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ABSTRACT: The coconut mite (Aceria guerreronis - Eriophyidae) attacks coconut fruits, inhabits the meristematic 
region, and causes losses in fruit production. Chemicals are the main control measures but successive applications 
can cause resistance in mites. In this sense, it is necessary to search for ecological alternatives that assist in sustainable 
management, as consumers seek products grown using more eco-friendly techniques. This study aimed to identify 
an entomopathogenic fungal isolate and evaluate its ability to control the mite A. guerreronis, which is present in 
commercial areas in the municipality of Santa Izabel do Pará, Brazil, in the Eastern Amazon. The efficiency of fungi 
on mites was tested using six treatments: water (control), chemical acaricide, and fungi of the genera Purpureocillium, 
Metarhizium, Beuaveria, and Trichoderma; the treatments were applied to the bunches at a concentration of 108 conidia 
mL-1. The results demonstrated a reduction in mites on fruits, with the B. bassiana and P. lilacinum treatments being 
the most successful. This study demonstrates that these fungi have acaricidal action and may present an economically 
viable and ecological alternative for controlling phytophagous mites in coconut cultivation in the Amazon.
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RESUMO: O ácaro do coco (Aceria guerreronis - Eriophyidae) ataca os frutos do coqueiro, habita a região 
meristemática e causa perdas na produção de frutos. A principal medida de controle é por meio de produtos 
químicos. Sucessivas aplicações podem causar a resistencia dos ácaros, neste sentido, faz-se necessária a busca por 
alternativas ecológicas que auxiliem em um manejo sustentável, pois consumidores procuram produtos oriundos 
de técnicas mais saudáveis. O objetivo deste estudo foi identificar um isolado fúngico entomopatogênico e avaliar 
o controle sobre o ácaro A. guerreronis, presente em áreas comerciais no município de Santa Izabel do Pará, Brasil, 
Amazônia Oriental. A eficiência dos fungos sobre os ácaros, foi testada através de seis tratamentos: água (controle), 
acaricida químico e fungos dos gêneros Purpureocillium, Metarhizium, Beuaveria e Trichoderma, na concentração 
de 108 conídios mL-1, e aplicados sobre os cachos. Os resultados demonstraram que houve redução de ácaros nos 
frutos, sendo os tratamentos à base de B. bassiana e P. lilacinum, os mais eficientes, demonstrando que esses fungos 
possuem ação acaricida e podem ser uma alternativa economicamente viável e ecológica para o controle de ácaros 
fitófagos no cultivo de coqueiro na Amazônia.

Palavras-chave: biocontrole, pragas do coqueiro, bioma Amazônia, sustentabilidade

HIGHLIGHTS:
The fungi Purpureocillium lilacinum and Beauveria bassiana control mites in field conditions.
Entomopathogenic fungi has an acaricide action.
The introduction of microorganisms is a more sustainable alternative for controlling A. guerreronis.
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Introduction

The Amazon forest is the largest biome in Brazil and 
is notable for its abundant biodiversity, especially of 
microorganisms such as fungi and bacteria. This microbial 
diversity has not been extensively explored, especially in 
relation to fungi (Cerqueira et al., 2018). Some species of fungi 
stand out as control agents for insect pests (Liu et al., 2022), 
and have the potential to control pest mites (Parveen et al., 
2021). In a pathogenicity test on mites, the fungus Beauveria 
bassiana Vuillemin (Cordycipitaceae) showed potential for 
biological control applications (Pereira et al., 2019). In India, 
isolates of B. bassiana in pathogenicity testing caused mortality 
of up to 86.97% in the coconut mite (Aceria guerreronis Keifer 
- Eriophyidae) (Kalmath et al., 2012). 

The A. guerreronis mite is one of the main pests of 
coconut trees. It inhabits the meristematic region of the fruit, 
causing production losses of 10 to 70% (Rezende et al., 2016). 
Continuous application of pesticide products can result in the 
insects becoming resistant (Ferreira et al., 2023). In Brazil, 
several pesticide products aimed at controlling A. guerreronis 
have been registered with the Ministry of Agriculture and 
Livestock (MAPA). The use of these products can cause serious 
risks to public health and the environment (Paiva-Guimarâes 
et al., 2019) and interfere with the biology of predators and the 
interaction between prey and predator (Barros et al., 2022). 
Ecological alternatives can help to reduce these problems and 
contribute to sustainable pest management. In this context, the 
objective of this study was to identify an entomopathogenic 
fungal isolate and evaluate its ability to control A. guerreronis, 
which is present in commercial areas in the municipality of 
Santa Izabel do Pará, Brazil, in the Eastern Amazon.

Material and Methods

The experiment was conducted in a commercial plantation 
of coconut trees intended for coconut water extraction, 
which is located in the municipality of Santa Izabel do Pará, 
state of Pará, Brazil, Eastern Amazon and forms part of the 
Reunidas SOCOCO farm (01º 13’ 40.16” S; 48º 02’ 54.35” 
W, and altitude of 24 m). The region is characterized by high 
annual rainfall of up to 3,000 mm and an average relative air 
humidity of 80%. According to Köppen-Geiger classification, 
the climate is type Af1, with a rainy period from January to 
May (Amazonian winter) and a less rainy period from June to 
December (Amazonian summer) (De Alfaia et al., 2023). The 
predominant soil in the area is Psamment (United States, 2014), 
with a green cover of the Pueraria type (Pueraria phaseoloides 
(Roxb.) Benth). The area receives cultural treatments every 60 
days, involving manual vegetation reduction, as well as annual 
chemical crowning and fertilization.

The plantation was established in 2012 and features 2,974 
plants distributed in 90 rows with 33 plants (plot K154), with 
a spacing of 7.4 × 7.5 × 7.5 m. From the first 40 lines, 54 plants 
featuring natural A. guerreronis infestation were selected. The 
border plants were disregarded. The plants did not receive 
chemical insecticides or acaricides in the year preceding the 

experiment. The experiment was conducted from January to 
October 2021, during which time the plants were nine years 
old and approximately 3 m tall.

DNA of the fungus Purpureocillium sp., belonging to the 
Micoteca of the Plant Protection Laboratory (LPP) of the 
Federal Rural University of the Amazon (UFRA), was extracted 
using the method described by Dissanayake et al. (2020). After 
DNA extraction, the sample was subjected to the PCR process, 
where the β-tubulin sequence was amplified with the help 
of primers T1-F (5’-AACATGCGTGAGATTGTAAGT-3’) 
and βt2b-R (5’- ACCCTCAGTGTAGTGACCCTTGGC-3’) 
which amplify approximately 600 bp (Glass & Donaldson, 
1995). PCR reactions were performed with a final volume of 
25 μL containing 1X 2X Master Mix (Promega) (0.05 U μL-1 
Taq DNA polymerase, 4 Mm MgCl 2 reaction buffer, 0.4 Mm 
of each DNTP), 20 μM of each primer, and 100 ng of DNA. 
The reactions were performed in an Eppendorf thermocycler 
(Hamburg, Germany). Cycles for the ITS primer consisted of 
initial denaturation at 95 °C for 3 min, followed by 35 cycles 
at 95 °C for 30 s, 55 °C for 1 min, 72 °C for 90 s, and a final 
cycle of 72 °C for 10 min. The PCR products were analyzed on 
a 1.0% agarose gel, and electrophoresis was performed at 80 
V for 40 min. To purify the PCR product, the ExonucleaseI, 
and Shrimp Alkaline Phosphatase (EXO/SAP) enzyme 
protocol (Promega) was used according to the manufacturer’s 
recommendations. Sequencing was carried out at Actgene 
Ltda using ABI3730xl DNA Analyzer equipment (Applied 
Biosystems™). The sequences were deposited in GenBank 
under code OP957287.

Consensus sequencing was performed using the STADEN 
v.1.6 program package. Sequence analysis of the beta-tubulin 
(ß-tub) isolate was performed with the similarity index-based 
search system using the BLAST program that is available at 
NCBI (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Multiple 
sequence alignment was performed using MAFFT v. 7.110 
(Katoh & Standley, 2013) and manually corrected when 
necessary. Phylogenetic inference in this study was based on 
Maximum Likelihood and Bayesian Inference. Maximum 
Likelihood analysis was performed using Mega v.7 (Kumar 
et al., 2016) based on the Tamura-Ney model (Tamura & 
Nei, 1993) with 1000 bootstraps. Bootstrap values were 
generated automatically by analysis program. The isolate 
Drechmeria gunni (accession number: DQ522488) was used 
as an outgroup. The Phylogenetic tree obtained via Bayesian 
analysis was performed using MrBayes v. 32.2 (Ronquist et 
al., 2012). The best replacement model was estimated using 
jModelTest 2.1.10 (Darriba et al., 2012) with the Akaike 
information criterion. The Bayesian analysis was based on the 
GTR+G model, where four Markov chains ran simultaneously 
for 10,000,000 generations and sampling was performed 
every 1,000 generations. The burn-in phase was performed to 
discard 18% of the initial trees, obtaining a standard deviation 
of less than 0.01; the remaining trees were used to construct a 
phylogram calculated using the Bayesian posterior probability.

Fungi were produced through mass multiplication 
in parboiled rice. From January to October 2021, the 54 
selected plants were divided into nine randomized blocks 
and each of the six trees in each block were sprayed with 
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different treatments, namely, water (control), isolates of fungi 
Trichoderma sp., Metarhizium anisopilae (UFRA-MA-02), 
B. bassiana (UFRA-Bb05), and Purpureocillium lilacinum 
(UFRA01), and an abamectin-based acaricide. The selected 
plants were identified by treatment, and all bunches were 
sprayed. The treatments were applied using a manual knapsack 
sprayer equipped with a 40-pound pressure regulator and 110.2 
fan nozzle, in a jet directed to the fruits of Clusters 12 to 17, 
using 2 L of syrup per plant. Monthly applications were carried 
out in the morning from 7:00 a.m. under favorable weather 
conditions (no rain and low wind speed).

At intervals of 15 days between applications, the fruits 
of cluster 14 were evaluated and quantified monthly for A. 
guerreronis injuries. The percentage of damaged fruits was 
calculated relative to the total number of fruits in bunch 
14. For the collected fruits, a damage rating scale was used 
according to Souza et al. (2017). The percentage of damage in 
the perianth region around the bract was determined based 
on the maximum and minimum levels of damage observed. 

One fruit from Cluster 14 was randomly collected for 
each treatment, placed in separate marked plastic bags, and 
transported to the Laboratory of Entomology at UFRA to 
evaluate the presence of dead and live mites; this procedure 
was adapted from Fernando et al. (2007). The bracts and fruits 
were examined under a stereomicroscope and dead mites 
were collected with a brush, placed on microscopic slides 
containing a drop of blue cotton dye, and observed under 
an optical microscope to confirm the presence of hyphae or 
fungal spores. Live mites were transferred with a brush to a 
vial containing 1 mL of 70% alcohol and a drop of Tween 80 
to break the surface tension.

Data relating to the average number of mites, percentage of 
damage to the fruit, and percentage of fruits with damage to the 
bunch were analyzed per treatment, using analysis of variance 
(ANOVA). The significant differences between the means were 
calculated using the Tukey test (p ≤ 0.05). The averaged mite 
data were transformed using the Box Cox method and the 
number of live mites between treatments. The analyses were 
conducted using the statistical software R (version 4.2.1, R 
Core Team, 2021). 

Results and Discussion

W i t h  t h e  p r i m e r s  ß - t u b u l i n - F  ( 5 
ACGCTGCTCATCTCCAAGAT 3’) and ß-tubulin-R (5’ 
TCAATGCAGAAGGTCTCGTC 3’), it was possible to amplify 
the sequence of the isolated Purpureocillium sp. containing 643 
bp. The BLAST program revealed a high degree of similarity 
(100%) between the isolate’s ß-tubulin sequence and the type 
isolate of P. lilacinum (CBS 284.36). A total of 16 sequences were 
used in this study (Table 1). The phylogenetic trees obtained 
using Maximum Likelihood (Figure 1) and Bayesian analysis 
(Figure 2) had identical topologies and were not significantly 
different. In both trees, the isolate belonged to the species P. 
lilacinum (Thom.) Samson, part of the Ophiocordycipitaceae 
family with bootstrap support of 99% and posterior probability 
of 96%.

Fruits from bunch 14 on each of the 54 plants were 
evaluated, totaling 552 fruits, from which 436 were collected; 
of these, 49.09% (214 fruits) were without injuries, 48.17% 
(210 fruits) exhibited injuries caused by A. guerreronis, 2.52% 
(11 fruits) exhibited injuries caused by S. furcatus, and 0.23% 
(one fruit) exhibited injuries caused by both A. guerreronis 
and S. furcatus. 

No dead mites were found under the bracts in any of the 
treatment groups. However, outside the bract, dead mites 
with spores of P. lilacinum and B. bassiana were found in two 
fruits (Figure 3). The Kruskal-Wallis test showed that the 
number of live A. guerreronis was significantly influenced by 
the treatments, with collection carried out every 15 days after 
application (x2 = 70.04; df = 5; p ≤ 0.05). The highest number 
of A. guerreronis were obtained with the control treatment 
(water), followed by the Trichoderma sp., Abamectin, M. 
anisopliae, and B. bassiana treatments. The least A. guerreronis 
were found in the P. lilacinum treatment group (Figure 4).

During the rainy period from January to May (Amazonian 
winter), fruits treated with P. lilacinum and B. bassiana 
exhibited a lower average population of A. guerreronis (Table 
2). However, during the less rainy period of June to October 
(Amazonian summer), fruits treated with P. lilacinum still 
exhibited a lower average A. guerreronis population, in contrast 
to all other treatments (Table 3). Comparing the two periods, 

T - Type isolate

Table 1. Sequences of fungal isolates used in the phylogenetic analysis to identify the species Purpureocillium lilacinum
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Drechmeria gunnii isolate was designated as an out-group. T - Type isolate

Figure 2. Phylogenetic tree obtained via Bayesian analysis of ß-tubulin sequences from the UFRA 01 isolate used in this study

Statistical support values greater than 70% are shown at the nodes using bootstrapping. Drechmeria gunnii isolate was designated as an out-group. T - Type isolate

Figure 1. Phylogenetic tree obtained via Maximum Likelihood analysis of the ß-tubulin sequences of the UFRA 01 isolate used 
in this study 
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Figure 3. Dead mites found outside the bract in fruits treated with (A) P. lilacinum and (B) B. bassiana in a commercial plantation 
of Cocos nucifera, municipality of Santa Izabel do Pará, PA, Eastern Amazon, Brazil (arrows indicate spore germination)

Averages followed by the same letter do not differ statistically according to the Kruskal-
Wallis test (p ≤ 0.05)

Figure 4. Number of A. guerreronis collected from fruits of 
Cocus nucifera following different treatments

Means with the same letters in the column do not differ from each other by the Tukey test at p ≤ 0.05

Table 2. Percentage of damaged fruits in bunch 14, % of damage to the fruit, average A. guerreronis population in fruits of 
Cocos nucifera, 15 days after treatment application during the Amazon rainy season (January to May/2021) in the municipality 
of Santa Izabel do Pará, PA, Eastern Amazon, Brazil

revealed that from June to October there was a significant 
increase of 22% in the average population of A. guerreronis in 
the control treatment (water). This period featured reduced 
rainfall, increased temperature, and reduced relative air 
humidity (Figure 5), leading to a consequent increase in the 
mite population.

Isolate UFRA01 belongs to the species Purpureocillum 
lilacinum, which according to Yamamoto et al. (2020) is 
sometimes misidentified as Isaria spp., as the anamorphs of 

both groups are similar. Luangsa-ard et al. (2011), in an in-
depth morphological and phylogenetic study, proposed the 
creation of the genus Purpureocillium to accommodate the 
species Paecilomyces lilacinus, modifying it to P. lilacinum, 
which is why morphological identification should be 
accompanied by molecular analyses. In Brazil, P. lilacinum is 
used to control parasitic nematodes on plants. In addition to 
its role as a bionematicicide, this fungus also has insecticidal 
(Liu et al., 2022) and acaricidal properties (Silva et al., 2022). 

The absence of dead mites under the bracts after treatment 
application suggests that in the field and on the fruits, the 
fungi may be able to control mites under the bracts through 
enzymes or the production of toxic metabolites, produced by 
the fungi in contact with mites. Mites under the floral bracts 
that cover the perianth of the fruit would be protected from 
the treatment spray (De Alfaia et al., 2023); however, the fungi 
might dislodge them (expel them), since no mummified mites 
(dead mite covered in fungus) were found, in fruit treated with 
B. bassiana and P. lilacinum. These fungal treatments differed 
from the standard (acaricide) and control (water) treatments, in 
that a significant number of fungi treated fruits were damaged 
but had a low number of mites under the bracts. In addition, 
P. lilacinum treatment resulted in a greater number of fruits 
that were not infested by A. guerreronis.

Two dead mites containing spores of P. lilacinum and B. 
bassiana were found outside the bracts. The action of fungi 
may also be related to the moment of mite dispersion when 
they leave the perianth to disperse and walk on the fruit 
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epicarp (Silva et al., 2022). Barreto et al. (2004) evaluated the 
effects of different isolates of B. bassiana and M. anisopliae 
on Mononychellus tanajoa Bondar (Tetranychidae) in the 
laboratory, and concluded that the isolates of B. bassiana were 
more efficient. In India, Beauveria isolates caused mortality 
equivalent to that of the fungi Hirsutella tompsonni Fischer in 
a pathogenicity test on the mite A. guerreronis (Kalmath et al., 
2012). In a pathogenicity test of two isolates of B. bassiana and 
one of M. anisopliae on the mite Phyllocoptes gracilis Nalepa 
(Eriophyidae), the isolate of Beauveria cause greater mite 
mortality (Minguely et al., 2021).

Fruits treated with P. lilacinum presented the lowest average 
population of A. guerreronis, corroborating the results of Fiedler 
&Sosnowska (2007) who tested Paecilomyces lilacinus (Thom.) 
Samson on the two-spotted spider mite Tetranychus urticae 
(Tetranychidae) on bean plants under laboratory and greenhouse 
conditions. The mortality rate was 78% in the laboratory and 60% 
in the greenhouse; it is worth noting that until 2011, the fungus 
P. lilacinum was known as Paecilomyces lilacinus. According 
to Shin et al. (2017), P. lilacinum tolerates temperatures of up 
to 38 °C, the average temperature in the municipality of Santa 
Izabel during the studied period was close to 30 °C (Figure 5). 
Temperatures were higher during the dry period (Figure 5). 

In terms of the percentage of fruits damaged by A. 
guerreronis, treatment with the fungus P. lilacinum did 
significantly alter outcomes, compared to the standard 

Table 3. Percentage of damaged fruits in bunch 14, % of damage in the fruit, average A. guerreronis population in fruits of 
Cocos nucifera, 15 days after treatment application during the Amazon dry season (June to October/2021) in the municipality 
of Santa Izabel do Pará, PA, Eastern Amazon, Brazil

Means with the same letters in the column do not differ from each other by the Tukey test at p ≤ 0.05

Source: Climate data from the SOCOCO Company

Figure 5. Climatic conditions during the application period (January to October/2021), in the municipality of Santa Izabel do 
Pará, PA, Eastern Amazon, Brazil

treatment with abamectin. According to Calvet et al. (2018), 
A. guerreronis can modify its behavior to increase its fitness, 
and the presence of products in the fruits may have contributed 
to the dispersion of the mites. According to Azevedo et al. 
(2022), mite dispersion can occur through the action of wind or 
arthropods that transport specimens from one plant to another.

Conclusions

1. Through molecular characterization it is possible to 
identify fungi of the species P. lilacinum.

2. The natural populations of A. guerreronis in Cocos 
nucifera fruits were reduced after the application of the 
entomopathogenic fungi P. lilacinum, and to a lesser extent 
B. Bassiana.

3. Fungi of the species B. bassiana and P. lilacinum isolated 
from Amazonian soils could be used to develop bioacaricides 
to control A. guerreronis.
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