in the literature. A positive linear effect between the diffusivity values and depth was observed on a homogeneous sandy soil. These increments are due to the soil moisture variations and the volumetric calorific capacity of the soil. An uncertainty analysis was made to validate our results, resulting in a relative standard deviation with values in the range of 4.51 to 27.37 %. The uncertainties of 0.49 to 26.66 % RSD in the amplitude of the thermal wave are the factor that contributes most to the propagation of errors of the diffusivity.Resumo em Inglês:
ABSTRACT: The soil water retention curve is one of the main instruments to assess the soil physical quality and to improve soil management. Traditionally, the equipment most used in the laboratory to determine the retention curve has been Haines funnels and Richards chambers. An important factor to which little attention has been given in the use of these equipaments is the height of the undisturbed soil sample. This work proposes to evaluate the influence of different heights of undisturbed samples for the determination of the retention curve. For this, undisturbed soil samples were collected in aluminum cylinders of three different heights (S1 = 75 mm; S2 =50mm; S3 =25 mm) and with the same internal diameter (70 mm) from the diagnostic horizons of a Typic Hapludox and a Kandiudalfic Eutrudox (Latossolo Vermelho amarelo distrófico típico and Nitossolo Vermelho eutrófico latossólico, respectively) in experimental areas of “Escola Superior de Agricultura Luiz de Queiroz” (ESALQ/USP), Piracicaba (SP), Brazil. The soil physical characterization was done based on granulometric analysis, bulk density, particle density, porosity, and organic carbon. The retention curves were determined for each sample size using Haines funnels for the tensions of 0.5, 1, 4, 6, and 10 kPa and Richards chambers for 33, 100, and 500 kPa. Data of the curves were estimated, fitted to a model and then the distribution of the soil pore radius was evaluated, differentiating the soil water retention curve. The Typic Hapludox showed a not so remarkable difference between the retention curve with the S3 samples and the retention curve with the S1 samples, in the range 0-1 kPa of tensions, and also between the retention curve with S1 samples and both retention curves with the S2 and S3 samples, in the range 100-500 kPa of tension. This led to a slight difference in the pore distribution curves for the sample heights of this soil. The Kandiudalfic Eutrudox, however, presented not only a remarkable difference of the smaller sample retention curve (S3) in relation to the larger ones (S1 and S2) in the range 0-10 kPa of tension, but also a notable difference in the pore distribution curves, with a reduction of mesopores and increase of micropores with the increase of sample height. Finally, from the results obtained and with the methodology used to determine the soil retention curve, it is not recommended to use undisturbed samples with a height greater than 25 mm.Resumo em Inglês:
ABSTRACT A first large-scale systematic survey of natural radioactivity contents of soils of the state of Rio de Janeiro is presented, focused on the establishment of Quality Reference Values (QRVs). Undisturbed soil samples were collected from 243 areas and analyzed by gamma spectrometry. The activity contents varied largely, ranging from 12.2 to 1,029 Bq kg−1 for 40K (geometric mean of 111.1 Bq kg−1), from 3.5 to 99.8 Bq kg−1 for 226Ra (geometric mean of 29.7 Bq kg−1), and from 5.4 to 314.5 Bq kg−1 for 228Ra (geometric mean of 67.1 Bq kg−1). The highest contents of radium isotopes were found in soils developed on igneous rocks (Leptosol), and the lowest in a soil of sedimentary origin (Podzol). Among the different soil types, the radioisotope contents differed substantially. Separate QRVs were calculated for each radionuclide by the 75th and 90th percentile approach, and the QRVs were estimated for each soil type. The results emphasized the restrictiveness of QRVs based on the 75th percentile or of a single overall QRV for all soils. Therefore, rather than estimating a separate QRV for each radionuclide for the State, we suggest the use of an upper threshold value, defined as the 90th percentile, and a specific QRV for each soil type area.Resumo em Inglês:
ABSTRACT: Eucalyptus forests in southern Bahia (BA) are planted in soils with a sandy surface layer and humid tropical climate, conditions that lead to soil carbon (C) decomposition. Recent studies have shown that nitrogen (N) may be important for soil C stabilization. The aim of this study was to evaluate the contribution of Eucalyptus harvest residues and nitrogen fertilization to C stabilization in Ultisols of southern BA. The experiment was conducted in Eucalyptus clonal plantations cultivated in two regions of Eunápolis, BA, Brazil, with different clay content: southern region (140 g kg-1 of clay) and western region (310 g kg-1 of clay). Five treatments were evaluated: one control (CTR), without Eucalyptus harvest residues and N fertilization, and four treatments with harvest residues combined with four rates of N fertilization: 0, 25, 50, and 100 kg ha-1. Soil samples were collected from the 0.00-0.10, 0.10-0.20, 0.20-0.40, and 0.40-0.60 m layers at the beginning and the end of the experiment (36 months). The amount of C and N and the C and N isotopic ratio (δ13C and δ15N) of particulate organic matter (POM) and mineral-associated organic matter (MAOM) were determined. In the southern region after 36 months, the C-MAOM stocks in the 0.00-0.10 m layer of the CTR decreased by 33 %. The addition of harvest residue followed by 100 kg ha-1 N increased C-POM and N-POM stocks (0.00-0.10 m) compared to the CTR, and the final N-POM stocks and residue-C recovery in the surface soil layer were positively correlated with the increase in N fertilization rates. In the western region, residue maintenance resulted in increased C-MAOM stocks (0.00-0.10 m) compared to the CTR, but an increase in N availability reduced this increment. The increase in N fertilization rates did not alter C stocks, but reduced N stocks of POM and MAOM in the upper soil layer. At the end of the experiment, N fertilizer recovery (0.00-0.60 m) was similar among the regions evaluated. In soil with lower clay content, higher N availability led to higher C and N stocks in the particulate fraction. In soils with high clay content, physical and chemical protections are more important than N fertilization for soil C stabilization, and just maintaining harvest residues may suffice to increase C and N in the more stable SOM fraction.Resumo em Inglês:
ABSTRACT: The parent geological materials and formation factors influence the chemical, physical, and mineralogical properties and composition of the soil. Therefore, the aims of this study were to determine the chemical and some physical and mineralogical properties of the soil useful for agricultural practice; to determine the natural contents of the semitotal metals in soils of the state of Rio Grande do Sul (Brazil); and to suggest use of the quality reference values (QRVs) in accordance with Resolution 420/2009 of the National Commission for the Environment (Conama). To determine some soil properties useful for agricultural, 254 surface soil samples from areas without known human influence (native grasslands or forests) were analyzed according to the methodology used by the soil testing laboratories of the state of Rio Grande do Sul. In addition, the semitotal heavy metal (Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) contents of the soil were determined by the Usepa 3050B method and Hg was determined through an adaptation of the Usepa 7471 method. The results were studied in five soil groups from the state of Rio Grande do Sul according to soil parent materials: (1) basalt (volcanic rocks) of the Plateau region, (2) crystalline rocks (granite, schists, etc.) of the Southern Shield, (3) pelitic rocks (siltstones, mudstones, etc.) of the Peripheral Depression, (4) sandstones (sedimentary) of the Central Plains, and (5) sediments (unconsolidated) of the Coastal Plains. The properties for agricultural use of these soils were compared using the criteria adopted by the current fertilizer recommendations for the state. Multivariate analysis was used to study metals contents. Average values of available P contents were low in all soil groups; however, average values were high in several soil groups for available K. Averages of total acidity and cation exchange capacity were higher in Group 1 soils. The average values of extractable Zn, Cu, and S were high in all soils. Averages of Fe oxides were higher in the soils formed over basalt than in the other soils. Average metal (Cd, Co, Cr, Cu, Ni, Pb, V, and Zn) contents were higher in Group 1 soils than in the other soil groups (2 to 5). For Hg, however, average values were similar for all soil groups. The Spearman correlation coefficients were positive and highest among the metals (except for Cd and Hg) and the clay, Fed, and extractable Cu soil properties. Another high positive correlation coefficient was found between semitotal Cu and Zn contents and organic carbon. The QRVs for Cd, Co, Cr, Cu, Hg, Ni, Pb, V, and Zn, determined according to Conama Resolution 420/2009, followed the same trend as the average metals contents.Resumo em Inglês:
ABSTRACT: Currently, the Brazilian savanna (Cerrado) represents the main agricultural area of the country, comprising a great variety of landscapes and soils, geological formations and vegetation patterns, as well as the major watershed. We studied the hydropedology and morphometry of a representative catchment (Frutal river), on a high tableland (Chapada) in the Triângulo Mineiro region, Brazil, describing the soil-water-landscape relationships to understand land use and water resources. To this end, we applied physical, chemical, micromorphological, and morphometric methods. When dry, compaction was observed in well-structured Ferralsols (Latossolos) with medium texture under intensive agriculture, reducing the water recharge capacity. The soil carbon stock was highest in hydromorphic savannas (veredas), reaching an organic matter content of 316.8 g kg-1 in the studied Umbric Gleysols, representing poorly drained lowlands. Physical and micromorphological properties were relevant parameters to understand the water recharge in soil; in agricultural fields, bulk density tended to increase and hydraulic conductivity to decrease, particularly under long-term sugarcane; morphometric parameters in the Frutal catchment indicated a low flooding risk and high flow capacity. This reinforces the need for soil conservation strategies to enhance water infiltration and groundwater recharge, with a view to maintain the water longer in the catchment. For surface water dynamics, slope morphology is an important property, affecting soil erosion, water retention and crop productivity.Resumo em Inglês:
ABSTRACT: Vale do Rio Doce shoot dieback (VRDSD) is an anomaly whose cause seems to be associated with hypoxic conditions and their consequences (excess Mn and Fe) triggered by elevation of the water table in areas with poor drainage. Different plants have distinct survival strategies under this form of stress. The objective of this study was to understand the physiological responses involved in the differential tolerance of eucalyptus clones to VRDSD and their relationship to hypoxia and excess Mn. A hydroponic experiment was carried out using a 2 × 2 × 2 factorial arrangement, two eucalyptus clones with different levels of tolerance to VRDSD (sensitive Urograndis hybrid - 1213; and the tolerant Rio Claro hybrid - Eucalyptus grandis x unknown - 2719), two concentrations of O2 (8 and 4 mg L-1), and two Mn concentrations (1.39 and 300 mg L-1) in a randomized block design (RBD) with three replicates. Forty-day-old clones were maintained in Clark nutrient solution for 30 days. After this period, the treatments were applied for 11 days. Plant gaseous exchange shoot and root production, and the quantity of enzymes related to oxidative stress in leaves and roots were evaluated. In the tolerant clone, reactive oxygen species (ROS) were produced under hypoxic conditions, accompanied by reduction in production of dry matter, malondialdehyde (MDA), and in activity of the enzyme alcohol dehydrogenase (ADH). However, this clone had greater production of superoxide dismutase (SOD) under these conditions, an enzyme responsible for detoxification of ROS, which acts as part of the Low Oxygen Quiescence Syndrome (LOQS). In contrast, sensitive clones did not exhibit expressive reductions in growth or changes in the leaf/root ratio. These clones formed large quantities of adventitious roots and had high levels of MDA and ADH and low levels of SOD. Therefore, sensitive clones appear not to be prepared for detoxification of ROS and other toxic metabolites, but rather adopt morphological escape mechanisms, the Low Oxygen Escape Syndrome (LOES), in response to hypoxia. Thus, the period of soil waterlogging may cause the death of large numbers of roots in sensitive clones, limiting their ability to absorb water and nutrients and culminating in the death of these plants. Excess Mn seems to aggravate the damage caused by hypoxia, but it is not the causal agent of VRDSD.Resumo em Inglês:
ABSTRACT The use of gypsum to improve the root environment in tropical soils in the southeastern and central-western regions of Brazil is a widespread practice with well-established recommendation criteria. However, only recently gypsum began to be used on subtropical soils in South of Brazil, so available knowledge of its effect on crop yield is incipient and mainly for soils under no-till (NT) systems. Avaiable studies span a wide range of responses, from a substantial increase to a slight reduction in crop yield. Also, the specific conditions leading to a favorable effect of gypsum application on crop yield are yet to be accurately identified. The primary objectives of this study were to examine previously reported results to assess the likelihood of a crop response to gypsum and to develop useful recommendation criteria for gypsum application to subtropical soils under NT in Brazil. For this purpose, we examined the results of a total of 73 growing seasons, reported in 20 different scientific publications that assessed grain yield as a function of gypsum rates. Four different scenarios were examined, by the occurrence or not of high subsurface acidity (viz., Al saturation >20 % and/or exchangeable Ca <0.5 cmolc dm-3 in the 0.20-0.40 m soil layer) and of water deficiency during the crop cycle. Based on the results, for grasses, 10 % Al saturation and/or 3 cmolc dm-3 exchangeable Ca in the soil subsurface layer (0.20-0.40 m) is more suitable than the current recommendation (Al saturation of 20 % and/or 0.5 cmolc dm-3 Ca) for subtropical NT soils in Brazil. Also, applying gypsum to NT soils with low subsurface acidity (Al saturation <10 %) and with an adequate Ca content (>3 cmolc dm-3) failed to increase crop yield, irrespective of the soil water status. Under these conditions, high gypsum rates (6-15 Mg ha−1) may even reduce grain yield, possibly by inducing K and Mg deficiency. On the other hand, applying gypsum to soils with high subsurface acidity increased yield by 16 % in corn (87 % of cases) and by 19 % in winter cereals (83 % of cases), whether or not the soil was water-deficient. By contrast, soybean yield was only increased by gypsum applied in the simultaneous presence of high soil subsurface acidity and water deficiency (average increase 27 %, 100 % of cases).Resumo em Inglês:
ABSTRACT: Determining nutrient uptake and accumulation rates by cotton crops is important to define management strategies, especially for transgenic varieties, which are cultivated using high-technology approaches that require substantial investment to maximize yield. Currently in Brazil, the states of Bahia and Mato Grosso are responsible for 84.4 % of the total cotton growing area. In the present study, two trials were conducted in 2013, one that involved planting FM 940 GLT, FM 980 GLT, and FM 913 GLT varieties in the state of Bahia and the other which involved FM 940 GLT and FM 980 GLT varieties in the state of Mato Grosso. The aim of the two trials was to represent the two regions that currently encompass the largest areas of cotton cultivation. Tissue samples, consisting of leaves, stems, and reproductive components, were collected eleven times during the crop cycle for determination of nutrient content and shoot dry matter. After weighing, plant tissue samples were dried and ground to determine nutrient contents. Because there were no overall differences in nutrient contents and biomass accumulation of the varieties during the crop cycle, we undertook joint analysis of the data from all varieties at each site. Favorable climatic conditions in Bahia promoted plant biomass production that was twice as much as plants grown in Mato Grosso, with cotton yields of 6.2 and 3.8 t ha−1 of lint and seed, respectively. The maximum nutrient accumulation occurred between 137-150 days after emergence (DAE) for N; 143-148 for P; 172-185 for K; 100 for Ca; 144-149 for Mg; and 153-158 for S. Maximum uptake ranged from 218-362 kg ha−1 N; 26-53 kg ha−1 P; 233-506 kg ha−1 K; 91-202 kg ha−1 Ca; 28-44 kg ha−1 Mg; and 19-61 kg ha−1 S. On average, the sites revealed nutrient export of 14, 2, 23, 3, 2, and 2 kg t−1 of lint and seed for N, P, K, Ca, Mg, and S, respectively, with little variation among sites. Extraction of nutrients per area by cotton vary among sites, but nutritional requirement of cotton per unit of lint and seeds is similar independently of yield potential.Resumo em Inglês:
ABSTRACT: In alkalinized and Ca-rich composts, solubilization of apatite from phosphate rocks (PRs) is not guaranteed; however, chelating agents and humified substances produced during composting may alter the soluble contents and P forms of monoammonium phosphate (MAP)-based composts. These effects may depend on the proportions of organic wastes and P source used in the compost piles. The aim of this study was to evaluate the effect of composting chicken manure, coffee husk, and Araxá PR, Bayóvar PR, or MAP in different proportions on the organic matter decomposition, total N, Ca contents, and soluble P fractions in the composts. The treatments consisted of a 3 × 4 × 2 factorial, through the combination of three P sources [Araxá PR, Bayóvar PR, and MAP], with four mixtures in the respective proportions: 25, 40, 50, and 75 % of P source with 37.5, 40, 25, and 12.5 % of chicken manure, and 37.5, 20, 25, and 12.5 % of coffee husk, composted or not for 150 days. The composts with PRs showed greater reductions in total C and water-soluble C and lower dry mass yields than MAP-based composts. The use of MAP in mixtures ensured lower N losses compared to composts formulated with PRs. Regardless of the mixture among chicken manure, coffee husk, and PRs, composting increased the pH and total Ca contents and did not alter the fractions of soluble P in water, in citric acid, and in neutral ammonium citrate plus water in the final PR-based composts. Composting of these mixtures was not an efficient route to solubilize P from Araxá and Bayóvar PRs. Values of pH above 8 and high Ca contents were the main factors explaining the stability and non-solubilization of the apatite of PRs in the composts. Composting with MAP, mixed in different proportions with chicken manure and coffee husk, reduced water-soluble P, maintained the pH of the mixtures in the range of 5 to 7, and enriched the composts with N and P.Resumo em Inglês:
ABSTRACT Discovered in 1980 and unleashed an utter gold rush of the modern era, Serra Pelada was the largest open-air mine in Brazil. About 80,000 gold prospectors worked there until 1984, when the gold pits were flooded. The environmental impact caused by mining inflicted irreversible damage to the ecosystem, with the formation of a large lake and piles of waste rock and sterile overburden, still evident 28 years after the mine was closed. This study aimed to evaluate the available and pseudo total contents of potentially toxic elements (PTEs), the contamination and pollution levels, and to understand how the biological soil factors are related to the chemical properties of the soil and the available PTE contents in the Serra Pelada - Amazônia, Brazil. Soil was collected from seven areas around the lake: Area 1 - margin of the mine without waste and/or sterile deposits; Area 2 - margin with waste and/or sterile deposits; Area 3 - area with sterile deposit; Area 4 - mine tailings, denominated curimã by the prospectors, from which gold had been extracted; Area 5 - sediment dredged from the lake in the mine pit; Area 6 - area with agroforestry system; Area 7 - riparian forest, unaffected by the artisanal gold extraction process (control treatment). Apart from selenium (Se), all evaluated elements, in at least one of the studied areas, exceeded the contents of the investigation values (defined as the content of a given substance in soil or groundwater above which the human health is under potential direct or indirect risks, considering a standardized exposure scenario) in agricultural areas in Brazil, as determined by the National Council of the Environment. Soil enrichment and contamination with Co, Ba, Mn, and Hg were investigated. Principal component analysis showed that the available levels of PTEs influenced the soil biological properties, in particular basal respiration, indicating that important ecosystem processes are being affected by PTE contamination.Resumo em Inglês:
ABSTRACT: Mean grain yield of flooded rice in southern Brazil has increased in recent years due to the use of high-yield cultivars and improvement of crop management practices. Nevertheless, stagnation in grain yields has been observed in some rice-producing regions. Adoption of conservation tillage systems based on cover crops may be a strategy to increase rice grain yield potential. The objective of the present study was to evaluate the effect of winter cover crops on initial establishment, development, and grain yield of flooded rice (Oryza sativa L.) grown under different fertilization levels and no-tillage. A field experiment was carried out for three consecutive years (2010/11, 2011/12, and 2012/13) in Cachoeirinha, Rio Grande do Sul, South Brazil. Treatments included three winter cover crops [ryegrass (Lolium multiflorum Lam.), native serradella (Ornithopus micranthus Benth.), and a ryegrass-serradella mixture] and fallow, and three fertilization levels for rice grown in succession. More than 3 Mg ha−1 of serradella aboveground residue or 4 Mg ha−1 of ryegrass residue limited rice emergence in the first year when rainfall in the sowing-emergence period was higher than in the second and third years. In contrast, a large amount of residue (serradella >2 Mg ha−1; ryegrass >3 Mg ha−1) was beneficial to rice emergence when rainfall was low in the sowing-emergence period of the second and third years. The serradella cover crop increased rice aboveground biomass at anthesis by 22 % compared to the ryegrass cover crop. Furthermore, rice grain yield was 15 % higher in succession to serradella than to ryegrass in the third year. Continuous cultivation of flooded rice in succession to ryegrass over three years reduced grain yield by around 1.4 Mg ha−1, regardless of fertilization level. Fertilization for very high production expectations increased rice grain yield in all years, especially in the second year, when solar radiation was higher than normal. The use of winter cover crops affected plant emergence, aboveground biomass, and grain yield of flooded rice. Rice grain yield increased with increases in fertilization level, and this response was not affected by the previous cover crop.Resumo em Inglês:
ABSTRACT Soil and crop management systems change the soil structure, thereby affecting soil quality. The “profil cultural” method (PCM) has been used to identify the effects of management systems on soil structure; however, few studies relate the structures identified by the PCM to quantitative indicators of soil structural quality. This study aimed to quantify soil structures using the PCM and relate these structures to bulk density (Bd), critical bulk density (Bdc), soil aeration capacity (εa), least limiting water range (LLWR), and soil air permeability (Ka) under different soil and crop management systems. The study was developed in a long-term experiment (24 years) involving two systems of soil management (no-tillage and conventional tillage) and two systems of crop management (rotation and succession), resulting in four treatments: no-tillage with crop rotation (NTr), no-tillage with crop succession (NTs), conventional tillage with heavy harrowing and crop rotation (CTr) and conventional tillage with heavy harrowing and crop succession (CTs). The PCM was used to identify the different homogeneous morphological units (HMUs) in the soil profile. Undisturbed soil samples were collected for the HMUs that were most represented in the profiles to determine Ka, LLWR, Bd, and εa. There was agreement between the HMUs and the quantitative indicators. The LLWR showed greater values for Bdc under no-tillage (NTr = 1.36 Mg m-3 and NTs = 1.37 Mg m-3) than under conventional tillage (CTs = 1.31 Mg m-3 and CTr = 1.33 mg m-3). The proportion of samples where Bd > Bdc was 23 % under CTs, 77 % under CTr, 32 % under NTs, and 39 % under NTr. The structures that were most restrictive to root development (CΔ, CΔμ, FmtΔμ, and FmtμΔ) show a lower Ka and greater soil penetration resistance as the soil dries. Pores are more continuous and the structure is less restrictive to plant development in no-tillage than in conventional tillage.Resumo em Inglês:
ABSTRACT Several soil conservation practices are used to reduce water erosion and ensure sustainable agriculture. An effective crop management practice is intercropping, in which two or more crops with different architectures and vegetative cycles are grown simultaneously in the same area. We hypothesized that intercropping of corn and jack-bean increases soil cover and reduce soil erosion by water in comparison to monocropping. The objective of this study was to evaluate the effects of different crop systems on soil cover and on soil erosion by water. Soil and water losses from a Typic Hapludox were measured under the following systems: corn cultivation (CO), jack-bean cultivation (JB), intercropping of corn and jack-bean (IC), and bare soil (BS), as a reference for maximum erosion rates. For each crop system, erosion plots with dimensions of 12 × 4 m were set up in the field on a 0.12 m m−1 slope gradient. The experiment was carried out under natural rainfall, over three crop seasons (November to March) from 2011 to 2014. The soil cover index of the systems was monitored during crop growth, and rainfall erosivity for the crop seasons was calculated according to the EI30 index to interpret soil and water losses. A set of linear mixed models was fitted to relate soil losses to rainfall erosivity, crop systems, and soil cover. The average rainfall erosivity in the study area was 6,132 MJ mm ha−1 h−1 per crop season. The results indicate that water losses are directly related to erosivity and are less influenced by soil cover and cultivation systems than the soil losses. A linear maximum value of the soil cover index was achieved 70 days after sowing. Intercropping exhibited greater soil cover than single crops. Total soil losses from the three seasons display the trend: BS > CO > JB > IC. The best fitted model of the linear mixed models indicates that soil loss responses are strongly correlated with rainfall erosivity and soil cover, which nullified the influence of the crop systems in the model.Resumo em Inglês:
ABSTRACT The identification of erosion-susceptible areas is fundamental for the adoption of soil conservation practices. Thus, the best way to estimate the spatial pattern of soil erosion must be identified, in which the process uncertainties are also taken into consideration. The purpose of this study was to evaluate the spatial and temporal uncertainty of soil loss under two scenarios of sugarcane harvest management: green cane (GC) and burnt cane (BC). The study was carried out on a 200-ha area, in Tabapuã, São Paulo State, Brazil. A regular 626-point sampling grid was established in the area, with equidistant intervals of 50 m and a final plant density of about 3.3 samples per ha. The probability that the soil loss would exceed the tolerable limit of 6.67 t ha-1 yr-1 was estimated for each management scenario and after the five harvests. The temporal uncertainty was determined by integrating the estimated annual probabilities, representing the harvests. Areas with soil loss risks above the threshold were identified based on probability maps, generated from the individual and combined dichotomous variables. Soil losses from the BC were highest, during all five harvests. With the exception of the 5th harvest and the entire cultivation cycle under GC, all soil loss estimates were spatially dependent. From the 4th harvest under GC, the probability of the soil loss exceeding the threshold was above 80 % in zero percent of the area, whereas, for BC, the probability exceeded 80 % in 40 % of the area. The production cycle allowed the delimitation of priority areas for the adoption of conservation practices in each management. In the BC, areas with steeper slopes were more likely to exceed the threshold with lower uncertainties.Resumo em Inglês:
ABSTRACT Wastewater treatment is a challenging problem faced by the mining industry, especially when mine effluents include acid mine drainage with elevated arsenic levels. Iron (hydr)oxides are known to be effective in removal of As from wastewater, and although the resulting compounds are relatively unstable, the presence of structural Al enhances their stability, particularly under reducing conditions. The purpose of this study was to assess the effectiveness of Al-Fe (hydr)oxide co-precipitates for the removal of As from wastewater and to assess the chemical stability of the products. Different Al-Fe (hydr)oxides were synthesized at room temperature from ferrous and aluminum salts using three different Fe:Al molar ratios (1:0.0, 1:0.3, and 1:0.7) and aged for 90 days (sulfate experiments) or 120 days (chloride experiments) in the presence of arsenic. At the end of the aging periods, the precipitated sludges were dried and characterized in order to evaluate their stability and therefore potential As mobility. All treatments were effective in reducing As levels in the water to below 10 µg L-1, but the presence of Al impaired the effectiveness of the treatment. Aluminum decreased the chemical stability of the precipitated sludge and hence its ability to retain As under natural environmental conditions.Resumo em Inglês:
ABSTRACT There is a complex interaction between various components of the soil ecosystem, including microbial biomass and soil chemical contaminants such as heavy metals and radionuclides, which may greatly affect the efficiency of bioremediation techniques. The aim of this study was to investigate microbial capacity to change pH, changes in the metal soluble-exchangeable fraction, and effects of initial heavy metal contents on soil samples in microbial solubilization/immobilization capacity. The soil samples used in this study were collected at a known metal-contaminated site. Three highly metal-resistant bacteria were isolated from rhizosphere soil samples collected on weed species identified as Senecio brasiliensis, Senecio leptolobus, and Baccharis trimera. A completely randomized experimental design in a factorial arrangement was used, with three replicates. In general, with an acid pH, the isolates neutralized the contaminated growth media. In a neutral or basic initial pH, increases in pH were observed in the media, so these bacteria have an alkalizing effect on the growth media. Soluble metal contents were quite different and depend on the microbial species and heavy metal contents in the soil samples. The soluble-exchangeable fraction of metal such as Cu, Zn, Ni, Cr, Cd, Pb, and Ba may be unavailable after inoculation with heavy metalresistant rhizobacteria. A promising approach seems to be the application of inoculants with metal-resistant bacteria in bioremediation of multi-metal-polluted environments to improve the efficiency of this environmentally friendly technology.Resumo em Inglês:
ABSTRACT: The great geological and soil variation in the state of Minas Gerais, Brazil, indicates the need for regional studies to understand the geochemical background of soils. The Rio Doce Basin became a priority area for geochemical background determination after the rupture of the tailings dam of Fundão in 2015. In this context, the objectives of this study were to propose Reference Values of Soil Quality in the Rio Doce Basin, to define variables that can predict metal(loid) concentrations in the soil, and to examine the correlation between metal(loid) concentrations determined by X-ray fluorescence and by the traditional method. One hundred and seven samples were collected from minimally disturbed areas, representing the main soils and source materials. Metal(loid)s were determined by acid digestion and X-ray fluorescence. Descriptive statistics of the data, as well as the calculation of the Randomized Dependence Coefficient (RDC) and Principal Component Analysis (PCA) were carried out. The soils were found to be acidic, dystrophic with low Mehlich-1 extracted P contents, and have a variable texture. The coefficient of determination ranged from 0.4 to 0.9, suggesting X-ray fluorescence as a promising technique for determining metal(loid) concentrations in soils. The absence of correlation between clay and organic matter contents with metal(loid) concentrations suggests that the latter were inherited exclusively from the parent material, with little influence of pedogenesis. Metal mineralization in the highlands that constitute the topographic drainage divide of the basin increase the reference values of soil quality to higher values than established for the State of Minas Gerais.Resumo em Inglês:
ABSTRACT Rice yield increases in response to improvements in crop management, but the impact on greenhouse gas (GHG) emissions in the subtropical region of Southern Brazil remains unknown. A three-year field study was developed aiming to evaluate the impact that an increase in crop management levels (high and very high) has on soil methane (CH4) and nitrous oxide (N2O) emissions, as compared to the level (medium) currently adopted by farmers in Southern Brazil. Differences in crop management included seed and fertilizer rates, irrigation, and pesticide use. The effect of crop management levels on the annual partial global warming potential (pGWP = CH4 × 25 + N2O × 298) ranged from 7,547 to 17,711 kg CO2eq ha−1 and this effect was larger than on the rice grain yield (9,280 to 12,260 kg ha−1), resulting in approximately 60 % higher yield-scaled GHG with the high crop management level compared to the current level. Soil CH4 emissions accounted for 98 % of pGWP in the flooded rice season, whereas N2O prevailed during the drained non-rice season (≈65 %). Although it was impossible to relate emissions to any individual input or practice, soil CH4 emissions in the rice season were linearly related to the biomass produced by the rice crop (p<0.01) and by ryegrass in the previous non-rice season (p<0.1), both of which were possibly related to the supply of labile C for methanogenesis. A future increase in rice yield as a result of the adoption of improved crop management may require additional agricultural practices (e.g., intermittent irrigation) to offset the increased GHG emissions.Resumo em Inglês:
ABSTRACT: The impact on nitrous oxide (N2O) emissions caused by combining dairy slurry (DS) and urea to supply crops with nitrogen (N) is still not well characterized. The main objective of this study was to compare the differences between N2O emissions in the cases of exclusive use of urea and the combined use of DS and urea as N sources to no-tillage wheat and corn. We also compared N2O emissions between two DS application methods (surface-broadcast vs. injection), as well as the addition of dicyandiamide (DCD) to DS. The experiment was conducted under no-tillage and six treatments were applied at sowing as follows: no fertilization (control), surface-broadcast urea (urea-N), surface-broadcast DS (DSs), surface-broadcast DS with DCD (DSs + DCD), shallow-injected DS (DSi), and shallow-injected DS with DCD (DSi + DCD). Urea was applied at side-dressing in all treatments with DS and urea-N. The N2O emissions were evaluated from the application of the treatments to wheat until 22 days after corn harvest, resulting in a total of 364 days. The partial supply of the N demand of wheat and corn, by DS application at sowing, and the posterior complement of N demand by side-dressing urea increased the annual N2O emissions only when DS was shallow-injected without DCD (DSi). Although the amount of N2O-N emitted from the DSi treatment was 1.04 kg ha-1 (91.2 %) higher than from DSs in corn, the annual N2O-N emissions did not differ between the two methods of DS application to the soil. The emission factors of N2O-N were low, ranging from 0.49 % (DSi + DCD) to 1.27 % (DSi). The results of this study suggest that the combined use of DS with urea in N fertilization of no-tillage wheat and corn (DS applied at sowing and urea at side-dressing) caused no changes in the annual N2O-N emissions compared to crops fertilized exclusively with urea (1/3 at sowing + 2/3 at side-dressing). However, DCD should be added if DS is shallow-injected.Resumo em Inglês:
ABSTRACT: Erodibility represents the intrinsic susceptibility of the soil to the erosion process, represented by the K factor in the Universal Soil Loss Equation (USLE). In Brazil, there are few field experiments determined with a series larger than ten years of data, which are the most reliable for quantifying the K factor. The aim of this study was to determine the K factor of the USLE by the direct method, relating soil losses determined in the field under standard conditions to erosivity of rains, and by the analytic method, applying the Wischmeier nomograph. The data on soil loss by water erosion were obtained in a field experiment under natural rainfall conditions from 1976 to 1989 in an Ultisol at the Agronomic Experimental Station in Eldorado do Sul, RS, Brazil. The value of the K factor by the direct method was 0.0338 Mg ha h ha-1 MJ-1 mm-1, which is high, showing considerable susceptibility of the soil to erosion. From the analytical method, the K factor obtained was 0.0325 Mg ha h ha-1 MJ-1 mm-1, a value very close to that determined experimentally. Thus, the Wischmeier nomograph proved to be valid for determination of the K factor of the Ultisol under study. This method proved to be valid for this type of soil. These results can be used for calibration models based on the USLE.Resumo em Inglês:
ABSTRACT Lithological and geomorphological variations determine formation of soils with different mineralogical constitutions and can influence the distribution of potentially toxic elements (PTE). The aim of this study was to determine the contents of PTE and mineralogical assemblages along soil profiles of different classes and parent materials and to investigate the association among these factors in the São Francisco sedimentary basin in the northern part of the state of Minas Gerais (Brazil). Eight soil pedons of different classes that developed from different parent materials (limestone, siltstone, phyllite, alluvial-colluvial sediments, detrital cover, and rhythmite) were studied in two lithotoposequences. Soil morphological, particle-size, and chemical analyses were carried out for soil characterization and classification. A mineralogical investigation was carried out by X-ray diffraction on soil sand, silt, and clay fractions. Potentially toxic elements were extracted by microwave-assisted acid digestion (EPA 3015A method) and determined in an ICP-OES. Soil mineralogy showed relevant interactions between pedogenesis and morphogenesis. Quartz is the main mineral in the sand and silt fractions, with varying amounts of weatherable primary minerals, whereas kaolinite is the main mineral in the clay fraction, followed by 2:1 clay minerals and oxides. The main soil properties associated with PTE variability were pH, redox environment, mineral and organic reactive surfaces, and clay content. The unique patterns of PTE distribution per pedon and differences in PTE contents in soils from the same parent material, but with different pedogenic evolution, showed that pedogenic processes influence PTE distribution. Mainly Mn, Ni, Pb, and Ba were influenced by parent material, especially limestone, siltstone, and detrital cover, but Cd, As, and Cu were also influenced. To a lesser extent, Mo was influenced by phyllite and Cr by detrital cover and phyllite. Rhodic Ferralsol (Latossolo Vermelho Distrófico típico) was the only taxonomic class to show class association with PTE. The association of Ferralsols (Latossolos) with Cd, Mn, Ni, Pb, Ba, As, and Cu and the low contents of these elements in soils of this class suggest that pedogenic processes common to Ferralsol (Latossolo) evolution are responsible for decreasing levels of these PTE.Resumo em Inglês:
ABSTRACT: Research focused on adequate nutrition of plants is essential in modern coffee production to increase yield and develop more efficient management strategies with greater environmental and economic sustainability. The objectives of this study were to establish critical and optimal levels of soil fertility properties for high yielding Arabica coffee crops using the Boundary Line method and, then, relate the macronutrient contents in the diagnostic leaf of coffee to the macronutrients available in the soil using the Quadrant Diagram of the Plant-Soil Relationship (QDpsR). The study made use of a soil chemical analysis database, leaf macronutrient contents, and Arabica coffee yield from five representative coffee-growing regions in Minas Gerais. An analysis of data consistency was performed, and relative fruit yield (RFY) was related to the soil organic matter (SOM), P, K, Ca, and Mg contents in the soil, establishing the boundary line (BL) in each graph. Equations were adjusted from the BL points, and the equation that best fit was selected. Using the QDpsR method, the response plane was divided into four quadrants, where the total leaf contents of N, P, K, Ca, Mg, and S were plotted as a function of the contents of SOM, P, K, Ca, and Mg in the soil, on the y and x axes of the Cartesian coordinate system. The regression equations were adjusted to the pairs of points (y, x) of quadrants III and I and were used to estimate the macronutrient sufficiency ranges from the critical and optimal levels in the soil. The BL method was used to determine the class of good soil fertility for SOM, P, K, Ca, and Mg. The QDpsR method allows determination of response curves for leaf content as a variable of soil contents, making it possible to estimate the sufficiency ranges in the diagnostic leaf of coffee: 33.4-35.8 g kg-1 of N, 1.4-1.6 g kg-1 of P, 24.4-27.0 g kg-1 of K, 11.9-13.6 g kg-1 of Ca, 3.8-4.5 g kg-1 of Mg, and 1.4-1.8 g kg-1 of S; which were consistent with the sufficiency ranges considered suitable for the crop. This study demonstrated the importance of leaf analysis as a tool for evaluation of the nutritional status of Arabica coffee since the technique is consistent with the theoretical principles underlying it.Resumo em Inglês:
ABSTRACT Water erosion is one of the main environmental impacts of land use. When soil and water losses occur, nutrients essential for the growth and maintenance of plants are removed, with harmful outcomes on the sustainability of agriculture and the environment. In addition, they lead to other deleterious effects, such as sedimentation and eutrophication of water bodies. Estimation of soil losses due to water erosion in sub-basins is essential for prediction of soil degradation, especially in areas of semi-intensive cultivation, such as coffee fields. Thus, the aim of this study was to estimate soil losses in relation to the limit of soil loss tolerance in Oxisols (Latossolos Vermelhos Distróficos) under coffee cultivation. This study was conducted from March 2015 to January 2017 in the Córrego da Laje Hydrographic Sub-basin in the municipality of Alfenas in the southern region of Minas Gerais, southeastern Brazil. Soil losses due to water erosion were estimated from the revised universal soil loss equation and compared to soil loss tolerance. Morphological, physical, and chemical properties of the soil were used, as well as geoprocessing techniques, remote-sensing images, and data from the literature. The results show potential soil losses from 0.01 to 18.77 Mg ha-1 yr-1, with an average of 1.52 Mg ha-1 yr-1. The soil loss tolerance ranged from 5.19 to 5.90 Mg ha-1 yr-1, with 7.35 % of the area having larger losses. Areas with steeper slopes and no sustainable practices have soil losses above the tolerance level and are thus a priority for adoption of measures to mitigate erosive effects. The revised universal soil loss equation enabled water erosion modeling and identification of areas with the highest rates of potential soil loss in watersheds.Resumo em Inglês:
ABSTRACT Several complications can arise, either directly or indirectly, from implementation of measures to correct soil acidity in established fruit orchards, such as impaired roots, lower root volume, risk of plant infection, propagation of diseases, promotion of pest development (especially nematodes), and soil disaggregation and compaction. These factors can have a negative effect on crop yield. Therefore, it becomes critical to implement an effective method of neutralizing soil acidity, especially at the level of the tree roots. To assess the effect that the rates and forms of limestone applied on the soil surface have on soil fertility and on nutrition and yield of guava, an experiment was conducted in a commercial orchard. A randomized block experimental design was implemented with three replicates consisting of two forms of limestone [common limestone with relative neutralizing value (RNV) = 80 % and calcined limestone with RNV = 131 %], which were applied at five different rates (0, 0.5, 1, 1.5, and 2 times the recommended rate to raise the V value to 70 %), without incorporation. Liming with common or calcined limestone caused a drop in soil acidity in the 0.00-0.10 m layer at 6, 12, and 24 months after application. Soil acidity decreased in the 0.10-0.20 m layer at 6 and 12 months after use of calcined limestone, and at 24 months after liming with the common form of limestone. The chemical composition (N, P, K, Ca, Mg, S, B, Cu, Fe, Mn, Zn) of leaves was not affected at 14 months after surface liming treatments, nor the chemical composition of fruit at 20 months after the treatments. Guava yield was not affected by surface liming.Resumo em Inglês:
ABSTRACT The DayCent ecosystem model, widely tested in upland agroecosystems, was recently updated to simulate waterlogged soils. We evaluated the new version in a paddy rice experiment in Southern Brazil. DayCent was used to simulate rice yield, soil organic carbon (SOC), and soil CH4 fluxes. Model calibration was conducted with a multiple-year dataset from the conventional tillage treatment, followed by a validation phase with data from the no-tillage treatment. Model performance was assessed with statistics commonly used in modeling studies: root mean square error (RMSE), model efficiency (EF), and mean difference (M). In general, DayCent slightly underestimated rice yields under no-tillage (by 0.07 Mg ha-1, or 9.2 %) and slightly overestimated soil C stocks, especially in the first years of the experiment. A comparison of observed and simulated CH4 daily fluxes showed that DayCent could simulate the general patterns of soil CH4 fluxes with slight discrepancies. Daily soil CH4 fluxes were overestimated by 0.43 kg ha-1 day-1 (12 %). Growth-season CH4 emissions under no-tillage were also somewhat overestimated (11 % or 45.29 kg ha-1). We conclude that DayCent simulated SOC, rice yield, and CH4 with some inaccuracies, but the overall performance was considered adequate. However, the model failed to represent the observed potential of no-tillage to mitigate CH4 emissions, possibly because model algorithms could not capture the actual field conditions derived from no-tillage management, such as soil redox potential, plant senescence, and surface placement of plant residue.Resumo em Inglês:
ABSTRACT Growth in the agricultural and industrial sectors has increased the demand for rare earth elements (REEs) in the production of technological devices and fertilizers. Thus, the accumulation of these elements in the soil has become an environmental concern. Here, we aim to determine the natural contents of REEs in soils derived from different parent materials and under climatic conditions ranging from humid to semi-arid. We then evaluate the influence of major elements and soil properties on the geochemistry of REEs. The contents of REEs were determined using inductively coupled plasma optical emission spectroscopy. Major elements were determined by X-ray fluorescence spectrometry. The mean content of REEs in soils from Rio Grande do Norte (RN), Brazil, were in the followed order (mg kg-1): Ce (40.4) > La (18.9) > Nd (15.8) > Pr (7.3) > Sm (3.0) > Gd (2.6) > Dy (1.0) > Er (0.7) > Yb (0.6) > Eu (0.5) = Tb (0.5) > Ho (0.3) > Lu (0.2). The parent material was the main factor that governed the geochemistry of the REEs in soils of RN. Higher levels of REEs were observed in soils derived from igneous and metamorphic rocks. In contrast, sedimentary rocks - except for the region formed from limestone - generated soils with lower contents of REEs in the state. In addition, soils developed from the same parent material and under different climatic conditions showed the same geochemical signatures for REEs in soils. These results confirm the small effect of climate on REE geochemistry in soils of RN and lead to the conclusion that the geochemical signature of REEs in these soils reflects the composition of the underlying parent material. The lack of significant correlation between (La/Yb)N ratio and the Chemical Alteration Index also confirms the low influence of climate on soil REE geochemistry. Among the major elements, Fe and Si had a greater influence on soil REE geochemistry. Higher REEs were seen in areas with more Fe and less Si. These REE levels were clearly controlled by the type of parent material. The Nd, Sm, Tb, Dy, Ho, Yb, and Er levels showed strong spatial dependence; this dependence was moderate for the Pr, La, Ce, Eu, Gd, and Lu levels. Spatial variability maps of REEs are particularly important to identify areas under environmental impact. Our results represent the most detailed study of the surface geochemistry of REEs in Brazilian soils and contribute to the scarce data available on these elements in Brazil.Resumo em Inglês:
ABSTRACT Brazilian soybean producers commonly apply maintenance potassium (K) fertilization during cultivation to restore the K taken up by plants; however, this measure can modify the morphophysiological plant characteristics, since the functions of K are closely related with plant growth and development. This study assessed the morphological changes in soybean plants in response to K rates, sowing fertilization, and the application periods of K fertilization in a Latossolo Vermelho eutroférrico (Oxisol) under a no-tillage system, located in the municipality of Floresta, Paraná. A randomized block design was used in the experiment with four replications in a fully crossed factorial design (5 × 2 × 2). The experiment was carried out in two growing seasons (2015/2016 and 2016/2017), with a total of 80 experimental units. The rates corresponded to the first factor (0, 40, 80, 120, and 160 kg ha-1 of K). The application periods (pre-sowing and post-sowing) were the second factor, and sowing fertilization (0 and 30 kg ha-1 of K) the third. The following variables were measured: shoot dry weight, leaf dry weight, stem dry weight, leaf area, specific leaf area, leaf area ratio, and leaf area index, and these biometric parameters were correlated with soybean yield. The results showed that plants well-supplied with K exploited the environment better and this may be reversed for higher yields since there were correlations between grain yield and the biometric parameters. At lower water availability, the biometric changes were more evident.Resumo em Inglês:
ABSTRACT Crotalaria juncea is used as plant cover in grape vineyards in Brazil, which usually present soils with high copper (Cu) levels due to the application of Cu-based phyto-sanitary products. Under this condition an increase growth and cover of C. juncea is needed to improve the phytoremediation processes in those soils. Some alternatives to achieve this condition is the inoculation with arbuscular mycorrhizal fungi (AMF), which has demonstrated an important increase of plant growth in Cu-contaminated soils at different soil P levels. The aims of this study were to evaluate the effect of AMF inoculation in soils with high Cu contents on the growth of C. juncea, the acid phosphatase (APase) enzyme activity in plants and soil, and the presence of glomalin under different P supply conditions, as a basis to identify if there is a synergistic interaction between AMF inoculation and P supply on soils with high Cu levels. The experiment was carried under greenhouse conditions in a factorial 3 × 2 design (natural P content, addition of 40 and 100 mg kg-1 P, with and without the inoculation of the AMF Rhizophagus clarus with three replicates) in a soil with high Cu content (60 mg kg-1). The addition of 40 and 100 mg kg-1 P favored plant growth both in the presence and in the absence of AMF. However, when plants were grown in soil with a natural P level, the inoculation with AMF increased by 116 % the shoot biomass, compared to the non-inoculated treatment. Our results showed that the combination of P supply and R. clarus inoculation could be an adequate strategy to reduce Cu phytotoxicity in C. juncea, as it increases plant biomass and modify the APase enzyme activity in the soil and plant. Additionally, glomalin produced by the AMF and accumulated in the soil can decrease the availability of Cu to the plants by means of sequestration beyond the root surface, with a consequent plant protective effect.Resumo em Inglês:
ABSTRACT The efficiency index (EI) refers to the ratio of nutrients mineralized/made available in the soil to the total amount of nutrients added by organic fertilizer. Therefore, understanding the EI is essential for recommendation of organic fertilization. The aim of this study was to evaluate the availability through mineralization and the efficiency index of nitrogen (N), phosphorus (P), and potassium (K) in organic fertilizers produced from cattle manure. The following treatments were evaluated in an incubation experiment under controlled conditions: soil without fertilizer (control); soil + beef cattle manure vermicompost; soil + beef cattle manure/straw compost; soil + beef cattle manure; soil + dairy cattle manure; and soil + vermicompost produced under conditions of high moisture and forced air. Nitrogen and P mineralization and K availability in the soil were evaluated at 0, 7, 14, 28, 56, 112, 224, and 365 days. Nitrogen availability in the soil increased after the bioconversion of cattle manure by composting, whereas phosphorus availability increased by vermicomposting. The average efficiency indices of N, P, and K of the fertilizers produced from cattle manure were 16, 57, and 82 %, respectively. These efficiency indices are lower than the values presented by the Liming and Fertilization Manual for the states of Rio Grande do Sul (RS) and Santa Catarina (SC), Brazil.Resumo em Inglês:
ABSTRACT Recycling of carbon (C) and nitrogen (N) from plants into soils is decisive for maintaining soil organic matter and soil fertility. Therefore, we quantified plant biomass and C and N in the shoots and roots from the topsoil layer for a wide range of annual crops grown under subtropical conditions. We grew 26 species, 13 main crops, and 13 cover crops, in the field in standard sowing arrangements. Root biomass was recovered from the 0.00-0.20 m soil layer at flowering, and shoot biomass was measured at flowering for all crops and at maturity only for the main crops. Root dry matter (DM) exhibited an average of 14.9 ± 5.7 % of the total shoot biomass at flowering, and the mean shoot DM to root DM ratio was 6.9 (2.8-15.0) for the 26 crops considered. Leguminous species had less root DM (0.5 to 1.0 Mg ha-1) than grass species (1.1 to 2.3 Mg ha-1). The shoot C to root C ratio varied consistently with DM, while the root N to shoot N ratio varied considerably among species. Proportionally more biomass, C, and N was allocated to the root systems of grasses (Poaceae species) than non-grass species (especially Fabaceae species). The findings of this study contribute to designing rotations to include species that promote cycling of N and have high potential for adding C to the soil through roots. In this sense, the use of intercropped grasses and legumes is a promising strategy, especially for cover crops.Resumo em Inglês:
ABSTRACT: The conversion of native grassland into farmland causes changes in the soil. Tillage has profound effects on soil organic matter. The intensification of soil tillage decreases soil quality by reducing aggregate stability. Soil aggregate stability and soil organic matter are key indicators for soil quality and environmental sustainability in agro-ecosystems. The aim of the present study is to evaluate the total organic carbon content and the physical and chemical fractions of the organic matter in a soil under different uses and types of management over 27 years. Four soil tillage treatments with two annual crops were evaluated (no-tillage, NT; rotating tillage, RT; minimum tillage, MT; and conventional tillage, CT), as well as bare soil (BS) (standard plot of the Universal Soil Loss Equation - USLE) and natural grassland (NG) as a reference area. The experiment was carried out in an Inceptisol (Cambissolos) in southern Brazil. We determined total organic carbon (TOC) and particulate organic carbon (POC), and organic carbon associated with soil minerals (OCam). The chemical fractionation of carbon was into fulvic and humic acids, and humin. In addition, soil aggregates were divided into five size classes. The type of soil tillage affected the soil organic carbon content, namely TOC, POC, and OCam, as well as the composition of the physical and chemical fractions and their distribution in the arable soil layer. There was a positive relationship between stable aggregates and organic carbon in the soil: the higher the proportion of aggregates in class 1, the higher the organic carbon content. The results support the hypothesis that the carbon stock depends on intensification of a conservation tillage system with a continuous input of C through biomass, which maintains and supplies a continuous flow of C to the carbon transformation processes in the soil.Resumo em Inglês:
ABSTRACT: High copper (Cu) and zinc (Zn) contents in soil can cause phytotoxicity to plants and contaminate surface and groundwater, with negative effects on agriculture and the environment. Functionalized charcoal (OCh) has high cation exchange capacity (CEC) and the ability to adsorb Cu and Zn and control their availability in the soil and water. An adsorption study at two pH levels was carried out to evaluate increasing Cu and Zn sorption capacity provided by the functionalization process of a charcoal. In addition, a kinetics study of competitive and non-competitive adsorption-desorption of Cu and Zn in OCh was also evaluated. The results showed that functionalized charcoal (Ch) increased CEC 8.7 times due to an increase in carboxyl and phenolic groups, without changing its specific surface area. The Cu and Zn kinetics study showed higher interaction of Cu with the OCh, with total adsorption capacity of 53.1 mg g−1. From this amount, only 74.9 % was desorbed. However, competitive adsorption with Zn reduced the total amount of Cu adsorbed and decreased the Cu affinity for organic matter. This study shows the potential use of functionalized charcoal for control of Cu and Zn availability in the soil solution.Resumo em Inglês:
ABSTRACT: Ruzigrass (Urochola ruziziensis) has a large capacity to take up K from the soil, including non-exchangeable forms, and can play an important role in nutrient cycling in integrated production systems. However, K transport to roots of brachiarias is not well known, nor the nutrient dynamics in the rhizosphere, where a concentration gradient may be established towards the non-rhizospheric soil, creating a favorable environment for the release of non-exchangeable K. This study aimed to evaluate the effect of ruzigrass on K dynamics in the rhizosphere and on non-exchangeable K release. Ruzigrass was grown in pots filled with a Latossolo Vermelho Amarelo (Typic Hapludox) that was collected at 0.00-0.20 and 0.20-0.60 m layer from a cultivated area and fertilized with 0, 30, and 60 mg kg−1 of K, plus a treatment with forest soil, used as control. Thirty days after plant emergence, soil samples were taken at the following distances from the roots: 0.5, 1.0, 1.5, 3.0, 5.0, and 10.0 mm. For the highest exchangeable K rate (60 mg dm−3), the exchangeable K level was higher from 0 to 0.5 mm of the roots for both soils (0.00-0.20 and 0.20-0.60 m). Therefore, more K was transported to the rhizosphere than the plant could take up. A depletion of exchangeable K observed in the rhizosphere resulted in the release of K from non-exchangeable forms, as observed in the soils from 0.00-0.20 (60 mg dm−3) and 0.20-0.60 m (without application of K). Ruzigrass grown on low K soils without fertilizer application results in a larger exchangeable K depletion zone than in soils that were fertilized or originally high in exchangeable K, showing a high potential for K cycling in the system.Resumo em Inglês:
ABSTRACT: In banana cultivation, fertilization recommendations are almost exclusively based on soil chemical analysis, without considering leaf analysis and expected yield, which can help in the adjustment of fertilization programs. The aim of this study was to develop a method to recommend macronutrient fertilization rates which integrates data on leaf analysis, soil chemical analysis, and yield. Yield, soil chemical analysis, and leaf analysis data of fertigated plantations of ‘Prata’ banana were obtained for the first and second halves of the years from 2010 to 2015. Yield was correlated with soil organic matter (SOM) and soil contents of macronutrients (P, K, Ca, and Mg) to obtain the critical level (CLNui). Then, leaf nutrient contents were plotted on a dispersion graph as a function of soil contents using the method of Quadrant Diagram of the Plant-Soil Relationship (QDpsR). Based on leaf analysis, recommended rates were simulated for four plots and compared with rates recommended by other methods. The values of CLNui obtained were 13.2 g dm−3for SOM; 97.5 and 91.5 mg dm−3for P and K; and 2.71 and 0.61 cmolc dm−3for Ca2+and Mg2+. The rates recommended based on leaf analysis diverged from the recommendations of Ferticalc®-Bananeira and the Recommendation Table for Banana Fertilization; in plots for which recommendations were made, there were higher rates of P2O5 and Ca and lower rates of K2O. However, in most cases, applications were not recommended, either because contents in leaves and soil were adequate or because yield was being limited by non-nutritional factors or, if nutritional, related to other nutrient(s). Leaf analysis satisfactorily adjusts the recommended rates of nutrients and has advantages if incorporated in nutritional balance models.