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Análise de cluster e regionalização hidrológica para Estados brasileiros
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Hugo de C. Ricardo2 , Adriano B. Pacheco5  & Fernando C. Mendonça2

ABSTRACT: Streamflow data from gauging stations are essential for effective water resources management. However, 
some regions in Brazil lack the necessary data. Hydrological regionalization is an alternative technique for obtaining 
data such regions. However, not all regions in Brazil have defined hydrological regionalization models, including 
the state of Goiás and the Brazilian Federal District. The objective of this study was to develop a hydrological 
regionalization methodology based on the separation of hydrologically homogeneous regions and multiple linear 
regression, using a Geographic Information System (GIS) program. Historical series data were used to calculate 
reference flows with 90 or 95% duration over time in the watercourse (Q90 and Q95) and the mean flow (Ǭ). Rain 
gauge station data were used to calculate the mean annual rainfall in each watershed through spatial interpolation by 
ordinary kriging. Subsequently, the physiographic characteristics of each watershed were calculated. The hydrologically 
homogeneous regions were delimited based on these data using cluster analysis, which identified seven hydrologically 
homogeneous regions in Goiás, two of them belonging to the Federal District. Multiple regression allowed the 
development of seven regionalization models. Models for regions 1, 3, 4, 5, and 7 showed better performance.
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RESUMO: Para gerenciar os recursos hídricos de forma eficaz, os dados de vazão das estações hidrométricas são 
cruciais. No entanto, no Brasil, algumas regiões não dispõem dos dados necessários. A regionalização hidrológica 
é uma técnica alternativa para obter dados para essas regiões. Infelizmente, nem todas as regiões do Brasil têm 
modelos de regionalização hidrológica definidos, incluindo Goiás e o Distrito Federal. O objetivo deste estudo foi 
desenvolver uma metodologia de regionalização hidrológica, baseada na separação de regiões hidrologicamente 
homogêneas e na regressão multivariada, utilizando o programa Sistema de Informações Geográficas (SIG). Com 
base na série histórica, foram calculadas as vazões de referência com 90 ou 95% de permanência ao longo do 
tempo no curso d’água (Q90 e Q95) e a vazão média (Ǭ). Com os dados das estações pluviométricas, foi calculada 
a precipitação média anual de cada uma das bacias hidrográficas fluviométricas, por meio de interpolação espacial 
por krigagem ordinária. Posteriormente, foram calculadas as características fisiográficas de cada bacia. Com esses 
dados, as regiões hidrologicamente homogêneas foram delimitadas por meio da análise de agrupamento. A análise 
de cluster identificou sete regiões hidrologicamente homogêneas em Goiás, sendo que duas delas pertencem ao 
Distrito Federal. A regressão multivariada levou ao desenvolvimento de sete modelos de regionalização. Os modelos 
para as regiões 1, 3, 4, 5 e 7 apresentaram melhor desempenho.

Palavras-chave: regiões hidrológicas homogêneas, modelagem hidrológica, regressão multivariada

HIGHLIGHTS:
Seven homogeneous hydrological regions were obtained using cluster analysis.
Five models showed excellent performance, while two showed satisfactory to good performance based on classification indices.
GIS models are useful for water agencies in Goiás state and the Brazilian Federal District to grant water use rights.
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Introduction

Hydrological models have been used as alternatives for 
predicting hydrological events in ungauged locations. Effective 
estimates of hydrological variables, such as flow, in these 
locations assist in objective decision-making in water resources 
management (Macedo et al., 2023).

The regionalization of hydrological variables is one of those 
alternatives (Beskow et al., 2016; Gomes et al., 2018). It consists 
of transferring data from a gauged (donor) to an ungauged 
location (target) (Lelis et al., 2020). 

Parametric regression is among the most widely used 
regionalization methods (Cassalho et al., 2019), in which 
the values of the desired parameter are determined through 
multiple regression between dependent (flow) and independent 
variables (morphometrics characteristics) (Beskow et al., 2016; 
Manke et al., 2022).

Wolff et al. (2014), Nascimento et al. (2021), and Wolff & 
Duarte (2021) conducted hydrological regionalization for the 
states of São Paulo, Paraná, and Santa Catarina, Brazil, based 
on data from 176, 81, and 74 gauging stations, respectively. 
The present study faced challenges with only 77 gauging 
stations in a larger area, resulting in regionalization issues, 
especially northern Goiás state due to fewer stations, requiring 
interpolation from distant regions. 

Thus, the general objective of the present study was to 
develop a methodology for hydrological regionalization 
based on the use of a Geographic Information System (GIS), 
with separation of hydrologically homogeneous regions by 

cluster analysis, using multiple linear regression within each 
homogeneous region.

Material and Methods

The state of Goiás, in the Central-West Region of Brazil, is 
between the parallels 12° 23’ S and 19° 29’ S and meridians 
45° 54’ W and 53° 14’ W, with a mean altitude of 496 m 
(Figure 1). Its area is approximately 340,111 km2, representing 
4% of the total area of the country. The state comprises 246 
municipalities, including its capital, Goiânia (IMB, 2014). 

The Brazilian Federal District is also in the Central-West 
Region of Brazil, between the parallels 15° 30’ S and 16° 
03’ S and the meridians 47° 25’ W and 48° 12’ W, with an 
altitude of 1,000 m, surrounded by 10 municipalities of Goiás, 
representing a small territorial strip to the east that borders the 
state of Minas Gerais (Figure 1). It is the smallest autonomous 
territory in Brazil, with an area of approximately 5,783 km2 
(IMB, 2014).

The region has four climate types (Am, Aw, Cwa, and 
Cwb), according to the Köppen-Geiger classification, with 
predominance of Aw (Rohli et al., 2015), a tropical climate 
with two well-defined seasons (dry and rainy seasons), with 
an mean annual rainfall depths ranging from 1,200 to 2,500 
mm (Cardoso et al., 2014).

The region’s relief is characterized by low altimetric 
amplitude, mostly flat terrains. The soils found in the 
region are predominantly classified as Latossolo Vermelho-
Amarelo, according to the Brazilian Soil Classification System 

Figure 1. Geographic localization of the state of Goiás (GO) and the Federal District (DF), Brazil



Cluster analysis and hydrological regionalization for Brazilian states 3/12

Rev. Bras. Eng. Agríc. Ambiental, v.28, n.11, e277005, 2024.

(EMBRAPA, 2018), which corresponds to Typic Hapludox 
(United States, 2014). Vegetation is predominantly composed 
of savannas (Cerrado vegetation), with large anthropic areas 
occupied by agriculture and pasture (IMB, 2014).

The region has a hydrography system composed of rivers 
that feed three important hydrographic regions of the country: 
Tocantins River, Paraná River, and São Francisco River basins. 
It also has a dense drainage network formed by medium and 
large rivers (ANA, 2022).

The methodology of the study was characterized by 
continuous steps to achieve the proposed objectives. Each step 
and software used are shown in Figure 2. The methodology 
applied in each phase will be described in the following items.

Flow data were obtained through historical series from 
stream gauging stations implemented and managed by the 
Brazilian National Water Agency (ANA) in the state of Goiás 
and the Federal District, as well as from stations geographically 
close to the study areas, available on the HidroWeb portal of 
the Hydrological Information System, located at http://www.
snirh.gov.br/hidroweb/serieshistoricas. Stations with data 
periods from 1948 to 2018 were selected, with at least 15 years 
of information, but not necessarily with a common baseline 
period for all stations (Wolff & Duarte, 2021). Stations were 
submitted to data absence analysis in the historical series, 
selecting those that contained at least 80% of annual data.

Thus, 77 stream gauging stations in Goiás, 25 in the Federal 
District, and 12 in the surroundings of these units were selected 
(Figure 3). Data from the surrounding stations were used to fill 
gaps in data from the other stations, maximizing the number 

Figure 3. Stream gauging stations in Goiás state, the Federal District, and surrounding areas (Charles et al., 2022), Brazil

Figure 2. Methodology flowchart describing steps and software 
used in the study
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of data, thus reducing the effect of missing data. Therefore, 
gaps in the daily streamflow data were filled using the R 3.6.0 
statistical software with the mtsdi package; this package uses 
software specifically adapted for climate data, based on the 
Maximized Hope algorithm to impute missing data in multiple 
time series (Junger & Leon, 2015).

Data from the following physiographic characteristics 
were used: watershed drainage area, average slope, drainage 
density, and length of the main thalweg. The data for these 
characteristics were obtained from the delimitation of the 
watersheds for each stream gauging station (Figure 4), using 
ArcHydro (Musselman & Aguilar, 2016), which provides a 
set of tools for hydrological analysis within the ArcGIS 10.1 
software, based on the Digital Elevation Model (DEM). 

The DEM used in the study was from Shuttle Radar 
Topography Mission (SRTM) satellite images, with a spatial 
resolution of 30 m; these images are available on the Google 
Earth Engine platform and reprojected to UTM 22S plane 
coordinate.

The largest drainage area measured was approximately 
91,819 km2 and is near the border with the state of Minas 
Gerais. The station measures the flow of the Paranaíba River, 
which belongs to the Paraná River basin. The smallest drainage 
area (33 km2) is the Paraná River basin.

Monthly arithmetic means for each stream gauging station 
were calculated based on the historical series of daily flows 
using an Excel 2016 spreadsheet. Monthly average flow values 
were then arranged in decreasing order, using the EasyFit 3.6 
software, to fit the probability of the flow duration curve (FDC) 

for each station (Costa & Fernandes, 2021); thus, the values of 
long-term mean flow (Ǭ) and reference flows with 90 or 95% 
duration over time (Q90 and Q95) were obtained. The ǭesp, used in 
the model as a dependent variable, was calculated using Eq. 1.

Figure 4. Watersheds located upstream of the stream gauging stations in Goiás and the Federal District, Brazil (Charles et al., 2022)

esp
QQ
A

=

where:
ǭesp - specific mean flow (m3 s-1 km-2)
Ǭ - long-term mean flow (m3 s-1); and,
A - drainage area (km2).

The ANA’s HidroWeb platform was also used to survey the 
rain gauge stations, as was done in obtaining the streamflow 
data. Similarly, Excel 2016 and R statistical 3.6.0 software were 
used to identify historical series with a period longer than 15 
years. Subsequently, 112 stations in Goiás state, 26 in Federal 
District, and 29 nearby stations with data periods ranging 
from 1944 to 2018 were observed (Figure 5). The neighboring 
stations were used to maximize the amount of data for the 
study, using the same gap filling method explained previously 
(Tanim et al., 2021). 

The interpolation of mean annual rainfall was performed 
using ordinary kriging, with an adjustment to the experimental 
Gaussian semivariogram, applying the Kriging tool in the 
ArcGis 10.1 software. The hydrological modeling was bases on 
the mean rainfall depths in the watersheds, obtained through 
the Zonal Statistical as a Table tool (Figure 6).

(1)
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Figure 5. Rain gauge stations in Goiás state, the Federal District, and surrounding areas used in the study (Charles et al., 2022)

Figure 6. Spatial distribution of rainfall in Goiás state and the Federal District, Brazil
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Cluster analysis was performed to delimit hydrologically 
homogeneous regions (Freitas et al., 2013) using the k-means 
algorithm in the R 3.6.0 statistical software. Cluster analysis is 
a technique for grouping similar components and identifying 
differences among elements. The following independent 
variables were considered: latitude and longitude of the 
watershed centroid, mean annual rainfall in the watershed, 
average slope, drainage density, and length of the main 
thalweg. The hierarchical method was used to conduct the 
cluster analysis, as it is flexible in the total number of groups, 
considering the researcher’s knowledge of the region. 

Once the optimal number of clusters was established, i.e., 
the number of hydrologically homogeneous regions in the 
areas of Goiás and the Federal District, the spatialization of 
the clusters was performed using the k-nearest neighbor (knn) 
algorithm in the R 3.6.0 statistical software. Considering that 
the independent variables have different units, they were 
standardized using Eq. 2, which consists of the normalization 
of the z-score, which resizes each variable in terms of the 
ratio between the standard deviation and its mean (Pandey 
& Jain, 2017).

and the independent variables (mean annual rainfall, average 
slope, drainage density, and main thalweg length) within each 
hydrologically homogeneous region. Analysis of variance 
(ANOVA) Student’s t-test (p ≤ 0.05) was then applied to 
determine the statistical significance of the coefficients used 
in each model.

xZ −µ
=

σ

where: 
z - standard value;
x - observed variable;
μ - mean; and,
σ - standard deviation.

The knn algorithm considers similarity measures between 
the data to separate the groups into their corresponding class. 
Thus, the Euclidean distance of the centroids of the watersheds 
was considered, which corresponds to the straight-line distance 
between the points and was calculated using Eq. 3 (Pandey & 
Jain, 2017). 

( )2

i, j in jnd x x= −∑

where:
d - Euclidean distance between the centroids of the 

watersheds i and j (km);
x - observed variable (km); and,
n - number of independent variables.

Hydrologically homogeneous regions were delimited using 
cluster analysis, considering the independent variables in each 
watershed and the latitude and longitude of the centroid. A 
plot of the j and k relationship was generated to estimate 
the optimal number of classes, using the elbow algorithm 
(Kassambra, 2017; Setiawan et al., 2020), where the k value 
corresponding to the “elbow” is the number of classes (input 
value in the knn algorithm), i.e., the number of hydrologically 
homogeneous regions.

The regionalization of reference flows consisted of using 
multiple linear regression (Eq. 4) to identify the correlation 
between the dependent variable (specific mean flow; ǭesp) 

esprQ a bP cI dDd eL= + + + +

where:
ǭespr - regionalized specific mean flow (m3 s-1 km-2);
P - mean annual rainfall (mm per year);
I - average watershed slope (%);
Dd - drainage density (km km-2);
L - length of the main thalweg (km); and,
a, b, c, d, e - model coefficients

After the hydrological models were defined, the mean flows 
were determined for each gauging station were using Eq. 5 
(Tucci, 2012). The estimated reference flows were calculated 
to validate the hydrological models.

r esprQ Q A= ⋅

where:
Ǭr - long-term regionalized mean flow (m3 s-1); 
ǭespr - regionalized specific mean flow (m3 s-1 km-2); and,
A - area, m2.

The regionalized Q90 and Q95 reference flows were 
determined based on linear coefficients obtained from the 
relationship between Q90 and Q95 with Ǭ for each hydrologically 
homogeneous region, according to Eq. 6 and Eq. 7, respectively 
(Tucci, 2012).

90r q90 rQ a Q= ⋅

95r q95 rQ a Q= ⋅

where:
Q90r - regionalized minimum flow for 90% of the time 

(m3 s-1);
Q95r - regionalized minimum flow for 95% of the time 

(m3 s-1);
aq90 and aq95 - angular coefficients from the relationship 

between Q90 and Q95 with Ǭ, dimensionless; and,
Ǭr - long-term regionalized mean flow (m3 s-1).

The performance of the hydrological regionalization 
models proposed in this study was evaluated by comparing 
the data estimated by each model with those obtained by the 
stream gauging stations, using performance indices (Moriasi 
et al., 2015).

Initially, four performance indices recommended by 
Moriasi et al. (2015) were used: coefficient of determination 
(R2) (Eq. 8), Nash-Sutcliffe efficiency test (NSE) (Eq. 10), 
percent bias (PBIAS) (Eq. 12), and Willmott index of agreement 

(2)

(3)

(4)

(5)

(6)

(7)
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(d) (Eq. 11). Additionally, the Pearson correlation coefficient 
(r) (Eq. 9) and the confidence index (c) (Eq. 13) were also 
determined (Camargo & Sentelhas. 1997).

recommendations of Moriasi et al. (2015) and Camargo & 
Sentelhas (1997).

Results and Discussion

The annual rainfall depths in the studied watersheds varied 
spatially between 1,233.20 and 1,638.57 mm, with a mean 
of 1,480.16 mm. This result is corroborated by the study of 
Cardoso et al. (2014), who reported a mean annual rainfall of 
1,485.3 mm for the region.

The highest mean annual rainfall depth was found in the 
north (Althoff et al., 2021) and southeast regions of Goiás state, 
as shown in the Atlas of the State of Goiás (IMB, 2014). The 
lowest rainfall volumes occurred in the northeast of the state, 
which can be explained by the influence of the Atlantic tropical 
air mass; this air mass carries moisture but loses it due to the 
occurrence of orographic rainfall on the coast of the Northeast 
Region of Brazil (Freitas et al., 2013).

The data showed the number of stations covered by the 
probability density functions (pdfs) that best fit the 102 
generated flow duration curves (FDCs). These FDCs were 
used to obtain reference flows (Ǭ, Qmax, Qmin, Q90, and Q95) 
and showed better fits for 34 distributions when performing 
Kolmogorov-Smirnov, Anderson Darling, and Chi-Square 
goodness-of-fit tests (Costa & Fernandes, 2021) (Table 3).

The Fatigue Life (3P) distribution had the highest number 
of FDCs with the best fit to the goodness-of-fit tests, followed 
by the Johnson SB distribution. Wolff & Duarte (2021) used 
only the log-normal distribution for all data from 74 gauging 
stations, but they regionalized a significantly smaller Brazilian 
state (Santa Catarina).

The hydrologically homogeneous regions were delimited 
based on cluster analysis using independent variables from 
each watershed, as well as the latitude and longitude of the 
centroid; the optimal number of classes (k) correlated to the 
“elbow” was seven classes for the study region, i.e., seven 
hydrologically homogeneous regions (clusters) were delimited 
(Figure 7).

According to the methodology used to group the regions, 
the state of Goiás has seven hydrologically similar regions, two 
of them in the Federal District (regions 4 and 7). The exchange 
of hydrological information should only occur within each 
hydrologically homogeneous region (Beskow et al., 2016), 
therefore, seven different hydrological regionalization models 
were generated.

C = confidence index

Table 2. Qualitative classification of model performance using the confidence index (c), as described in Camargo & Sentelhas 
(1997)

R² - Coefficient of determination; r - Pearson correlation coefficient; NSE - Nash-Sutcliffe efficiency test; PBIAS - Percent bias; d - Willmott index of agreement

Table 1. Qualitative classification of model performance adapted by Moriasi et al. (2015) and Camargo & Sentelhas (1997)
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where:
Oi - observed value (m3 s-1);
Si - estimated value (m3 s-1);
O - mean observed values (m3 s-1); 
S - mean estimated values (m3 s-1); and,
n - final sum index.

Finally, the performance of the models was also evaluated 
using qualitative classifications related to each statistical index. 
These criteria are shown in Tables 1 and 2, according to the 

(8)

(9)

(10)

(11)

(12)

(13)
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Table 3. Number of stream gauging stations most suitable for each probability density function (pdf) related to the flow duration 
curves obtained by three goodness-of-fit tests.

KS - Kolmogorov Smirnov; AD - Anderson Darling; CS - Chi-square; Gen - Generalized; Inv - Inverse; P - Parameters

Figure 7. Hydrologically homogeneous regions in Goiás state and the Federal District, Brazil, by cluster analysis

The number of homogeneous regions identified (seven 
regions) (Figure 7) denotes a dependence on the variation in 
regional climate and morphometric data used in the cluster 
analysis. Wolff et al. (2014) and Nascimento at al. (2021) found 
5 and 3 homogeneous regions when studying the states of São 
Paulo and Paraná, Brazil, respectively. Considering the larger 
territorial extension of the area evaluated in the present study, 
the number of seven hydrologically homogeneous regions can 
be considered adequate (Pessoa et al., 2021).

The correlation of the digital elevation model (DEM) 
with the groupings of homogeneous regions (Figure 7) 
showed a correlation between the elevation of the terrain 
and some regions of hydrological similarity. Thus, region 
1 (southeast region) showed a grouping of watersheds in 
flat areas, which have the lowest altitudes in the state of 
Goiás. However, region 2 (south region) did not show 
homogeneity in terms of altitude for the grouping of 
watersheds, which may have contributed to the low 



Cluster analysis and hydrological regionalization for Brazilian states 9/12

Rev. Bras. Eng. Agríc. Ambiental, v.28, n.11, e277005, 2024.

performance of the model in this region when compared 
to the other regions. 

Seven regionalization models were generated and their 
respective indices are shown in Table 4.

All variables were tested in the seven models, with 
different combinations; however, not all independent variables 
were significant for all models by the Student’s t-test (p ≤ 
0.05) (Musselman & Aguilar, 2016). Only “P” and “I” were 
explanatory for region 1, while “L” had no significant effect 
on the model for regions 3 and 6. 

Ǭ can be calculated by multiplying the regionalized ǭesp 
by the watershed area (Eq. 9). The regionalized Q90 and Q95 
were calculated using Eq. 6 and Eq. 7, respectively, based on 
angular coefficients for each homogeneous region, which are 
shown in Table 5.

Model performance evaluation criteria provide quantitative 
model rankings, with qualitative thresholds corresponding 
to each statistical index (Lelis et al., 2020). The qualitative 
classifications for the R2, r, NSE, d, and PBIAS indices can be 
very good, good, satisfactory, and unsatisfactory, whereas the 
classifications for the confidence index (c) can be excellent, 
very good, good, fair, poor, and very poor.

According to the statistical indices (R2, NSE, PBIAS, d, r, 
and c) for the hydrologically homogeneous regions 1, 3, 4, 5, 
and 7, the model performance classification ranged from good 
to excellent (Table 6). 

The model’s fit to observed data for Q90, Q95, and Ǭ in 
the hydrologically homogeneous region 2 (south region) 
was classified, in general, as “very good” based on d, r, and c 
indices and as “good” based on the R2 index. This indicates that 
the model had a good fit, with a high degree of dependence, 
precision, and accuracy. However, the model’s fit was classified 
as “satisfactory” based on the NSE index, denoting some degree 
of agreement, but not ideal. The PBIAS index, which measured 
the average tendency for simulated flows to be higher or lower 
than observed flows, classified the model as “satisfactory” for 
Q90 and Q95 and “unsatisfactory” for Ǭ, with a percent relative 
error of 15.34% (close to the 15% threshold); this denotes that 
the model did not perform well in simulating mean magnitudes 
(Table 6).

The model for hydrologically homogeneous region 2 had 
the worst performance compared to the other regions, which 
may be attributed to the small number of gauging stations 
in this region relative to the area size. This leads to greater 
uncertainties in model generation, requiring greater caution 
in its use.

Region 3 was concentrated in the middle of the state 
of Goiás; it had the largest area among all hydrologically 

a, b, c, d, e - Model coefficients

Table 4. Angular coefficients of the independent variables of the regionalization equations for the calculation of the specific 
regionalized mean flow for each hydrologically homogeneous region

Table 5. Reduction slopes of long-term mean flows (Ǭ) for 
calculating regionalized Q90 and Q95

aq90, aq95 - Angular coefficients from the relationship between Q90 and Q95 with Ǭ.

homogeneous regions and showed heterogeneity in terms 
of altitude. However, it had the highest number of data 
collection stations, which may have contributed to a better 
model performance. Similar heterogeneity was observed in 
region 6 (northeast region). However, this region had more 
low-altitude areas, which may have contributed to the model 
performance, as the classification was “good” for Ǭ based on 
R2 and NSE indices. 

In region 6, the model’s fit was classified as “satisfactory” 
for Q90 and Q95 based on R2 and NSE indices (Table 6), denoting 
some degree of dependence and agreement, but not ideal. 
However, the PBIAS index classified the model’s as “very 
good” for Q90, Q95, and Ǭ, indicating a good performance in 
simulating mean magnitudes. The model’s was classified, in 
general, as “good” (Q90 and Q95) and “very good” (Ǭ) based on 
d, r, and c indices, indicating a good degree of dependence, 
precision, and accuracy.

In general, rainfall was evenly distributed throughout the 
study area, with the lowest volumes observed in region 6, where 
the model showed good performance based on PBIAS, d, r, 
and c indices, but only “satisfactory” for Q90 and Q95 based on 
R2 and NSE indices. This denotes a similarity between rainfall 
volumes and hydrologically homogeneous regions, which may 
explain the overall good performance of the models.

Further studies using seasonal flows and considering 
periods of lower and higher rainfall depths could enable the 
establishment of less conservative criteria for granting the 
water use rights. This would allow the use of larger volumes of 
water resources during rainy periods (Wolff & Duarte, 2021). 
A more detailed analysis of the effect of rainfall on the models 
proposed in the present study requires further research on 
the seasonality of rainfall in the region, which has two well-
defined seasons. Seasonality is an essential factor for regional 
water availability and can be more rational when considered 
in granting water resources (Beskow et al., 2016).

The performance of these models is not only related 
to the availability of gauging station data, but also to 
the physiographic and climatic characteristics used as 
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Table 6. Performance indices and performance classification of the models 

R2 - Coefficient of determination; NSE - Nash-Sutclife coefficient; PBIAS - percent bias; d - Willmott index; r - Pearson correlation coefficient; c - Confidence index

independent variables. Altitude (a characteristic not used) 
may have been an important factor in some regions. However, 
the state of Goiás and the Federal District do not have large 
variations in altitude, thus lacking significant natural barriers 
to air masses passing through the region (Cardoso et al., 
2014).

Although hydrological models generally perform well, they 
often do not perform satisfactorily in all regions, denoting that 
their application for management purposes should be restricted 
in some regions (Du et al., 2020). However, hydrological 
models are important tools for water resources management, 
especially in developing countries such as Brazil, where the 
long-term data availability throughout the entire territory is 
low.

Conclusions

1. Cluster analysis identified seven hydrologically 
homogeneous regions in the state of Goiás, two of them 
belonging to the Brazilian Federal District. 

2. Multiple regression resulted in the development of seven 
hydrological regionalization models. Models for regions 1, 3, 
4, 5, and 7 showed better performance.
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