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Estimativa da perda de solo por erosão laminar
usando ferramentas computacionais na agricultura de precisão

Evelin T. S. Krug2 , Glaucio J. Gomes2 , Eduardo G. de Souza3 ,
Luciano Gebler4 , Ricardo Sobjak2  & Claudio L. Bazzi2*

ABSTRACT: The study aimed to identify and evaluate the spatial variability in laminar erosion in areas using precision 
agriculture tools. Soil data from three properties in the western region of Paraná state, Brazil, were used: one in the 
municipality of Céu Azul (area A) and two in Serranópolis do Iguaçu (areas B and C). To identify discrepant data 
(outliers), analysis of the dispersion of quartiles was performed using a box-plot graph. Data normality was verified 
using the Kolmogorov-Smirnov test. A spatial analysis was performed using AgDataBox-Map software. The parameters 
of the universal soil loss equation were estimated and used with map algebra to produce a model to identify areas 
susceptible to erosion. Area A (soil loss estimate = 0-200 t ha-1 per year) presented greater susceptibility to erosion 
than areas B and C (soil loss estimate = 0-150 t ha-1 per year); however, all areas had a low susceptibility to erosion.
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RESUMO: Esse estudo teve como objetivo avaliar e identificar a variabilidade espacial da erosão laminar em áreas 
que utilizam agricultura de precisão. Para tanto, foram utilizados dados de solo de três propriedades da região oeste 
do Paraná, uma no município de Céu Azul (área A) e duas em Serranópolis do Iguaçu (áreas B e C). Para identificar 
os dados discrepantes (outliers), foi realizada uma análise da dispersão dos quartis por meio de um gráfico box-
plot. A verificação da normalidade dos dados foi realizada com base na aplicação do teste de Kolmogorov-Smirnov. 
Em seguida, foi realizada uma análise espacial, utilizando o software AgDataBox-Map. Após a obtenção dos 
mapas temáticos, foram estimados os parâmetros da Equação Universal de Perdas de Solo. Após essa etapa, foram 
calculados os fatores de estimativa das perdas de solo e gerados mapas temáticos, os quais foram integrados por 
álgebra cartográfica, resultando no modelo de identificação de áreas suscetíveis à erosão. A área A apresentou maior 
suscetibilidade (estimativa de perda de solo = 0-200 t ha-1 por ano) quando comparada às áreas B e C (estimativa de 
perda de solo = 0-150 t ha-1 por ano), porém, todas as áreas apresentam baixa suscetibilidade à erosão.

Palavras-chave: agricultura de precisão, mapas temáticos, geoestatística, equação universal de perda de solo, kriging

HIGHLIGHTS:
The greater the stability of the aggregates in water, the lower the surface runoff.
The USLE makes it possible to identify places susceptible to erosion.
Computational tools optimize environmental conservation techniques.
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Introduction

For the most part, soil degradation in agricultural areas 
is associated with water erosion and, consequently, low 
productivity (Li et al., 2022). Soil loss through crop harvesting 
also plays an important role and is often neglected. This 
phenomenon is very complex because it involves the direct 
and indirect action of several factors, such as geologic-
geomorphological characteristics, soil types, climate, 
vegetation, and anthropic actions. 

To estimate the annual rate of soil loss, a study assessed 
the erosion risk and mapped priority areas for soil and 
water conservation measures in Ethiopia using the revised 
universal soil loss equation (RUSLE) model developed in 
ArcGIS software (Woldemariam et al., 2018). The model of 
Woldemariam et al. (2018) provides a quantitative estimate of 
the rates of water-induced soil loss and the spatial distribution 
of erosion risk. In this context, many studies in Brazil have 
obtained satisfactory results in verifying different soil losses 
as a function of precipitation data using the universal soil 
loss equation (USLE) method (Mello et al., 2015; Didoné et 
al., 2021; Godoi et al., 2021; Silva et al., 2021). The USLE has 
been used in several studies (Bezak et al., 2021) and requires a 
relatively small amount of information when compared to more 
complex models. It is considered a good tool for predicting 
soil losses (Alewell et al., 2019) but has some limitations, 
considering that surface runoff is neglected in these models.

To understand the cause and effect of different erosive 
processes, geostatistical methods offer new technological 
concepts within soil-landscape relationships that may be 
key factors in forecasting models. The current study aimed 
to estimate soil loss by laminar erosion through quantitative 
prediction models in the agricultural areas of western Paraná 
state, Brazil, and to evaluate the impact of spatial variability 
using computational tools and equipment in the context of 
precision agriculture.

Material and Methods

The study was conducted in three agricultural areas located 
in the western region of the state of Paraná, Brazil (Figure 1). 
Field A was located in the municipality of Céu Azul, with an 
average altitude of 653 m, an average slope of 4°, and a 15.5 
ha area. Fields B (average altitude of 366 m and slope 2°) and 
C (average altitude of 301 m and slope 3°) were located in the 
municipality of Serranópolis do Iguaçu, with areas of 9.9 and 
23.8 ha, respectively. 

The soils in these fields were classified according to the 
methodology presented in a previous study (Gavioli et al., 
2019). These soils were identified as typical oxisols and had 
been cultivated in a no-tillage system for at least 14 years, 
with a crop sequence of soybean, wheat, corn, and oat in field 
A, and with the succession of corn and soybean crops under a 
no-tillage system for at least 10 years in fields B and C. 

The data used for this study were obtained from the Laboratory 
of Mechanization and Precision Agriculture (LAMAP) at 
UNIOESTE, Cascavel campus, in collaboration with the Federal 
Technological University of Paraná, Medianeira campus, which 
performed the sampling using irregular grids at 40 points in area 
A, 42 in area B, and 73 in area C (Figure 1). Around each point 
defined in the sampling grid, eight perforations (subsamples) 
were performed, two per quadrant, within a radius of 3 m 
from the central point at a depth of 0-0.2 m. The samples were 
homogenized, and a portion was removed to determine the soil 
particle size (clay, silt, and sand), pH, and organic matter (OM).

The variability in soil attributes was evaluated using 
exploratory data analysis. To identify discrepant data (outliers), 
analysis of the dispersion of quartiles was performed using 
a box-plot graph. Data normality was verified using the 
Kolmogorov-Smirnov test. Next, a spatial analysis was 
performed using AgDataBox-Map software to obtain the spatial 
variability of each variable. After data entry, the interpolation 
selection index was used to define the best interpolator. 

The best method was determined according to the value 
of the interpolation selection index (ISI), from which values 
for non-sampled locations were estimated, and maps of the 
spatial distribution of each variable were constructed. After 
obtaining thematic maps, the parameters of the universal 
soil loss equation (USLE) (Wischmeier & Smith, 1978), were 
calculated, where the estimated soil loss (A) was calculated 
according to Eq. 1.

Field A - Municipality of Céu Azul; Fields B and C - Municipality of Serranópolis do Iguaçu

Figure 1. Location of sampling points and contour of areas of the study sites. (A) Field A; (B) Field B; (C) Field C

A R K LS C P= ⋅ ⋅ ⋅ ⋅

where: 
A 	 - soil loss (t ha-1 per year); 
R 	 - rainfall erosivity (MJ mm ha-1 h per year); 
K 	 - soil erodibility factor (t ha h-1 ha-1 MJ-1 mm-1); 
LS 	 - slope length-gradient factor (dimensionless);
C 	 - land use and coverage factor (dimensionless); and, 
P 	 - conservation practice factor (dimensionless).

Rainfall data from the hydrological information system 
of the instituto de águas do Paraná for the period 1997-2018, 

(1)
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comprising a series of 22 years for the cities of Céu Azul and 
Serranópolis do Iguaçu, were used to calculate the rainfall 
erosivity factor (R) (Eq. 2).

To calculate the use and management factor (C), vegetation 
cover in the study areas was assessed by calculating the 
normalized difference vegetation index (NDVI), which is a 
sensitive indicator of the quantity and condition of vegetation 
(Li et al., 2021). For image collection, the UAV Phantom 
4 Advanced drone, equipped with a global positioning 
system/GLONASS, 20-megapixel camera with a 1-inch sensor, 
and a mechanical shutter was used. Another camera, Parrot 
Sequoia, was attached to the drone to collect infrared images. 
The flight plan was created using a drone-deployment tool 
(Drone Deploy).

The images were processed using Pix4D Mapper software, 
and a mosaic of images was generated for each area. The total 
coverage of each experimental area was then determined. After 
this step, the NDVI was calculated (Eq. 6).

0.852rEI 67.355
P

 
=  

 

where: 
EI 	 - monthly average erosivity index (MJ mm ha-1 h-1 per 

month); 
r 	 - average monthly rainfall (mm); and, 
P 	 - mean annual precipitation (mm).

Using the monthly average erosivity indices (EI), it was 
possible to calculate the annual R (Eq. 3).

12

I 1
R EI

=

= ∑

where: 
R 	 - annual erosivity (MJ mm ha-1 h-1 per year); and, 
EI 	 - monthly average erosivity index (MJ mm ha-1 h-1 per 

month). 

For erodibility (K factor), thematic maps of sand, silt, and 
clay generated in the AgDataBox-Map software were used. 
The K factor was calculated using the percentages of sand, silt, 
and clay in each sample by applying Eq. 4. From the results 
obtained, soil erodibility maps were generated for the three 
study areas.

( )
( )

%sand %silt
K 100

%clay
+

=

where: 
%sand - sand fraction; 
%silt - silt fraction; and, 
%clay - clay fraction of the soil under study.

The LS factor was obtained using radar image data from 
the Shuttle Radar Topography Mission (SRTM), code letter 
025S54, provided by the geomorphometric database of Brazil, 
project topodata, with a spatial resolution of 30 m.

The SRTM image was cut using the contour of the study 
areas as a mask, the slope maps (S) were created using the 
minimum detectable effect (MDE) analysis tool, and the slope 
length (L) was calculated using the slope length function 
available in the SAGA GIS software (Conrad et al., 2015). After 
this step, the ramp length and slope data were multiplied by 
the raster calculator using Eq. 5.

0.63 1.18LS 0.00984 D= λ

where: 
LS 	 - topographical factor; 
λ 	 - represents the length of the ramp, and,
D 	 - the slope of the land (%).

NIR RNDVI
NIR R

−
=

+

where: 
NDVI - Normalized Difference Vegetation Index; and,
NIR 	- near infrared reflectance and R is red reflectance.

NDVI values ranged from -1 (lowest amount of vegetation) 
to 1 (highest amount of vegetation), and C values ranged 
from 0 (protected soil) to 1 (exposed soil). Considering this 
difference, the methodology proposed by Karaburun (2010) 
was used to correlate the two variables using linear regression. 
Finally, the P factor took the 0.5 value for the cultivation areas. 
After obtaining the thematic maps related to the parameters 
predicted by the USLE, they were combined to generate a 
single integrated map for each area, which was based on a set 
of operations performed for each pixel unit and facilitate the 
acquisition of a new layer of information corresponding to the 
erosion susceptibility map.

Results and Discussion

The data obtained through descriptive statistics (minimum, 
maximum, mean, median, standard deviation, coefficient of 
variation, skewness, and kurtosis) for the prior analysis of 
each field were subjected to dispersion analysis using boxplot 
representations. (Figure 2).

Outliers were identified for sand in Field A. For Field B, 
outliers were identified in the silt, clay, and pH datasets. In 
field C, outliers were identified in all variables, except for pH. 
After removing the outliers, all variables presented a normal 
distribution according to the Kolmogorov-Smirnov test. Soil 
from field A was sandier and had a higher pH than soil from 
fields B and C (Figure 2). This suggests that fields with a 
higher percentage of sand are less acidic, possibly because the 
presence of organic matter significantly affects the activity of 
soil microorganisms. Fields with higher clay content (fields 
B and C in Figure 2) had greater resistance to pH variation 
(higher buffering capacity) when compared to clayey areas 
(field A), due to the management of organic materials that 
influence the acidity of the soil. 

Using AgDataBox-Map software, the interpolator and the 
respective parameters used in the interpolation process were 

(2)

(3)

(4)

(5)

(6)
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defined using interpolation selection index (ISI) statistics. 
Only OM (Field B) and pH (Field C) were interpolated by 
Kriging, whereas for the other cases, the ISI statistics indicated 
better results by interpolation using inverse distance weighting 
(IDW) (Table 1).

Many studies suggest that Kriging presents better results 
(Shukla et al., 2020; Keshavarzi et al., 2021; Munyati & 
Sinthumule, 2021), however, in some cases, where the spatial 
dependence is considered weak, IDW is preferred. However, 
it is important to note that data variation is a dominant factor 
in method accuracy; as variation increases, method accuracy 
decreases (Li & Heap, 2011). 

Figure 3 shows the thematic maps generated after 
interpolation of the variables. The maps of sand, silt, and clay 
have opposite distributions. 

The soil fractions generally exhibit an inverse behavior, 
mainly in terms of distribution. Because they are measured as 
percentages, when there is a reduction in the one then there is 
an increase in the other. This concurs with the results of Souza 
et al. (2004), suggesting that the soil composition variables 
present a spatially dependent structure, with the greatest reach 
at depths of 0-0.2 m.

The organic matter content was higher in the lower part, 
coinciding with the lowest area of the land and greater sediment 
deposition. Gruba et al. (2015) demonstrated that the variation 
in the fine (ϕ < 0.05 mm) fraction (silt + clay) content had a 
major influence on the differences in the accumulation of soil 
organic carbon, particularly on its partitioning between the 
organic horizon and mineral soil. Other researchers (Angst 
et al., 2021) have demonstrated, through compiled data on 
microbial and plant-derived compounds in stabilized soil 
organic matter, that microbial compounds substantially 
contribute to stabilized soil organic matter. These authors 
identified that plant-derived compounds could account 

Figure 2. Boxplot representations of the different soil properties determined in the areas investigated in Céu Azul (Field A) 
and Serranópolis do Iguaçu (Fields B and C)

OM - Organic matter; ISI - Interpolation selection index; IDW - Inverse distance 
weighting; OK - Ordinary Kriging; Nei - Number of neighbors; C0 - Nugget effect; C - 
Contribution effect; a - Tent

Table 1. The best interpolation methods and parameters from 
AgDataBox-Map for each variable 

Field A - Municipality of Céu Azul; Fields B and C - Municipality of Serranópolis do 
Iguaçu; OM - Organic matter

Figure 3. Thematic maps of attributes of fields A, B, and C 
generated with five classes using the interpolation method 

for ~50% of soil organic matter in aggregates and mineral-
associated organic matter. 

The parameters used to estimate soil loss were calculated 
using the erosivity factors of the cities of Céu Azul and 
Serranópolis do Iguaçu (Table 2). 

In general, October has the highest precipitation, followed 
by January, May, November, and December (Table 2). The 
lowest average rainfall was recorded in July and August, 
consistent with the winter period. Similar results were reported 
for the state of São Paulo, where 60% of the intra-annual 
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erosivity was concentrated between December and March; the 
highest values of erosivity due to rainfall are correlated with 
regions of greater agricultural activity (Teixeira et al., 2021). 
This is concerning, given that this period follows the harvest of 
winter crops and precedes the planting of summer crops leaves 
the soil unprotected and susceptible to erosion. 

From the data in Table 2, the erosivity indices of the cities of 
Céu Azul and Serranópolis do Iguaçu were calculated (Table 3). 

Extreme erosivities in Céu Azul were 12373.32 and 7606.54 
MJ mm ha-1 h-1 per year in 2014 and 2001, respectively. For 
the municipality of Serranópolis do Iguaçu, the maximum 
erosivity was 11856.48 MJ mm ha-1 h-1 per year in 2014 and 
the minimum was 5851.70 MJ mm ha-1 h-1 per year in 2008.

The average annual erosivity (R) was obtained as 9267.74 
MJ mm ha-1 h-1 per year for Céu Azul and 8791.63 MJ mm 
ha-1 h-1 per year for Serranópolis do Iguaçu. Waltrick et al. 
(2011) calculated the erosivity in 114 locations in Paraná 
state between 1986 and 2008, and included the municipality 
of Céu Azul, finding an average annual erosivity of 12121 MJ 
mm ha-1 h-1 per year, which is higher than the one calculated 
in the current study, while in the neighboring municipalities 
of Matelândia and São Miguel do Iguaçu, the values reported 
by Waltrick et al. (2011) were 11531 and 10701 MJ mm ha-1 
h-1 per year, respectively.

The discrepancy in the values detected in this study and 
those reported by Waltrick et al. (2011) can be explained by 
the difference in the collection periods. The methodology 
does not consider the sediment deposition processes, and the 

soil losses in rainy and dry periods are not weighted because 
the average rainfall is used in the equations. The erodibility 
factors were obtained using clay, site, and sand data presented 
in the thematic maps (Figure 3). The erodibility values and 
maps of the geocoded sampling points were interpolated in a 
geographic information system environment through Kriging 
(Figure 4).

To carry out a quantitative study of erosion in fields A, 
B, and C, the K factor was used, as it incorporates all the 
physical properties of the soil that are the main determinants 
of erodibility (Olaniya et al., 2020). In field A, the values 
ranged from 0.0057 to 0.0068 t ha h-1 ha-1 MJ-1 mm-1 with 
greater erodibility in the central part of the plot. In fields B 
and C, erodibility varied from 0,0024 to 0.0076 t ha h-1 ha-1 
MJ-1 mm-1 and from 0.0026 to 0.0034 t ha h-1 ha-1 MJ-1 mm-1, 
respectively, indicating that erodibility was lower than that in 
field A. In field A, higher values of K were determined because 
of the greater amount of sand and fine sand contents that 
do not have adhesion properties and are easily transported. 
Fields B and C had a more clayey texture that, when combined 
with the presence of organic matter and moisture, increased 
the stability of aggregates and sand fractions and reduces 
erodibility. These areas had very low erodibility values (R < 
0.009), which is consistent with the soil in the region. Oxisols 
have characteristics such as advanced evolution, are very 
weathered, and are deep; therefore, they are less susceptible 
to erosion (Pasquatto & Tomazoni, 2016). 

The highest clay values were concentrated in areas with 
lower erodibility. The structure of the soil influences its 
resistance to water erosion through the physicochemical 
properties of the clay, which contribute to the stability of the 
aggregates in the presence of water and biological factors. Thus, 
the greater the stability of the aggregates in water, the greater 
the permeability of the soil and the lesser the disaggregation, 
and consequently, the lower the surface runoff and the drag of 
particles by the water. K values in other studies for oxisols were 
0.03, 0.041, and 0.01 t ha h ha-1 MJ-1 mm-1 , and the calculated K 
value is lower than the values found in the literature (Demarchi 
& Zimback, 2014; Pasquatto & Tomazoni, 2016). This difference 
can be explained by the difference in the size of the study area 
and precision of the data used.

The topographic factor was calculated using the slope 
map (S) generated by MDE analysis, and the slope length (L) 

Table 2. Mean monthly values of precipitation (mm) for the regions of Céu Azul and Serranópolis do Iguaçu 

*CA - Céu Azul; SI - Serranópolis do Iguaçu

Table 3. Annual values of erosivity soil (MJ mm ha-1 h-1 per 
year) for the Municipalities of Céu Azul and Serranópolis do 
Iguaçu

Field A - Municipality of Céu Azul; Fields B and C - Municipality of Serranópolis do Iguaçu

Figure 4. Erodibility of study areas (K, t ha h-1 ha-1 MJ-1 mm-1)
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was calculated using the slope length function of SAGA GIS 
software. Figures 5 and 6 show the maps generated for fields 
A, B, and C.

The LS (length/slope) factor was calculated using a raster 
calculator after obtaining the slope and ramp length data. 
Figure 7 presents the results of the LS factor obtained for each 
field (A, B, and C). 

The volume and speed of the floods are directly related 
to the degree of slope of the terrain; thus, as observed, areas 
with greater slopes have a higher LS factor. Despite this, it is 
observed that there is a predominance of values between 0 
and 4, with a greater representation of values close to zero, 
indicating that a large part of the study area had lower rates 
of runoff, which is not conducive to laminar water erosion.

According to Fornelos & Neves (2007), LS values between 
0 and 1 are very low, those between 1 and 2 are low, and those 
between 2 and 5 are moderate. The land use and occupation 
factors (C) were obtained through the correlation of the 
values of NDVI and Factor C attributed by Pasquatto & 
Tomazoni (2016) (Figure 8). From this correlation, the land 
use and occupation factors (C) are shown in Figure 8. 

As noted, the highest values are associated with areas 
that have little or no ground cover, represented in red. The 
yellow color represents the presence of dead vegetation left 
over from direct planting. Factors C and P work separately 

only when the objective is to define more adequate forms 
of agricultural production to reduce the impacts generated 
in the physical environment. Thus, the C factor map was 
multiplied by the Raster calculator by the P factor (0.5), as 
proposed by Fornelos & Neves (2007) for no-tillage soil. The 
model was used to calculate the average annual soil loss rates 
for fields A, B, and C, using thematic maps related to the 
parameters predicted by the USLE (Eq. 1) (Figure 9).

The estimated values of soil loss in field A varied from 0 
to 192 t ha-1 per year, while in fields B and C, soil loss rates 
ranged from 0 to 100 t ha-1 per year, indicating a greater 
soil loss by erosion in field A. These results agree with the 
data presented in Figure 3. Analyzing the maps of the other 
factors in field A, it was observed that the highest values were 
found in the region with the highest slope; when compared 
to the LS factor, the maps were quite similar. In fields B and 
C, as expected, the estimated soil loss values were very close, 
differing mainly by the LS factor. The values estimated by the 
model shown in Figure 9 were evaluated using the erosion 
rate classification proposed by Cavallo (2008).

The susceptibility to erosion in the studied fields was 
mapped (Figure 10).

As described, field A was more susceptible to erosion 
than fields B and C; however, they all had low susceptibility 
to laminar erosion. Considering that the most influential 

Field A - Municipality of Céu Azul; Fields B and C - Municipality of Serranópolis do Iguaçu

Figure 7. Topographic Factor (LS) of the study fields (length 
slope factor)

Field A - Municipality of Céu Azul; Fields B and C - Municipality of Serranópolis do Iguaçu

Figure 6. Slope length (L, m) of the study areas 

Field A - Municipality of Céu Azul; Fields B and C - Municipality of Serranópolis do Iguaçu

Figure 5. Slope (S, %) of the study areas

Field A - Municipality of Céu Azul; Fields B and C - Municipality of Serranópolis do Iguaçu

Figure 8. Land use and occupation maps for the study areas

Field A - Municipality of Céu Azul; Fields B and C - Municipality of Serranópolis do Iguaçu

Figure 9. The mean annual soil loss rates of fields A, B, and 
C (t ha-1 per year)

Field A - Municipality of Céu Azul; Fields B and C - Municipality of Serranópolis do Iguaçu

Figure 10. Maps of susceptibility to water erosion for fields 
A, B and C
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factor is slope, it is important to use techniques that minimize 
runoff. Conservation practices depend on the location, the 
region’s climate and soil characteristics, and the degree of soil 
degradation; however, common practices, such as correcting 
soil fertility and planting in contour lines in soils with slopes 
should be considered mandatory.

Conclusions

1. The fields evaluated presented a low estimate of annual 
soil loss, with the area in the municipality of Céu Azul (field 
A) having the greatest spatial variability. Topography had the 
greatest influence, emphasizing the importance of adopting 
conservation techniques to minimize soil losses and reduce 
environmental impacts.

2. The tools used (as well as the methodology proposed) 
to assess the rates of soil loss due to laminar erosion increased 
the efficiency of the model’s response, making it possible 
to estimate in greater detail the locations with greater 
susceptibility to erosion, facilitating guidance of appropriate 
management practices in the study regions.
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