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A B S T R A C T
The knowledge of soil property spatial variability is useful for determining the rational 
use of inputs, such as the site-specific application of lime and fertilizer. The objective 
of this study was to evaluate the vegetation index and spatial variability of physical and 
chemical soil properties in an integrated crop-livestock system (ICLS). Soil samples were 
taken from a 6.9 ha area in a regular hexagon grid at 0-0.20 m depths. Soil P, K, Ca, Mg, 
and cation exchange capacity - CEC; base saturation; clay and sand were analyzed. Soil 
electrical conductivity (ECa) was measured with a contact sensor. The site was evaluated at 
the end of the corn season (April) and during forage production (October) using Landsat 
5 images, remote sensing techniques and a geographic information system (GIS). Results 
showed that the normalized difference vegetation index (NDVI) was associated with ECa 
and soil parameters, indicating crop and pasture variations in the ICLS. Geostatistics and 
GIS were effective tools for collecting data regarding the spatial variability of soil and crop 
indicators, identifying variation trends in the data, and assisting data interpretation to 
determine adequate management strategies.

Variabilidade espacial de índices de vegetação e propriedades
do solo em sistema de integração lavoura-pecuária
R E S U M O
O conhecimento da variabilidade espacial dos atributos físicos e químicos do solo é útil 
para o uso racional de insumos, como na aplicação localizada de corretivos e fertilizantes. 
Objetivou-se, nesta pesquisa, avaliar a variabilidade espacial dos índices de vegetação e 
atributos físicos e químicos do solo em um sistema de integração lavoura-pecuário (ILP). 
Uma área de 6,9 ha foi amostrada com grade regular hexagonal na profundidade de 
0-0,20 m. Os valores no solo de P, K, Ca, Mg, e CTC, saturação por bases, argila e areia 
foram analisados. A condutividade elétrica aparente do solo (CEa) foi medida com um 
sensor de contato. O talhão foi avaliado no final do ciclo do milho (abril) e para a produção 
de pastagem (outubro) por imagens do satélite Landsat 5, utilizando-se técnicas de 
sensoriamento remoto e sistemas de informação geográfica (SIG). Os resultados mostraram 
que o índice de vegetação por diferença normalizada (NDVI) foi associado à CEa e aos 
parâmetros de solo indicando as variações da cultura do milho e pastagem em sistema ILP. 
A geoestatística e o SIG foram ferramentas eficazes para unir os dados de variabilidade 
espacial do solo e da cultura, indicar as tendências dos resultados e interpretar a informação 
para apoiar estratégias de manejo adequadas.
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Introduction

Integrated crop-livestock systems (ICLSs) rotate land use 
between grain crops and pasture to improve grass quality, 
recuperate degraded pasture, feed animals in the dry season, 
and improve grain yield through no-tillage management 
(Balbino et al., 2011). 

Providing an adequate supply of nutrients is important 
for corn and forage production, and it is essential to maintain 
high quality and profitable yields in ICLSs. Lime and fertilizer 
are common inputs for highly weathered, low fertility, acidic 
soils in Brazil. However, soil fertility management without 
accounting for spatial variation within a field may directly 
affect crop yield (Bernardi et al., 2015). 

Precision agriculture (PA) is a knowledge chain that 
assists farmers in making management decisions for different 
cropping systems to increase economic returns and decrease 
the negative environmental impact of agriculture through the 
management of spatial variability (Inamasu & Bernardi, 2014). 

Measurements of apparent soil electrical conductivity 
(ECa) can easily provide spatial data for characterizing 
variations in soil and yield (Kitchen et al., 2003; Serrano et al., 
2010). ECa can be related to clay, water, soil nutrients, organic 
matter, cation exchange capacity and exchangeable Ca and Mg 
(Machado et al., 2006, 2015). These are also characteristics 
that affect crop productivity and can be helpful in interpreting 
spatial yield variations. 

Remote sensing (RS) is another PA tool in which acquired 
images are transformed into vegetation indexes, which may be 
related to some crop variables (Schellberg et al., 2008; Bernardi 
et al., 2014; Escribano Rodríguez et al., 2014). Satellite-derived 
vegetation indexes have been widely used to estimate crop and 
grassland biomass; RS provides temporal and spatial patterns of 
ecosystem change and has been used to estimate the biophysical 
characteristics of crops and grasslands (Moges et al., 2004; 
Numata et al., 2007; Schellberg et al., 2008; Silva Júnior et al., 
2013; Bernardi et al., 2014). Normalized difference vegetative 
indexes (NDVI) are commonly used to evaluate plant health, 
biomass, and nutrient content (Moges et al., 2004; Numata et 
al., 2007; Escribano Rodríguez et al., 2014). 

The objective of this study was to evaluate the vegetation 
index and spatial variability of physical and chemical soil 
properties in a crop-livestock system under a no-tillage 
protocol.

Material and Methods

The 6.9 ha field study was conducted at Embrapa Pecuária 
Sudeste, in Sao Carlos (22° 01’ S and 47° 54’ W; 856 m above 
sea level), State of Sao Paulo, Brazil from December 2008 
to October 2009. The climate in this region is Cwa type 
(Köeppen), with low and high temperature yearly averages of 
16.3 and 23.0 °C, respectively, and a total precipitation of 1502 
mm, falling mostly in summer. The soil type is a dystrophic 
Red-Yellow Latosol (331 g kg-1 of clay) corresponding to a 
Haplorthox (Soil taxonomy). 

A regular hexagon georeferenced sampling grid design 
with six sub-samples collected at 0–0.2 m depths was adopted 

for each hectare, and three more samples were taken in a 
transection along the field. Soil samples were carried out 
with an all-terrain vehicle (ATV) equipped with GPS and a 
stainless-steel screw auger with adjustable depth and electrical 
activation, which allowed for the demarcation of the points 
with their respective geographical coordinates.

Following Primavesi et al. (2005), soil pH measurements 
were made with water, organic carbon was determined by wet 
combustion, available P and exchangeable K+ were found using 
the resin method, and Cation exchange capacity (CEC) was 
measured at the actual soil pH value, and base saturation (%V) 
was determined. The densimeter method was used to analyze 
soil particle size fractions (clay and sand content). 

ECa was measured using a Veris model 3100 sensor 
manufactured by Veris Technologies of Salina, KS. Measurements 
were carried out according to Eq. 1:

IL
AV

ρ =

where:
ρ 	 - soil electrical conductivity, mS m-1;
I 	 - electric current applied by the sensor to the ground, 

Ampere; 
L 	 - spacing between the pairs of electrodes, m; 
A 	 - area cross section of the electrodes (of the rotating 

discs) in contact with the ground, m2; and, 
V 	 - potential difference of the electromagnetic field 

generated in the soil, measured by pairs of electrodes, volts.

In the crop-livestock rotation system, the summer crop 
corn (Zea mays L. cv. BRS 3060) was sown together with the 
forage palisadegrass Piatã (Urochloa brizantha cv. Piatã) with 
no tillage after 3 growing seasons of palisadegrass Marandu 
(Urochloa brizantha cv. Marandu) pasture. The corn crop was 
sown with a 0.8 m interlinear space, using five plants per meter; 
the palisadegrass Piatã pasture was sown between the rows of 
corn at a density of 5 kg of seed per ha. Dolomite lime was 
uniformly applied to increase base saturation at 70% before 
planting. The corn was uniformly fertilized at planting with 30 
kg ha-1 of N, 100 kg ha-1 of P2O5, 55 kg ha-1 of K2O and 1.4 kg 
ha-1 of Zn, and the forage was not fertilized during planting. 
Nitrogen and K (urea and KCl, respectively) were broadcast 
fertilized 60 days after planting in the amounts of 100 kg 
ha-1 of N and 100 kg ha-1 of K2O. The silage corn harvest was 
initiated in May, when the whole-plant water concentration 
was between 600 and 700 mg kg−1. After silage harvesting, 
the pasture was allowed to develop and was used for animal 
grazing in the next season.

Two Landsat Thematic Mapper 5 (TM5) scenes were used in 
this study, corresponding to the end of the corn season (April) 
and the beginning of the forage season (October). Images 
were aligned with digital base maps provided by the Instituto 
Nacional de Pesquisas Espaciais (INPE - Brazilian Space 
Agency). NDVI was calculated with Erdas Imagine 9.3 (Erdas 
Inc, Atlanta, Georgia, USA) in three steps: radiometric digital 
inter-calibration, monochromatic reflectance calculation and 
NDVI calculation. Landsat TM images were inter-calibrated to 

(1)
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the corresponding Landsat ETM+ reflectance images using a 
relative radiometric calibration (Lλi) approach calculated using 
Eq. 2 (Chander & Markham, 2003):

where: 
Z(xi) and Z (xi + h) - observed values of Z at location x and 

x + h, respectively; 
h 	 - separation distance; and,
N (h) - number of paired comparisons at distance h.

NDVI and ECa were estimated by ordinary kriging, 
while soil parameter properties were estimated using inverse 
distance weighting interpolation. Contour maps of estimates 
were prepared using Arc GIS 9 (Arc Map 9.2 - ESRI, Inc., 
Redlands, CA). 

Results and Discussion

The statistical parameters of all the analyzed variables are 
presented in Table 1. Mean, variance, coefficient of variation, 
minimum value, maximum value, skewness, and kurtosis were 
obtained to verify the existence of a central tendency and to 
determine the dispersion of the data. These values and the 
other standard statistical parameters are useful in evaluating 
the magnitude of the data dispersion around a central tendency 
value. The statistical parameters, including mean, variance, 
coefficient of variation, minimum value, and maximum value, 
indicate the amplitude and trend of variation of the analyzed 
data, and they are important for characterizing the data set. 
Based on the values presented in Table 1, most of the variables 
were distributed normally, as indicated by the proximity to zero 
for the skewness and kurtosis coefficients, with the exception 
of ECa and NDVI (October 31).

If a dataset is close to a normal distribution, the values 
for skewness and kurtosis coefficients approach zero (Vieira 
et al., 2002).

Soil pH, CEC, and sand content had low variability, with 
coefficient of variations below 10%. Soil OM, K, P, clay contents 
and base saturation represented soil properties with medium 
variability (CV < 30%), whereas Trotter et al. (2014) had found 
CV ranging from 35 to 66% for P, K and S. ECa represented 
soil properties with high variability. According to Kravchenko 
(2003), the level of data variability is important for site-specific 
management, as soil properties with high variability are 

i
L max L minL L min ND

255λ

−
= +

where: 
LλI 	 - relative radiometric calibration;
Lmax and Lmin - maximum and minimum spectral 

radiances (Wm-2 sr-1 µm-1) after 05/05/2003; and,
ND 	 - digital number of each pixel.

After, the monochromatic reflectance calculations of each 
band (ρλi) were achieved using Eq. 3 proposed by Allen et al. 
(2002):

i
i

i z r

L
E cos d

λ
λ

λ

π
ρ =

θ

where:
Lλi 	 - spectral radiance of each band; 
Eλi 	 - spectral solar irradiance of each band in the 

atmosphere (W m-2 µm-1); and,
θz 	 - solar zenith angle, and dr is the relative distance 

earth-sun (astronomical unit - UA).

Then, the normalized difference vegetation index (NDVI) 
was calculated using Eq. 4 (Choudhury, 1987):

NIR R

NIR R

NDVI
ρ −ρ

=
ρ +ρ

( ) ( ) ( ) ( )
( )N h

2
i i

i 1

1ˆ h Z x Z x h
2N h =

g = − +  ∑

NDVI - Normalized difference vegetation index; ECa - Apparent soil electrical conductivity; ICLS - Integrated crop-livestock system
CV - Coefficient of variation equals standard deviation (σ) divided by sample mean (µ)

Statistical

parameters

NDVI

(April 22, 2009)

NDVI

(Oct 31, 2009)

ECa

mS m-1 pHH2O
OM

g kg-1

P

mg dm-3

K CEC V

%

Clay Sand

cmolc dm-3 g kg-1

N 79 74 9922 10 10 10 10 10 10 10 10

Minimum 0.628 0.3169 0.400 5.90 27.00 3.0 0.80 10.70 21.64 215.0 569.0

Maximum 0.764 0.8163 9.900 6.70 55.00 6.0 2.20 12.50 40.74 392.0 691.0

� 0.711 0.728609 1.342 6.26 39.47 3.8 1.20 11.69 30.53 297.6 640.2

Median 0.712 0.7548 1.300 6.30 40.50 4.0 1.10 11.70 29.76 304.5 637.5

� 0.029 0.081379 0.485 0.20 7.38 0,92 0.35 0.51 5.12 42.0 31.5

Variance 0.001 0.006622 0.236 0.04 54.40 0.84 0.12 0.26 26.21 1763.6 992.1

CV (%) 4.03 11.17 36.16 3.27 18.69 24.2 25.64 4.35 16.77 14.11 4.92

Kurtosis 0.931 9.421384 72.106 -0.56 -0.67 3.32 0.20 -0.68 -0.60 -0.30 0.43

Skewness -0.834 -2.61833 5.529 -0.01 -0.01 1.00 0.65 -0.40 0.35 0.07 -0.81

Table 1. Descriptive statistics for NDVI, ECa and the chemical properties of a ICLS in Brazil

where: 

ρNIR and ρR - percent near infrared and red reflectance, nm.

Statistical parameters and geostatistical analyses were 
performed for all variables, focusing on the spatial continuity 
and dependence of soil and crop properties. Empirical 
directional semivariograms were calculated for the x- and 
y-directions. Semivariogram models were fitted to the 
empirical semivariograms g(h) using GEOEST (Vieira et al., 
2002) to estimate the structure of the spatial variation of a 
variable V and the semivariance using Eq. 5:

(2)

(5)

(3)

(4)
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potentially better candidates to be managed on a site-specific 
basis than the more uniformly distributed soil properties. On 
the other hand, mapping soil properties with higher variability 
can be less accurate than soil properties with lower variability. 
Trends in the variation of soil attributes obtained in this study 
are consistent to those observed by Bernardi et al. (2014) for 
several soil parameters.

Experimental semivariograms for all variables were 
computed, and all fitted models were bounded (Table 2). The 
results showed that the full extent of the variation of NDVI and 
EC had been encountered at the spatial scale of this study. The 
parameters fitted to the semivariograms are shown in Table 2. 

Figure 1. Maps of estimated inverse distance weighting of pHwater (A); OM - g kg-1 (B); CEC - cmolc dm-3 (C); V% (D); 
P - mg dm-3 (E); K - cmolc dm-3 (F); clay - g kg-1 (G); sand - g kg-1 (H); and ECw - mS m-1 (I) of a ICLS in Brazil

NDVI - Normalized difference vegetation index; ECa - Apparent soil electrical conductivity; 
ICLS - Integrated crop-livestock system
The parameters are nugget variance (Co), sill of the auto-correlated variance (C), and range 
of the spatial dependence (A)

Variable Co C A Model

NDVI - April 22 0.00020518 0.00081176 214.639 Spherical
NDVI - October 31 0.00068261 0.0054747 128.387 Spherical
ECa 0.10169 0.077365 34.0573 Spherical

Table 2. Parameters for semivariograms models for NDVI 
and ECa of a ICLS in Brazil

The soil parameters measured (pH, O.M., P, K, CEC, V%, clay 
and sand) had pure nugget effects and weak spatial dependence, 
probably due to the low-density grid adopted with 10 samples.
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The spherical model was best adjusted to the experimental 
variograms of NDVI (both dates) and ECa. Ranges of spatial 
dependence from the semivariogram models were higher for 
NDVI, with values of 214 and 128 m, than for ECa (34 m). 

The maps presented in Figure 1 refer to the spatial 
distribution of the pH values in water; organic matter; resin 
P and K; clay; sand; V%; and CEC measured at 0 to 20 cm in 
depth. According to Raij et al. (1996), the values of P were 
considered very low (0 to 6 mg dm-3), the values of K were low 
(0.8 to 1.5 mmolc dm-3) to medium (1.6 to 3.0 mmolc dm-3), 
and the base saturation rates were low (26 to 50%). 

These results show that the soil does not offer the plants 
sufficient quantities and proportions of these elements. There 
is an area in the middle-right side of the plot where values of 
pH, O.M., P, V%, and CEC are slightly higher than the rest of 
the studied area. These results may inform decisions regarding 
liming and fertilization, successfully addressing soil acidity 
and nutrient availability issues. Trotter et al. (2014) established 
site-specific nutrient fertilizer maps based on soil nutrient 
availability. 

These results indicate that a grid spacing of 128 m would be 
adequate for the characterization of NDVI spatial variability 
for this site. Then, the 30 x 30 m resolution Landsat 5 imageries 
would be adequate. Crop variation at this spatial scale probably 
reflects variables such as topography, soil type, and other 
related soil properties. This is true for ECa; a grid spacing of 34 
m would identify the spatial variability, and the high-density 
sampling process with Veris in parallel transects would provide 
the necessary results within that distance.

Kriged estimates for ECa were contoured and mapped, so 
that their patterns of variation in the field could be examined 
(Figure 1I). This map shows that since soil ECa is associated 
with soil properties, such as soil texture, soil organic matter, 
cation exchange capacity, and exchangeable Ca and Mg, the 
regions with higher values of ECa correspond with areas of 
higher soil parameter values (pH, OM, pH, P, CEC and V%). 
Serrano et al. (2010) observed positive correlations of ECa 
with soil pH but no significant correlations between EC and 
parameters, such as clay and soil organic matter. The strain 

of high-ECa (2.5 to 10 mS m-1) in the upper-right corner of 
the study area was due to the occurrence of an animal feedlot 
from the previous year. Cattle were fed at a trough in the area, 
causing a higher range of manure concentration.

Figure 2 illustrates the kriged map created based on a 
semivariance analysis of NDVI for corn and pasture. NDVI 
relies on the spectral contrast between red and near-infrared 
bands and is sensitive to leaf-chlorophyll content and the leaf 
area index (LAI) of vegetation (Numata et al., 2007). NDVI 
values are also highly correlated with biomass production 
(Silva Júnior et al., 2013; Escribano Rodríguez et al., 2014); 
the results suggest that higher pasture NDVI values indicate 
greater shoot production. 

The satellite image for corn demonstrated the same pattern 
that was observed for the soil parameters and ECa. This also 
provides evidence that the crop variation in the studied field 
reflects the variation in soil properties. These results confirm 
that the spectral data from RS can be used to detect and define 
management zones. These management zones are areas with 
different physical-chemical soil properties that influence plant 
yield and quality (Schellberg et al., 2008; Silva Júnior et al., 
2013; Escribano Rodríguez et al., 2014). Moreover, the results 
indicated that differences could be clearly and consistently 
distinguished, even with a mix of crops (corn and pasture).

There was an inverse relationship between the NDVI 
values of the first evaluation date (corn - Figure 2A) and the 
second (forage - Figure 2B). In other words, areas with high 
corn NDVI values were the same regions with low grass NDVI 
values. This apparent contradiction can be explained by the 
fact that corn and grass were sown together (in different rows), 
but corn growth was supported by fertilization. Due to the 
shading caused by corn during the period of cultivation, the 
grass grew slowly, especially because both species have a C4 
metabolism of CO2 fixation, a characteristic that makes them 
light-demanding. Therefore, it was easier for the corn crop 
to access light, complete the cycle and produce satisfactorily 
(Portes et al., 2000). Typically, in such integrated systems, after 
corn harvesting, the competition for light ends and the forage 
grows more rapidly (Balbino et al., 2011). Therefore, in places 

Figure 2. Map of kriged estimates of NDVI for corn (A) and pasture (B) in a ICLS in Brazil
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where corn grew well due to better soil fertility, there was more 
shade and consequently less vegetative growth of the grass. In 
the areas with lower corn NDVI, pasture had better vegetative 
growth, as indicated by the higher grass NDVI values.

Conclusions

1. The results from this study showed that NDVI values 
were associated with ECa and soil parameters, representing 
crop and pasture variations in an integrated crop-livestock 
system under a no-tillage protocol. 

2. Geostatistics and GIS were effective tools for collecting 
data regarding the spatial variability of soil and crop indicators, 
identifying variation trends in the data, and assisting data 
interpretation to determine adequate management strategies.
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