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I show that continuous convex preference relations that have affine

indifference curves do not have a concave representation if there are

two indifference curves that are not parallel. In other words a prefe-

rence relation with affine indifference curves that has a concave repre-

sentation has a linear utility representation.

Eu demonstro que uma relação de preferências contínua e convexa que

tem curvas de indiferença afins não tem representação côncava se existirem

pelo menos duas curvas de indiferença não paralelas. Em outras palavras,

uma relação de preferências com curvas de indiferença afins que tem repre-

sentação côncava tem na verdade uma representação linear.

1. INTRODUCTION

Every continuous convex preference relation on Rl+ has a continuous utility representation U :
Rl+ → R which is quasi-concave. It is natural to ask if the preference relation has another representa-
tion: one that is concave. The first study on this subject1 is de Finetti (1949). There he already mentions
the importance of this question in utility theory. Fenchel (1953) has a deeper study of this problem. He
presents necessary and sufficient conditions. His conditions are easy to check except one (i. e. condi-
tion VII on page 124–125.) Kannai (1977) deepens the study of Fenchel’s condition VII – and obtains a
formula (see for example, Theorem 2.4 page 9) for the concave representation when there is one.

A nice example of a preference relation that has not a concave representation appears in Arrow and

Enthoven (1961) on footnote 6 page 781. The function U (x,y) = x − 1 +
√

(1− x)2 + 4 (x+ y)
is quasi-concave, strictly monotonic. The indifference curve U−1 (u) is the straight line connecting

(u/2,0) and
(

0,u
2+2u

4

)
. They mention that Fenchel (1953) has proved that such a function cannot have

a concave representation. It is not clear however if they mean smooth representations or the general
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case. It is easy to check that such a function has no smooth concave representation. Another example
is given in Schummer (1998). Analytically his example is U(x,y) = 2x

2−y ,0 < x,y ≤ 1. The indifference

curve is the part of the straight line connecting (u,0) and (0,2) that intersect (0,1]2. The example in
Schummer has the same spirit2 as the example in Aumann (1975) Figure 8 on page 629. Aumann refers
to Fenchel (1956) as a source of the example.3 So what type of quasi-concave utility function has no
concave representation? It is clear from the above examples that it helps if the indifference curves are
linear. Here I will prove a strong result in this set up. I show that if a strictly monotonic preference on
Rl+ has affine indifference curves4 and two of these affine sets are not parallel then there is no concave
representation. In other words, a preference relation with affine indifference curves that has a concave
representation necessarily has a linear utility representation. That is, there exists b ∈ Rl++ such that
U(x) = b · x represents the preference relation.

2. BASIC DEFINITIONS AND AUXILIARY RESULTS

Let X ⊂ Rl+ be a convex set. A function U : X → R is quasi-concave if {x ∈ X;U (x) ≥ u} is
convex for every u. It is concave if U (rx+ (1− r) y) ≥ rU (x) + (1− r)U (y) for every x,y ∈ X
and 0 < r < 1. It is easy to check that every concave function is quasi-concave as well.

Definition 1 [concavifiability]. The quasi-concave function U has a concave representation (or is concavifi-
able) if there is a strictly increasing function f : U (X)→ R such that f ◦ U is a concave function.

Let U : X → R be quasi-concave and continuous. Let M := −Rl+.

Definition 2. For each v ∈M and u ∈ U (X) define

h (u,v) = sup {x · v;U (x) ≥ u} .

Note that h (u,v) ≤ 0 since X ⊂ Rl+. The next lemma is a simplified version of (Fenchel, 1953,
page 123 § 53).

Lemma 1 [Fenchel]. Suppose f : U (X) → I is strictly increasing and continuous onto I . Let g := f−1 :
I → U (X) be its inverse. If f ◦ U is concave then θ (z) := h (g (z) ,v) is concave for every v ∈M .

Proof. Let z′,z′′ ∈ I and 0 < r < 1. For a given ε > 0 there exist x′,x′′ ∈ X such that

h (g (z′) ,v)− ε < x′ · v,U (x′) ≥ g (z′) ,
h (g (z′′) ,v)− ε < x′′ · v,U (x′′) ≥ g (z′′) .

Therefore if s = 1− r,

f (U (rx′ + sx′′)) ≥ rf (U (x′)) + sf (U (x′′)) ≥ rz′ + sz′′

and thus U(rx′ + sz′′ ≥ g(rz′ + sz′′). Hence

h (g (rz′ + sz′′) ,v) ≥ (rx′ + sx′′) · v ≥ h (g (z′) ,v) + h (g (z′′) ,v)− 2ε.

2The indifferences curves intersect a fixed point in Schummer and Aumann’s example.
3Presumably the example on III page 501, namely φ = x2/x1.
4I. e. translations of hyperplanes.
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Since ε is arbitrary the proof is finished.

Definition 3. A setA ⊂ Rl is affine if it is the translation of a vector subspace. That isA = a+ V with V a
vector subspace of Rl. The affine set A has codimension 1 if V has codimension 1.

Definition 4. The utility function U : X → R has affine indifference curves if for every u ∈ U (X) we have
that U−1 (u) = H (u) ∩X where the affine set H (u) has codimension 1.

The following lemma is central.

Lemma 2. Let I and J ⊂ (0,∞) be open intervals. Suppose g : I → J and φ : J → (0,∞)
are strictly increasing functions and that g (I) = J . Suppose also that for every k > 0 the function
min {g (z) ,kφ (g (z))} is convex. Then g and g ◦ φ are convex and there is a t > 0 such that φ (u) = tu
for every u ∈ J .

The proof is in the Appendix.

3. MAIN THEOREM

I begin defining in more detail the class of functions I use.
Let b (u) ∈ Rl \ {0} and τ (u) > 0 be functions defined for u ∈ (0,∞). The set

H (u) =
{
x ∈ Rl; b (u) · x = τ (u)

}
is an affine set with codimension 1. Dividing by τ (u) we may suppose without loss of generality that
τ (u) ≡ 1 for u > 0. And therefore

H (u) =
{
x ∈ Rl; b (u) · x = 1

}
. (*)

Lemma 3. Suppose U : Rl+ → R is a strictly monotonic function such that U (0) = 0. Suppose also that
U−1 (u) 6= ∅ is affine for every u > 0. LetU−1 (u) = H (u)∩Rl+ whereH (u) is defined in (*). Then bi (u)
is strictly decreasing for u > 0, continuous and onto (0,∞). Moreover U is quasi-concave and continuous.

The proof is in the Appendix.
The theorem I want to prove is the following:

Theorem 1. Suppose U : Rl+ → R+ is a onto strictly monotonic utility function with affine indifference
curves. If it has a concave representation then there is a strictly positive vector b >> 0 such that V (x) = b ·x
is a representation of U .

Proof. Define φi (u) = 1/bi (u) for u > 0. Thus φi is continuous and strictly increasing onto (0,∞).
Let v = (−k1, . . . ,− kl) << 0. Then

max

{
−
∑
i

xiki;U (x) ≥ u

}
= max

{
−
∑
i

xiki;U (x) = u

}
.
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The linearity of U−1 (u) implies that

max

{
−
∑
i

xiki ,

l∑
i=1

xi
φi (u)

= 1

}

= −min

{∑
i

xiki ,

l∑
i=1

xi
φi (u)

= 1

}
= −min

i
kiφi (u) . (1)

Fenchel’s Lemma implies the concavity of −mini kiφi (g (z)). And therefore mini kiφi (g (z)) is
convex. Fix k1 = 1 and j 6= 1. Making ki →∞ for every i 6= j we conclude that

min {φ1 (g (z)) ,kjφj (g (z))}

is convex for every kj > 0. Defining g̃ = φ1 ◦ g we have that

min
{
g̃ (z) ,kjφj ◦ φ−1

1 (g̃ (z))
}

is convex for every kj > 0. Lemma 2 implies that φj ◦ φ−1
1 (u) = tj u for some tj > 0. Thus

φj (u) = tjφ1(u) since φ1 (R++) = R++. Therefore

U−1 (u) =

{
x >> 0;

l∑
i=1

xi
φi (u)

= 1

}
=

{
x >> 0;

l∑
i=1

xi
ti

= φ1 (u)

}

and therefore φ−1
1 (U (x)) =

∑l
i=1

xi
ti

is a linear function. QED

Remark 1. It is easy to generalize5 Theorem 1 to convex subsets with non-empty interior: For each interior
point there is a small copy of the positive cone. Then from the theorem the utility is linear in this neighborhood.
Then connectedness implies that the linear function is the same everywhere.

Remark 2. The restrictionX ⊂ Rl+ is what makes the theorem 1 non-trivial. IfX = Rl then the existence of
a concave representation would imply that the asymptotic cone of the level sets {x;U (x) ≥ u} is constant
in u. And this by itself would ensure that the indifference curves, U−1 (u), are parallel.
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APPENDIX

PROOFS OMITTED IN THE TEXT

Proof of Lemma 2: Making k →∞ we have that g (·) is convex. Dividing by k and making k → 0 we
conclude that φ ◦ g (·) is convex as well. Thus g and φ ◦ g are continuous on I and differentiable except
on a countable set. Moreover since g is strictly increasing and convex g′ (z) > 0 if it is defined. Thus
g−1 is differentiable except on a countable set and thus φ = (φ ◦ g) ◦ g−1 is differentiable except on a
countable set as well. Let Ĩ be the set of i ∈ I such that g′ (i) > 0 and (φ ◦ g)′ (i) > 0. Thus I \ Ĩ is
a countable set. Suppose now that φ′ (u) > φ (u) /u on a uncountable subset of J . Thus there exists
an u0 = g

(
z0
)

such that

φ′
(
u0
)
>
φ
(
u0
)

u0
and g′

(
z0
)
> 0.

Let k be such that u0 = kφ
(
u0
)
. Since

d

dz
(g (z)− kφ (g (z))) |z=z0 = g′

(
z0
)
− kφ′

(
u0
)
g′
(
z0
)

=

kg′
(
z0
)(φ (u0

)
u0

− φ′
(
u0
))

< 0

we have that {
g (z) > kφ (g (z)) if z < z0

g (z) < kφ (g (z)) if z > z0

Thus the convexity of min {g (z) ,kφ (g (z))} implies that k (φ ◦ g)′
(
z0
)
≤ g′

(
z0
)
. Thus

g′
(
z0
)

= k
φ
(
u0
)

u0
g′
(
z0
)
< kφ′

(
u0
)
g′
(
z0
)
≤ g′

(
z0
)

a contradiction. Now if φ′ (u) < φ (u) /u on an uncountable set we obtain a contradiction by an
analogous reasoning. Let z (u) = log (φ (u)) − log (u). Thus z (u) is a continuous function such that
z′ (u) = 0 except on a countable set. Theorem 7.9 page 206 of Saks (1964) implies that z (u) is constant.
Then if this constant is written as log(t) we conclude that φ(u) = tu. This ends the proof.

Remark 3. To prove the last step of the proof above we may use Sard (1958). If A is the set of points where
the derivative of z (u) exists and is null then the Corollary on page 254 of Sard (1958) implies that the range is
null. Since Ac is countable we have a continuous function with a null range. But the only null interval is the
one point interval.

Proof of Lemma 3: First note that strict monotonicity implies b (u) >> 0. To see this suppose bi (u) >
0 > bj (u). If U

(
x0
)

= u then x = x0 − bj (u) ej + bi (u) ei >> x0 and U (x) = u a contradiction.
Take t > 0 a real number. And let u = U(tei). Then since tei ∈ H (u) it follows that bi (u) t = 1.
Thus bi (R++) = R++. From bi (U (tei)) = 1/t it follows that bi is strictly decreasing. A decreasing
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function whose range is an interval is continuous. Let me prove the quasi-concavity. SupposeU (x) ≥ u
and U (y) ≥ u. If 0 < r < 1 we have that b (u) · x ≥ b (U (x)) · x = 1 and b (u) · y ≥ 1. Then

b (u) · (rx+ (1− r) y) = rb (u) · x+ (1− r) b (u) · y ≥ 1

implies that U (rx+ (1− r) y) ≥ u. I omit the proof of continuity (which is not difficulty).
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