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Reconhecimento de frutas, plano de tarefas e controle
para robôs de colheita de maçãs

Huawei Yang2,3,4 , Jie Wu3 , Aifeng Liang5 , Shaowei Wang2 , Yinfa Yan3 , Hongjian Zhang3 ,
Ning Li2 , Yinzeng Liu2 , Jinxing Wang3  & Jianfeng Qiu4*

ABSTRACT: Intelligent apple-harvesting robots use a staggered distribution of branches and leaves during operation, 
causing problems such as slow motion planning, low operational efficiency, and high path cost for multi-degrees-of-
freedom (DOF) harvesting manipulators. This study presents an autonomous apple-harvesting robotic arm-hand 
composite system that aims to improve the operational efficiency of intelligent harvesting in dwarf anvil-planted apple 
orchards. The machine vision system for fruit detection uses the deep learning convolutional neural network (CNN) 
YOLOv7 and RGB-D camera online detection coupling technology to rapidly recognise apples. The spatial depth 
information of the fruit area was then extracted from the aligned depth image for precise positioning. Coordinate 
transformation was used to obtain the coordinates of the fruit under the coordinate system of the manipulator. 
Based on the informed rapid-exploration random tree (Informed-RRT*) algorithm and path-planning model, the 
identified target apples were harvested without collision path planning. In an apple-harvesting test, the recognition 
accuracy of the visual system was 89.4%, and the average time to harvest a single apple was 9.69 s, which was 4.8% 
faster than the mainstream general harvesting technology. Moreover, the harvesting time for a single apple was 
reduced by 1.7%. Thus, the proposed system enabled accurate and efficient fruit harvesting.

Key words: apple harvesting robotic arm-hand composite, manipulator, deep learning, path planning, harvesting 
sequence planning

RESUMO: Os robôs de colheita inteligente de maçãs têm uma distribuição escalonada de galhos e folhas durante 
a operação, o que causa problemas como o planejamento de movimentos lentos, a baixa eficiência operacional e o 
alto custo de trajetória dos manipuladores de colheita com vários graus de liberdade (DOF). Este artigo apresenta 
um sistema composto de braço-mão robótico autônomo para colheita de maçãs que visa melhorar a eficiência 
operacional da colheita inteligente em pomares de maçãs plantadas com anéis anões. O sistema de visão mecânica 
para detecção de frutas usa a rede neural convolucional de aprendizagem profunda (CNN) YOLOv7 e uma tecnologia 
de acoplamento de detecção on-line de câmera RGB-D para reconhecer rapidamente as maçãs. Em seguida, as 
informações de profundidade espacial da área da fruta são extraídas da imagem de profundidade alinhada para um 
posicionamento preciso. A transformação de coordenadas é usada para obter as coordenadas da fruta no sistema de 
coordenadas do manipulador. Com base no algoritmo de árvore aleatória de exploração rápida informada (Informed-
RRT*) e no modelo de planejamento de caminho, as maçãs-alvo identificadas são colhidas sem planejamento de 
caminho de colisão. Em um teste de colheita de maçãs, a precisão do reconhecimento do sistema visual foi de 89,4%, 
e o tempo médio de colheita de uma única maçã foi de 9,69 s, 4,8% mais rápido do que a tecnologia de colheita geral 
convencional. Além disso, o tempo de colheita de uma única maçã foi reduzido em 1,7%. Assim, o sistema proposto 
permite uma colheita de frutas precisa e eficiente.

Palavras-chave: composição robótica de braço e mão para colheita de maçã, manipulador, aprendizagem profunda, 
planejamento de caminho; planejamento de sequência de colheita

HIGHLIGHTS:
The labour-intensive harvesting process leads to high production costs of apples.
Automatic mechanized harvesting reduces labour costs and enhances competitiveness.
Deep learning and collision-free path planning to achieve lossless harvesting of apples can replace manual harvesting.
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Introduction

Apples are the most abundant fruit tree cultivars in 
northern China. According to statistics, the national apple 
planting area reached 2.08808 million hectares in 2021, and 
the national apple production reached 45.9734 million tons 
(Yang et al., 2020). In apple production operations, fruit 
harvesting is an important link (Legun et al., 2021) and is part 
of seasonal, labour-intensive operations. However, with the 
rapid advancement of urbanisation in China, the rural labour 
force has decreased and aged, and labour costs have increased 
significantly (Zhong et al., 2019). Thus, intelligent apple-
harvesting technology can help alleviate labour shortages, 
reduce labour intensity, improve apple-harvesting quality and 
efficiency, and improve planting efficiency (Tian et al., 2019).

In recent years, dense dwarf anvil planting and the 
cultivation of apple orchards have become mainstream in 
the combined development of orchard agronomy (Reig et al., 
2019), and supporting orchard-harvesting robot technology 
has developed rapidly. In addition, significant progress has 
been achieved in fruit identification and positioning, motion 
simulation, trajectory planning, and flexible grasping.

At present, the success rate of apple-harvesting robots 
remains mediocre, and failures are mostly due to the 
obstruction of fruits by apple clusters, branches, leaves, and 
other obstacles, as well as calibration and spatial positioning 
errors caused by the harvesting system and the swinging of 
branches and fruits (Zhang et al., 2016). To solve the above 
problems, it was proposed an apple-harvesting robotic arm-
hand composite system that integrates a vision system, flexible 
end effector, and manipulator, and features an intelligent 
algorithm. In the vision system, the binocular visual camera 
system is used as the main visual sensor, and a fruit deep 
learning model is constructed to identify and locate the target 
apple. Subsequently, the operation path of the manipulator with 
the end effector was planned to complete the grasping action 
and realise accurate and collision-free fruit harvesting. This 
study presents an autonomous apple-harvesting robotic arm-
hand composite system that aims to improve the operational 
efficiency of intelligent harvesting in dwarf anvil-planted apple 
orchards.

Material and Methods

In the orchard scenario under the dense cultivation method 
of a dwarf anvil, the high-density cluster distribution of apples, 
staggered distribution of branches and leaves, and presence 
of other obstacles pose challenges to the identification and 
avoidance of harvesting (He et al., 2017). In this paper, it 
is presented a harvesting system designed to realise precise 
positioning and non-destructive grasping of apples in the 
environment of a dense dwarf anvil-planted orchard. It 
also presents an intelligent algorithm model, improves the 
adaptability and robustness of the system, and demonstrates the 
efficient harvesting operation of the harvesting manipulator-
hand complex.

The harvesting manipulator-hand complex hardware 
system has a modular design that is mainly composed of a 

six-DOF manipulator, a RGB-D binocular stereo camera, 
an end effector, and an upper computer. The manipulator 
was selected from the six-DOF manipulatorUR5 of the 
Danish UR Company as a carrier for the movement of the 
end effector. The end effector adopts a three-finger flexible 
adaptive bionic mechanical easy claw to achieve damage-
free fruit grasping. Based on YOLOV7 deep convolutional 
neural network (CNN) model recognition, the binocular 
stereo camera selects realsensed435i, which is responsible for 
capturing images online and calculating depth, in addition to 
combining the camera internal reference matrix to obtain the 
3D spatial position of the fruit and complete fruit recognition 
and positioning. The NVIDIA Jetson TX2 image edge 
computing unit running Ubuntu 18.04 as the main controller 
and the Python programming language were used to control 
operational behaviours such as manipulator movement, end 
effector closure, fruit detection, and data logging in the robot 
operating system (ROS). The harvesting system software and 
hardware are shown in Figure 1.

When harvesting apples from orchards, a multi-DOF 
manipulator is used as the harvesting device, which is 
combined with visual-based fruit recognition and trajectory 
planning algorithms to perform automatic fruit harvesting. 
The orchard harvesting scenario differs from the structured 
working environment of a traditional industrial scenario. In 
other words, the working environment of a harvesting robot is 
a complex, changeable, and unstructured natural environment, 

Figure 1. Harvesting robot software system (A) and hardware 
system (B)

A.

B.
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and obstacles such as naturally growing branches and immature 
fruits create difficulties in harvesting by the manipulator. The 
agronomy of different orchard cultivation types also affects 
the harvesting operations. Orchard harvesting requires a 
manipulator to comprehensively consider the cultivation 
method of the fruit so that the harvested crop is within its 
working space, based on an auxiliary sensor and dynamic 
planning of the harvesting trajectory (Zhang et al., 2020). The 
manipulator can then avoid obstacles (leaves and stems) and 
accurately grasp the target fruit without injuring the plant.

The harvesting operation of the apple-harvesting robotic 
arm-hand complex can be divided into three stages. (1) During 
the visual inspection stage of the harvesting robot, the camera 
captures an image in real time, and the main control machine 
determines the presence of harvestable apples through the 
visual model. (2) In the positioning stage after detecting a 
mature, harvestable apple by the vision system, the camera 
acquires images after the manipulator becomes relatively 
stationary, thereby reducing the relative spatial position error 
of the target apple. The system then identifies the target apple 
using a CNN to complete the spatial positioning. (3) In the 
execution stage, the harvesting sequence of the target apples 
is planned by the end effector such that the robotic arm-hand 
complex physically interacts with the fruits. All ripe fruits in 
the field of view can then be harvested and placed in harvesting 
order. After one fruit is harvested, the complex returns to 
its initial position and enters the thread of the next harvest, 
thereby repeating the harvesting process. If the operation fails, 
the fruit is not harvested and the robotic arm hand returns to 
the starting point.

Owing to the excellent feature learning and feature 
extraction abilities of a CNN (Schertz & Brown, 1968), 
combined with the stable depth extraction ability of a RGB-D 
binocular vision sensor, a coupled model designed to detect and 
localise target fruits was designed. The canopy of the standard 
orchard with dense planting of a dwarf anvil is completely 
narrow, the fruit distribution is similar to that of the “fruit wall”, 
the topology of the fruit is simple, and the obstacle avoidance 
planning is easy to achieve.

The primary condition for the automatic harvesting of 
apples is the detection and positioning of an apple on a tree 
(Bloch et al., 2018). Apple detection aims to separate apples 
from a complex orchard background (i.e., mixed scenes 
of leaves, branches, and other fruits). Fruit localisation 
attempts to calculate the 3D space for apple detection more 
accurately than a camera coordinate system. This system uses 
an Intel RealSensed435i RGB-D double-sided visual sensor 
to collect environmental information. The visual system 
has the advantages of structural compactness, small volume 
proportion, and high accuracy (Hayashi et al., 2010).

In the complex, unstructured environment of orchards, 
the detection and positioning of apples can be subject to 
interference, such as leaf occlusion and mutual occlusion 
between fruits (Xiong et al., 2020). To solve these problems 
and improve the robustness and stability of the apple model 
recognition, the YOLOV7 deep neural network detection 
algorithm was used. To train the network, sample datasets 
were collected from an apple demonstration base in 

Shangluojia Village, in the southern mountainous area of 
Licheng District, Jinan City, Shandong Province, and from an 
apple demonstration base in Lanting New Village, Longkou 
City, Yantai City, Shandong Province. The apple trees at 
the demonstration base were planted densely using dwarf 
anvils, and the cultivars used were Yantai red Fuji apples. The 
position and height of the end effector equipped with the 
camera were simulated during collection. The sample image 
had 2,350 spokes with a resolution of 2532 × 1170 pixels, and 
the acquisition device was an Apple iPhone 12. The height of 
the apple trees was 2.5–3 m, the diameter was 2.4 m. Labelme 
labelling software was used to label the images and generate 
the annotation files required for training.

YOLOV7 is currently the mainstream detection model, and 
the detection accuracy and speed are higher than other single-
stage detection models in 5–160 FPS. The network structure is 
illustrated in Figure 2. At the input end of the model, the input 
pixels were first converted into an apple orchard image of 640 × 
640 × 3 channels and the original sample was adaptively filled 
during the process of scaling and filling. During training, the 
network obtains the prediction box from the initial anchor 
box calculation, calculates the real box through the adaptive 
anchor box, and updates it in reverse.

Backbone: Through the feature extraction network, a 
four-layer CBS module was first used for feature extraction. 
The feature map contains 160 × 160 × 128 channels, and 
through multilayer efficient layer aggregation network (ELAN) 
and maximum pooling (MP) modules, in which the ELAN 
controls the shortest and longest gradient paths, the feature 
extraction ability of the network can be enhanced with stronger 
robustness. The role of MP is downsampling; that is, it outputs 
feature maps C3, C4, and C5 as 80 × 80 × 128, 40 × 40 × 256, 
and 20 × 20 × 1024 channels, respectively. The head had a PA 
Net structure. First, the channel is reduced by SPPCSP for 
C5. Then, upsampling is performed from top to bottom, and 
C3 and C4 are fused to obtain feature maps P3, P4, and P5. 
Then, upsampling is performed from the bottom up, and P4 
and P5 are fused. For the feature map output by the neck, the 
1*1 convolution was used for prediction after adjusting the 
channel using Rep Conv.

For the apples detected in the bounding box, the 
location information was calculated by combining the depth 
information from the RealSense RGB-D camera. Combined 
with the depth and anchor frame information, the Cartesian 
position of the apples was determined by back-projection, and 
iterative calculations were performed on each apple to obtain 
the position of apple detection under 2-bit pixels. 

When the vision system recognises multiple apples to be 
picked and outputs the spatial coordinates, the order in which 
the outputs are formed is random. If the manipulator picks 
randomly in this order, it can easily cause the gripper to collide 
with the apples around the target apple (Ouf, 2023), causing 
the apple to be picked to shake and the real position to shift 
from the initial position. Therefore, a reasonable picking order 
can overcome problems such as interference errors caused by 
end effectors during the picking process.

In a group of apples, the end actuator preferentially picks 
the smallest apple near the apple (De-An et al., 2011), and the 
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Figure 2. Structure diagram of the YOLOV7 visual recognition network

area near the apple will be empty, which will reduce collisions 
with the target fruit during the operation of the end actuator, 
thereby reducing the target fruit, thereby reducing, the error 
caused by the target apple offset. Therefore, it is necessary 
to calculate the number of apples around the apples. The 
YOLOV7 detector predicts the pixel position of the fruit, 
which is marked with a boundary frame. The boundary box 
generally contains coordinates in the upper-left and lower-
right corners. As shown in Eqs. 1 and 2, the coordinates of 
the centre of the circle are determined by the bounding box. 
The radius of the fitted circle was calculated using Eq. 3. The 
quality of the fruit can be estimated according to Types 1 
and 2. The relative distance between the apples is calculated 
using Eq. 4. Then, Eq. 5 is used to determine whether the 
two apples obscure each other or not, if the distance between 
the centroids of the fruits is less than the sum of the radii of 
the fitted circles of the two apples, then the two apples are 
overlapping. Finally, the two apples can be adjacent to each 
other.
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(xul
i, yul

i) - coordinates of the upper left corner of the 
bounding box;

(xdr
i, ydr

i) - coordinates of the lower right corner of the 
bounding box;

ri - radius of the apple fitting circle; and,
Li - distance between the centres of the geometric circles 

of the two apples.

Next, the apple to be picked with the least number of 
adjacent apples is listed as the first harvestable object, and 
after the picking is complete, its information is removed 
from the sequence, and the next target to be harvested is 
iteratively calculated until all the apples in the field of view 
are harvested. In addition, if the same number of apples is 
adjacent to the harvestable apples, based on the experience of 
manually picking and selecting ripe apples with the shortest 
relative distance in the field of view, the depth parameter 
outputs from the depth sensor are compared, and apples with 
the shortest distance from the vision sensor are selected for 
priority harvesting. When harvesting using this model, it can 
be ensured that each apple to be picked has the least number 
of apples in its vicinity, thereby reducing the error caused by 
end-effector interference. The centre of the apple represents the 
distance between the two apples, as shown in Figures 3A and B. 
After sorting, picking robots can harvest apples in a reasonable 
order. As shown in Figure 3D, six apples were selected. Among 
them, the robot prioritises picking the top, which is marked 
as one apple (the minimum number near the apple). Multiple 
apples is near an apple are shown in Figure 3C.

After hand-eye calibration, the rotation and translation 
matrix from the camera coordinate system to the manipulator 
coordinate system is obtained. Therefore, only the camera 
coordinates output by the vision system must be converted into 
manipulator coordinates through coordinate transformation.

Obstacle-avoidance path planning is a key technology in 
fruit and vegetable harvesting. This refers to the path from 
the starting point to the target point given the position of the 
obstacles and the position of the start and target (Fu et al., 2020). 
However, the fruit harvest in orchards currently has a long 
harvest cycle, short window of freshness, fragile appearance, 
random growth location, and many other challenges, such 
as branches and leaves, a complicated working environment, 
and other factors. To solve the problem of high-dimensional 
planning, researchers have proposed sampling-based motion 
planning algorithms based on fast-search random trees.

For example, RRT have excellent characteristics and do not 
require modelling obstacles or exploring high-dimensional 
spaces. A Cartesian space obstacle is mapped onto the joint 
space. Subsequently, the free motion space of the manipulator 
is obtained, and the A* heuristic search algorithm is used to 
search the path in the free space of the manipulator. The square 
with the lowest current “cost” is then selected according to 
the extension node for the next search until the end point 
has been searched to plan the path with the lowest cost. This 
algorithm adopts an ant colony algorithm that combines the 
principle of positive feedback of information with a heuristic 
algorithm (Nguyen et al., 2013). Alternatively, based on deep 
reinforcement learning (DRL), a reward mechanism for 

Figure 3. Apple image centre coordinate positioning (A), apple 
centre coordinate distance (B), harvesting sequence example 
1 (C), harvesting sequence example 2 (D)

A.

B.

C.

D.
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training can be established that rewards the desired path, and 
plan a suitable obstacle avoidance path (Xu et al., 2023).

Although the orchard under the dwarf-anvil-dense-planting 
standard is more standardised, the staggered distribution of 
its fruit growth branches gives the orchard the characteristics 
of a typical unstructured complex scene, which requires the 
path planned by the end path of the manipulator to avoid 
obstacles. Simultaneously, to improve the movement efficiency 
and reduce unnecessary repeated path points to reduce the 
probability of collision, the path length should be short, the 
coverage area should be small, and unnecessary collisions 
should be reduced (Wang & He, 2021). When a fruit is detected, 
the manipulator moves the end effector to a position where it 
can be harvested without obstacles. The manipulator moves by 
changing the angles of the six motors on the arm to control the 
joints. Solving the joint angle of a manipulator at a given target 
position is called an inverse kinematics problem, and multiple 
solutions typically exist. According to the Unified Robot 
Description Format (URDF) used to describe the harvesting 
system model, the motion control of the manipulator is realised 
using a special motion planning software, ROS MoveIt, which 
provides several motion planners and inverse kinematics 
solvers. For obstacle avoidance, it is necessary to choose IK-
FAST and the Open Motion Planning Library (OMPL package 
with Informed-RRT*) as kinematics solvers. The hand-eye 
calibration process is shown in Figure 4.

The optimal programming problem is defined as finding a 
collision-free (Xobs obstacle space) path from the initial position 
Xstart to the target location Xgoal in state space Xfree = X - Xobs, 
Xfree, Xstart, Xgoal, Xobs ∈ X, σ[0,1]  Xfree. For the best path cost, 
the current solution state subset Xf ⊆ X, f(x) is the shortest 
path cost from Xstart to Xgoal.

The RRT is suitable for solving the motion-planning 
problem of a high-dimensional space; therefore, it is widely 
used in motion planning. The RRT is a random expansion 
method in a global environment, with a constant step size 
and randomly extended tree growth, and is used to generate 
a collision-free path from the starting point to the target 
point. Because the expansion of the RRT is random, it can 
easily cause redundant operations in a global environment. 
The asymptotically optimal RRT (RRT*) achieves asymptotic 
optimisation by rewiring the nodes and then obtaining 
the optimal path through continuous iteration (Ma et al., 
2023). RRT* obtains the optimal solution but also entails a 
huge amount of computation. The informed-RRT * ellipsoid 
subset convergence is illustrated in Figure 5. Informed-RRT* 

Figure 4. Hand-eye calibration is completed using Easyhand 
to obtain a hand-eye transformation matrix

Figure 5. Example of Informed-RRT* ellipsoid subset 
convergence (A, B, and C)

A.

B.

C.
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performs the centralised optimal planning of paths using 
ellipsoid subset sampling. However, because the sum of the 
distances between the points in the ellipse and the two focal 
points is less than the sum of the distances between the points 
on the ellipse and the two focal points, the newly generated 
path length in the ellipse is shorter than the length of the path 
outside the ellipse. Thus, as the number of iterations increases, 
the elliptical space continues to shrink, and the length of the 
path decreases. Finally, an optimal solution is obtained.

The heuristic domain is an ellipse focusing on the start Xstart 
and target points , and the eccentricity of the ellipse Cmin/Cbest 
is the ratio of the theoretical minimum cost of the initial state 
Cmin and the target state to the cost of finding the best solution 
thus far, Cbest (Figure 6).

(IoU) from 0.5 to 0.95. After training 300 batches, the indices 
converged and stabilised. As shown in Table 2, the YOLOV7 
detector outperformed the other object detection algorithms in 
the apple dataset, with an accuracy of 0.894, recall of 0.79, and 
mAP0.5:0.95 of 0.915. Figure 7 compares the recognition effect 

Figure 6. A brief illustration of the ellipsoid subset

Results and Discussion

An experimental design was used to evaluate the training 
recognition advantages and disadvantages of different 
algorithms using labelled apple datasets. The datasets were 
divided into training and validation sets in a 7:3 ratio. The 
model training adopted a deep learning workstation. The 
CPU was an Intel Core i7-10875H, the graphics card was 
RTX2060 6 g, the operating system was Ubuntu 18.04, the 
programming language was Python, and the libraries included 
pytorch1.11 and opencv4.1. The vision system was deployed 
in the GPU, CUDA was used for acceleration, and detection 
was completed in the CPU. To ensure that the anchor box 
values had a minimal impact on the trained model during 
training, this experiment adapted the anchor box values to the 
datasets. Before model training, the k-means + + clustering 
algorithm was used for the homemade apple datasets to 
obtain the corresponding prediction box (Table 1). Three 
detection algorithms (YOLOV4, YOLOV5s, and YOLOV7) 
were evaluated. All training sets used 300 epochs with a batch 
size of eight. The initial and minimum learning rates of the 
optimiser were set to 0.01 and 0.001, respectively, which are 
the results of experience.

Three performance metrics (precision, recall, and 
mAP@0.5:0.95) were used to evaluate the detector. Precision 
is the ratio of the correctly predicted target to the total number 
of predicted targets. Recall represents the ratio of correctly 
predicted targets to all labelled targets. The metric mAP0.5:0.95 
represents the average mAP for different cross-joint thresholds 

Table 1. kmeans++Anchor box value

Table 2. Comparison of performance parameters of vision 
model detection algorithms

Figure 7. Comparison of detection performance of YOLOV4 
(A), YOLOV5s (B), and YOLOV7 (C)

A.

B.

C.
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of the three algorithms: YOLOV4 and YOLOV5s algorithms 
both have leakage detection (the leakage apples are marked 
with a red round box); the YOLOV7 algorithm is better than 
the other algorithms in terms of the detection effect. According 
to Figure 8, the YOLOV7 algorithm is in the training stage of 
300 epochs. The speed of convergence in mAP is greater than 
that of the other algorithms, and the accuracy is also better 
than that of the other two algorithms.

This experiment compared the results of the RRT, RRT*, and 
Informed-RRT* for path planning through 2D visualisation. 
As shown in Table 3, the informed-RRT * sampling nodes 
were better than those of the RRT and weaker than those of 
the RRT*, lagging behind the other two algorithms in terms 
of sampling time. However, as shown in Figure 9, under the 
same obstacle space, Informed-RRT* has relevant paths that are 
better than those of the RRT and RRT* in terms of smoothness 
and path length*. Moreover, in the unstructured scenario 
of orchards, redundant repeated paths and unsmooth paths 
increase the probability of collision between the manipulator 
and obstacles, such as fruit trees (Nguyen et al., 2013). 
Therefore, collision-free harvesting of the orchard would be 
affected, and the time difference used in the planning would be 
within the acceptable range of harvesting (Zhang et al., 2016). 
Accordingly, Informed-RRT * algorithm was selected as the 
final path-planning algorithm for the manipulator.

To verify the effectiveness of the harvesting system, a 
harvesting planning test based on the steps shown in Figure 10 
was conducted using a harvesting robotic arm-hand complex.

Table 3. Detection results of RRT, RRT*, and Informed-RRT* 
in terms of the number of sampling nodes and planning time

Figure 8. mAP0.5: 0.95 comparison of convergence line charts 
of each algorithm

Continued on next page

C.

B.

A.

The harvesting rate and harvesting time were used as 
evaluation indicators, where harvesting rate refers to the 
ratio of the number of apples harvested to the total number 
of apples that can be harvested. The harvesting time refers to 
the time required to harvest a single apple, including the time 
spent on each step.

Six sets of experiments were set up for the RRT, RRT*, 
informed-RRT*, and each of the three algorithms to fuse the 
picking and harvesting sequences. Each group comprised 40 
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Figure 9. Demonstration of three path planning algorithms RRT (A, B, and C), RRT* (D, E, and F) and Informed-RRT* (G, H, 
and I) in three different 2D scenarios.

D. E.

F. G.

H. I.

effective picking tests. The six effective picking groups were 28, 
28, 30, 25, 26, and 29. After the harvested apples had rested for 
48 hours at 24 ℃, no visible abrasions or injuries were found.

From the results of the harvesting test in Table 4, it can be 
seen that the actual number of harvests and harvesting rate 
using the harvesting planning strategy were slightly higher 
than those without the strategy. This is because the harvest-

planning strategy can reduce the effect of dense fruits on the 
accurate grasping of the manipulator. However, the harvesting 
rate using the RRT path planning algorithm was slightly higher 
than that using the Informed-RRT* algorithm. Nevertheless, 
in terms of the average harvesting time, the efficiency of the 
Informed-RRT* algorithm was higher, and the movement 
path of the RRT algorithm was longer than that of Informed-

Continued from Figure 9
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Figure 10. Fruit harvesting equipment completing the process of one harvest

RRT* in actual harvesting; therefore, various performance 
indicators were comprehensive. After the harvesting planning 
strategy was adopted, the harvesting rate of the RRT (75%) 
was better than that of the Informed-RRT* (72.5%); however, 
the average harvesting time of the former (12.89 s) was 
longer than that of the latter (12.69 s). Because the informed-
RRT* algorithm ensured optimal paths, which reduced the 
possibility of redundant movements of the manipulator, 
and because the RRT path was not asymptotically optimal, 
the fast harvesting of fruits was also one of the performance 
indicators considered during the harvesting (Xiong et al., 
2020); therefore, considering the two indicators of harvesting 
average time and harvesting rate, the use of Informed-RRT* 
algorithm and harvesting strategy had a certain optimization 
effect on harvesting.

Conclusions

1. An apple harvesting device adapted to the background of 
dwarf anvil dense planting and cultivation method was designed.

2. The visual perception system and mechanical system 
coordination design were integrated into hardware.

3. Visual neural network model recognition and manipulator 
path-planning obstacle avoidance problems were integrated in 
the software. 

4. These steps aimed to solve the problem of apple cluster 
distribution recognition in unstructured scenes and obstacle 
avoidance of fruit branches, leaves, and other obstacles around 
the target fruit. In this study, based on the accurate detection 
of a visual neural network and sequence planning of fruits to 
be harvested, a reasonable harvesting order for fruits under 
high-density distribution was obtained. 

5. Furthermore, a 3D model of an orchard was established 
based on an RGB-D binocular vision sensor, and collision-free 
path planning of the manipulator was completed using the 
informed-RRT* algorithm. 

Table 4. Results of harvesting experiments

6. The latter algorithm solves the inverse kinematics problem 
and introduces ellipsoid subsets to obtain the optimal solution 
to complete the harvesting of a single apple from one thread. 
Thus, the proposed system enabled accurate and efficient 
fruit harvesting. These results can help improve the technical 
capabilities of future intelligent apple-harvesting robots.

Contribution of authors: Huawei Yang: Writing-Original 
Draft; Methodology, Jie Wu: Data Curation and graph; Shaowei 
Wang: Writing-Review & Editing; Jinxing Wang: Formal 
analysis, Supervision, Aifeng liang, Funding acquisition; 
Jianfeng Qiu: Project administration; Ning Li and Yinzeng Liu: 
Model training; Yinfa Yan and Hongjian Zhang: Methodology.

Supplementary documents: There are no supplementary 
sources.

Conflict of interest: The authors declare no conflict of 
interest.

Financing statement: This research was supported by 
the earmarked fund for CARS, great number CARS 27; This 
research was funded by Shandong Province Key Research 
and Development Plan ( major scientific and technological 
innovation project ) Project, Agricultural Manipulator 
Motion Planning and Intelligent Drive Technology Research 
and Development, grant number 2022CXGC020701 ; This 
research was funded by Shandong Province Science and 
Technology Small and Medium-sized Enterprise Innovation 
Ability Promotion Project, New Orchard Pomegranate 
Intelligent Picking Manipulator Research and Development 
and Application, grant number 2022TSGC2253 ; This research 
was funded by 2022 Science and Technology Think Tank Youth 
Talent Plan Project, Analysis of The Current Situation, Problems 
and Countermeasures of Modern Orchard Technology in 
Shandong Province, grant number 20220615ZZ07110137.

Acknowledgments: The author thanks the tutor and all the 
staff in the team for their guidance and help, and also thanks 



Fruit recognition, task plan, and control for apple harvesting robots 11/11

Rev. Bras. Eng. Agríc. Ambiental, v.28, n.9, e277280, 2024.

the Shandong provincial government for the financial support 
of the project. Finally, I am really grateful to all those who 
devote much time to reading this thesis and give me much 
advice, which will benefit me in my later study.

Literature Cited

Bloch, V.; Degani, A.; Bechar, A. A methodology of orchard 
architecture design for an optimal harvesting robot. Biosystems 
Engineering, v.166, p.126-137, 2018. https://doi.org/10.1016/j.
biosystemseng.2017.11.006

De-An, Z.; Jidong, L.; Wei, J.; Ying, Z.; Yu, C. Design and control of 
an apple harvesting robot. Biosystems Engineering, v.110, p.112-
122, 2011. https://doi.org/10.1016/j.biosystemseng.2011.07.005

Fu, L.; Majeed, Y.; Zhang, X.; Karkee, M.; Zhang, Q. Faster R–CNN–
based apple detection in dense-foliage fruiting-wall trees using 
RGB and depth features for robotic harvesting. Biosystems 
Engineering, v.197, p.245-256, 2020. https://doi.org/10.1016/j.
biosystemseng.2020.07.007

Hayashi, S.; Shigematsu, K.; Yamamoto, S.; Kobayashi, K.; Kohno, 
Y.; Kamata, J.; Kurita, M. Evaluation of a strawberry-harvesting 
robot in a field test. Biosystems Engineering, v.105, p.160-171, 
2010. https://doi.org/10.1016/j.biosystemseng.2009.09.011

He, L.; Fu, H.; Karkee, M.; Zhang, O. Effect of fruit location 
on apple detachment with mechanical shaking. Biosystems 
Engineering, v.157, p.63-71, 2017. https://doi.org/10.1016/j.
biosystemseng.2017.02.009

Legun, K.; Burch, K. Robot-ready: How apple producers are 
assembling in anticipation of new AI robotics. Journal of 
Rural Studies, v.82, p.380-390, 2021. https://doi.org/10.1016/j.
jrurstud.2021.01.032

Ma, G.; Duan, Y.; Li, M.; Xie, Z.; Zhu, J. A probability smoothing 
Bi-RRT path planning algorithm for indoor robot. Future 
Generation Computer Systems, v.143, p.349-360, 2023. http://
doi.org/10.1016/j.future.2023.02.004

Nguyen, T. T.; Kayacan, E.; De Baedemaeker, J.; Saeys, W. Task 
and motion planning for apple harvesting robot. IFAC 
Proceedings Volumes, v.46, p.247-252, 2013. https://doi.
org/10.3182/20130828-2-SF-3019.00063

Ouf, N. S. Leguminous seeds detection based on convolutional 
neural networks: Comparison of faster R-CNN and YOLOv4 
on a small custom dataset. Artificial Intelligence in Agriculture, 
v.8, p.30-45, 2023. https://doi.org/10.1016/j.aiia.2023.03.002

Reig, G.; Lordan, J.; Sazo, M, M.; Hoying, S.; Fargione, M.; Reginato, G.; 
Donahue, D. J.; Francescatto, P.; Fazio, G.; Robinsin, T. Long-term 
performance of ‘Gala’, Fuji’ and ‘Honeycrisp’ apple trees grafted on 
Geneva® rootstocks and trained to four production systems under 
New York State climatic conditions. Scientia Horticulturae, v.244, 
p.277-293, 2019. https://doi.org/10.1016/j.scienta.2018.09.025

Schertz, C, E.; Brown, G, K. Basic considerations in mechanizing citrus 
harvest. Transactions of the ASAE, v.11, p.343-346, 1968. https://
doi.org/10.13031/2013.39405

Tian, Y.; Yang, G.; Wang, Z.; Wang, H.; Li, E.; Liang, Z. Apple detection 
during different growth stages in orchards using the improved 
YOLO-V3 model. Computers and Electronics in Agriculture, v.157, 
p.417-426, 2019. https://doi.org/10.1016/j.compag.2019.01.012

Wang, D.; He, D. Channel pruned YOLO V5s-based deep learning 
approach for rapid and accurate apple fruitlet detection before fruit 
thinning. Biosystems Engineering, v.210, p.271-281, 2021. https://
doi.org/10.1016/j.biosystemseng.2021.08.015

Xiong, Y.; Ge, Y.; Grimstad, L.; From, P. J. An autonomous strawberry‐
harvesting robot: Design, development, integration, and field 
evaluation. Journal of Field Robotics, v.37, p.202-224, 2020. 
https://doi.org/10.1002/rob.21889

Xu, J.; Yao, J.; Zhai, H. ;Li, Q.; Xu, Q.; Xiang, Y.; Liu, Y.; Liu, T. Ma, H.; 
Mao, Y.; Wu, F.; Wang, Q.; Feng, X.; Mu, J.; Lu, Y. Trichome YOLO: 
A Neural Network for Automatic Maize Trichome Counting. Plant 
Phenomics, v.5, p.24-35, 2023. https://doi.org/0024.10.34133/
plantphenomics.0024

Yang, Q.; Chen, C.; Dai, J.; Xun, Y.; Bao, G. Tracking and recognition 
algorithm for a robot harvesting oscillating apples. International 
Journal of Agricultural and Biological Engineering, v.13, p.163-170, 
2020. https://doi.org/10.25165/j.ijabe.20201305.5520

Zhang, X.; He, L.; Zhang, J.; Whiting, M. D.; Karkee, M.; Zhang, Q. 
Determination of key canopy parameters for mass mechanical 
apple harvesting using supervised machine learning and principal 
component analysis (PCA). Biosystems Engineering, v.193, p.247-
263, 2020. https://doi.org/10.1016/j.biosystemseng.2020.03.006

Zhang, Z.; Heinemann, P. H.; Liu, J.; Baugher, T. A.; Schupp, J. R. The 
development of mechanical apple harvesting technology: A review. 
Transactions of the ASABE, v.59, p.1165-1180, 2016. https://doi.
org/10.13031/trans.59.11737

Zhong, Y.; Fei, L.; Li, Y.; Zeng, J.; Dai, Z. Response of fruit yield, 
fruit quality, and water use efficiency to water deficits for apple 
trees under surge-root irrigation in the Loess Plateau of China. 
Agricultural Water Management, v.222, p.221-230, 2019. https://
doi.org/10.1016/j.agwat.2019.05.035

https://doi.org/10.1016/j.biosystemseng.2017.11.006
https://doi.org/10.1016/j.biosystemseng.2017.11.006
https://doi.org/10.1016/j.biosystemseng.2011.07.005
https://doi.org/10.1016/j.biosystemseng.2020.07.007
https://doi.org/10.1016/j.biosystemseng.2020.07.007
https://doi.org/10.1016/j.biosystemseng.2009.09.011
https://doi.org/10.1016/j.biosystemseng.2017.02.009
https://doi.org/10.1016/j.biosystemseng.2017.02.009
https://doi.org/10.1016/j.jrurstud.2021.01.032
https://doi.org/10.1016/j.jrurstud.2021.01.032
http://doi.org/10.1016/j.future.2023.02.004
http://doi.org/10.1016/j.future.2023.02.004
https://doi.org/10.3182/20130828-2-SF-3019.00063
https://doi.org/10.3182/20130828-2-SF-3019.00063
https://doi.org/10.1016/j.aiia.2023.03.002
https://doi.org/10.1016/j.scienta.2018.09.025
https://doi.org/10.13031/2013.39405
https://doi.org/10.13031/2013.39405
https://doi.org/10.1016/j.compag.2019.01.012
https://doi.org/10.1016/j.biosystemseng.2021.08.015
https://doi.org/10.1016/j.biosystemseng.2021.08.015
https://doi.org/10.1002/rob.21889
https://doi.org/0024.10.34133/plantphenomics.0024
https://doi.org/0024.10.34133/plantphenomics.0024
https://doi.org/10.25165/j.ijabe.20201305.5520
https://doi.org/10.1016/j.biosystemseng.2020.03.006
https://doi.org/10.13031/trans.59.11737
https://doi.org/10.13031/trans.59.11737
https://doi.org/10.1016/j.agwat.2019.05.035
https://doi.org/10.1016/j.agwat.2019.05.035

