Acessibilidade / Reportar erro

Data processing to remove outliers and inliers: A systematic literature study1 1 Research developed at Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil

Processamento de dados para remoção de pontos outliers e inliers: Estudo sistemático da literatura

ABSTRACT

Outliers and inliers often arise during sample data acquisition. While outliers represent anomalous observations, inliers are erroneous data points within the main body of the dataset. It was aimed to conduct a systematic literature study (SLS) to survey methods and software employed for outlier and inlier removal, particularly within exploratory data analysis. The study was conducted in three phases: (i) systematic literature mapping (SLM), (ii) snowballing (SB), and (iii) SLR. Initially, 772 scientific studies were identified, subsequently narrowed down to 86 after applying selection criteria. Backward (BSB) and forward (FSB) snowballing further yielded 16 studies, resulting in a final pool of 102 studies for analysis. It was identified three outlier removal techniques (Chebyshev’s inequality, boxplot, and principal component analysis), one inlier removal technique (local Moran’s index), and thirteen commonly used software.

Key words:
exploratory analysis; precision agriculture; local Moran’s index; data cleaning

RESUMO

Outliers e inliers aparecem frequentemente na aquisição de dados amostrais. Outliers são observações anômalas e inliers são dados errôneos no interior do conjunto de dados. Esta pesquisa teve como objetivo realizar um estudo sistemático da literatura (SLS) para levantar os métodos utilizados para remoção de outliers e inliers e os softwares utilizados na análise exploratória dos dados. Este estudo sistemático da literatura foi realizado em três etapas: (i) mapeamento sistemático da literatura (SLM), (ii) bola de neve (SB) e (iii) revisão sistemática da literatura (SLR). Setecentos e setenta e dois estudos científicos foram obtidos e reduzidos para 86 após seleção. Foram acrescentados mais dezessete estudos selecionados por bola de neve (bola de neve para trás (BSB) e bola de neve para frente (FSB)), o que resultou em 102 estudos utilizados nesta pesquisa. Foram observadas três técnicas de remoção de outliers (desigualdade de Chebyshev, boxplot e análise de componentes principais), uma única técnica de remoção de inliers (índice de Moran local) e treze softwares.

Palavras-chave:
análise exploratória; agricultura de precisão; índice de Moran local; limpeza de dados

HIGHLIGHTS:

Sample data acquisition often exhibits outliers and inliers.

Outlier and inlier techniques include Chebyshev’s inequality, boxplot, principal component anal-ysis, and local Moran’s index.

This systematic literature search effectively identified and filtered the research papers.

Introduction

Higher crop yields have long been a priority, driven especially by the increasing global population. This has necessitated not only the expansion of productive areas but also the constant evolution of management methods. Extensive research has shown that the spatial variability of yield in agricultural areas has diverse causes (Trevisan et al., 2021Trevisan, R. G.; Bullock, D. S.; Martin, N. F. Spatial variability of crop responses to agronomic inputs in on-farm precision experimentation. Precision Agriculture , v.22, p.342-363, 2021. https://doi.org/10.1007/s11119-020-09720-8
https://doi.org/10.1007/s11119-020-09720...
).

“Precision Agriculture (PA) is a management strategy that gathers, processes and analyzes temporal, spatial and individual plant and animal data and combines it with other information to support management decisions according to estimated variability for improved resource use efficiency, productivity, quality, profitability and sustainability of agricultural production” (ISPA, 2024ISPA - International Society of Precision Agriculture . Definition of Precision Agriculture, 2024. https://www.ispag.org/about/definition. Accessed on: Jan. 2024.
https://www.ispag.org/about/definition...
). PA is essential for maximizing output while minimizing input use, reducing environmental impacts, and ensuring sustainability (Karunathilake et al., 2023Karunathilake, E. M. B. M.; Le, A. T.; Heo, S.; Chung, Y. S.; Mansoor, S. The path to smart farming: innovations and opportunities in precision agriculture. Agriculture, v.13, p.1-26, 2023. https://doi.org/10.3390/agriculture13081593
https://doi.org/10.3390/agriculture13081...
).

Raw and semi-processed agricultural data are typically collected from various sources, including the Internet of Things (IoT), sensors, satellites, weather stations, robots, farm equipment, farmers, and agribusinesses.

Before analyzing collected data, a statistical and exploratory data analysis is essential. This analysis utilizes techniques to gain deeper insights into the dataset, extract key variables, and identify outliers, inliers, and anomalies. Outliers are unexpected observations that deviate significantly from the majority of data points. Outlier detection and prediction are challenging tasks due to the inherent rarity of outliers (Reunanen et al., 2020Reunanen, N.; Räty, T.; Jokinen, J. J.; Hoyt, T.; Culler, D. Unsupervised online detection and prediction of outliers in streams of sensor data. International Journal of Data Science and Analytics, v.9, p.285-314, 2020. https://link.springer.com/article/10.1007/s41060-019-00191-3
https://link.springer.com/article/10.100...
). Inliers, on the other hand, are data points that differ from their immediate neighbors but still fall within the overall range of variation in the dataset (Córdoba et al., 2016Córdoba, M. A.; Bruno, C. I.; Costa, J. L.; Peralta, N. R.; Balzarini, M. G. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosystems Engineering , v.143, p.95-107, 2016. https://doi.org/10.1016/j.biosystemseng.2015.12.008
https://doi.org/10.1016/j.biosystemseng....
; Vega et al., 2019Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. Protocol for automating error removal from yield maps. Precision Agriculture , v.20, p.1030-1044, 2019. https://doi.org/10.1007/s11119-018-09632-8
https://doi.org/10.1007/s11119-018-09632...
).

However, some crucial questions remain regarding the descriptive and exploratory statistical information used in PA, particularly the methods and software employed for outlier and inlier removal. Therefore, this systematic literature study (SLS) (Fisch & Block, 2018Fisch, C.; Block, J. Six tips for your (systematic) literature review in business and management research. Management Review Quarterly, v.68, p.103-106, 2018.; Abbasi et al., 2022Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry - a systematic literature review on agriculture 4.0. Smart Agricultural Technology, v.2, 100042, 2022. https://doi.org/10.1016/j.atech.2022.100042
https://doi.org/10.1016/j.atech.2022.100...
) focused on identifying research related to data treatments in PA, specifically methods for removing outliers and inliers.

Material and Methods

This study employed three search techniques to identify relevant studies for data cleaning:

(i) Systematic Literature Mapping (SLM), which uses targeted keywords to uncover research on a specific topic across various databases. To do so, it was adhered to well-defined SLM principles outlined by previous studies (Talavera et al., 2017Talavera, J. M.; Tobón, L. E.; Gómez, J. A.; Culman, M. A.; Aranda, J. M.; Parra, D. T.; Quiroz, L. A.; Hoyos, A.; Garreta, L. E. Review of IoT applications in agro-industrial and environmental fields. Computers and Electronics in Agriculture , v.142, p.283-297, 2017. https://doi.org/10.1016/j.compag.2017.09.015
https://doi.org/10.1016/j.compag.2017.09...
; Aikes Junior et al., 2021Aikes Junior, J.; Souza, E.G.; Bazzi, C. L.; Sobjak, R. Thematic maps and management zones for precision agriculture - Systematic literature review, protocols and practical cases. Curitiba: Poncã, v.1, p.1-114, 2021.; Beneduzzi et al., 2022Beneduzzi, H. M.; Souza, E. G. D.; Moreira, W. K.; Sobjak, R.; Bazzi, C. L.; Rodrigues, M. Fertilizer recommendation methods for precision agriculture - a systematic literature study. Engenharia Agricola, v.42, p.1-18, 2022. https://doi.org/10.1590/1809-4430-eng.agric.v42n1e20210185/2022
https://doi.org/10.1590/1809-4430-eng.ag...
; Moreira et al., 2022Moreira, W K. O.; Godoy, E.; Beneduzzi, H. M.; Pereira, H.; Bazzi, C.; Maggi, M. F.; Rodrigues, M.; Gavioli, A. Methods to recommend corrective measures for agricultural soils: a systematic literature study. Communications in Soil Science and Plant Analysis, v.54, p.1102-1133, 2022. https://doi.org/10.1080/00103624.2022.2137194
https://doi.org/10.1080/00103624.2022.21...
), defining relevant keywords, selecting suitable databases, establishing selection criteria, analyzing the retrieved studies, and synthesizing their findings. To guide this keyword selection, it was formulated three key questions: 1. What are the most frequently used methods for outlier removal in precision agriculture (PA)? 2. What are the most common methods for removing inliers in PA? 3. Which software programs are most widely employed for cleaning harvester data?

The Science Direct database was accessed through the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) portal using the Federated Academic Community (CAFe) remote access platform (Figure 1). To capture the most recent advancements, it was searched for publications from 2009 to 2019. From each identified study, it was extracted specific details crucial for this analysis, including title, authors, journal, year of publication, abstract, keywords, any software used, and reported results.

Figure 1
Workflow for searches on scientific bases

(ii) Snowballing (SB), a complementary technique, leveraged the reference lists of identified studies to uncover additional relevant articles (Li & Zhan, 2022Li, T.; Zhan, Z. A systematic review on design thinking Integrated Learning in K-12 education. Applied Sciences, v.12, p.2-34, 2022. https://doi.org/10.3390/app12168077
https://doi.org/10.3390/app12168077...
; Moreira et al., 2022Moreira, W K. O.; Godoy, E.; Beneduzzi, H. M.; Pereira, H.; Bazzi, C.; Maggi, M. F.; Rodrigues, M.; Gavioli, A. Methods to recommend corrective measures for agricultural soils: a systematic literature study. Communications in Soil Science and Plant Analysis, v.54, p.1102-1133, 2022. https://doi.org/10.1080/00103624.2022.2137194
https://doi.org/10.1080/00103624.2022.21...
). This boosted search efficiency, mitigated potential biases (Aikes Junior et al., 2021Aikes Junior, J.; Souza, E.G.; Bazzi, C. L.; Sobjak, R. Thematic maps and management zones for precision agriculture - Systematic literature review, protocols and practical cases. Curitiba: Poncã, v.1, p.1-114, 2021.; Beneduzzi et al., 2022Beneduzzi, H. M.; Souza, E. G. D.; Moreira, W. K.; Sobjak, R.; Bazzi, C. L.; Rodrigues, M. Fertilizer recommendation methods for precision agriculture - a systematic literature study. Engenharia Agricola, v.42, p.1-18, 2022. https://doi.org/10.1590/1809-4430-eng.agric.v42n1e20210185/2022
https://doi.org/10.1590/1809-4430-eng.ag...
), and even unearthed classic texts from conventional agriculture (Beneduzzi et al., 2022Beneduzzi, H. M.; Souza, E. G. D.; Moreira, W. K.; Sobjak, R.; Bazzi, C. L.; Rodrigues, M. Fertilizer recommendation methods for precision agriculture - a systematic literature study. Engenharia Agricola, v.42, p.1-18, 2022. https://doi.org/10.1590/1809-4430-eng.agric.v42n1e20210185/2022
https://doi.org/10.1590/1809-4430-eng.ag...
) that might have been missed in the initial search.

Two types of snowballing were employed: 1. Backward snowballing (BSB), which included new studies related to those found in the initial SLM phase; and 2. Forward snowballing (FSB), which built upon BSB by using the reference lists of those identified studies to find even more relevant articles (Aikes Junior et al., 2021Aikes Junior, J.; Souza, E.G.; Bazzi, C. L.; Sobjak, R. Thematic maps and management zones for precision agriculture - Systematic literature review, protocols and practical cases. Curitiba: Poncã, v.1, p.1-114, 2021.; Beneduzzi et al., 2022Beneduzzi, H. M.; Souza, E. G. D.; Moreira, W. K.; Sobjak, R.; Bazzi, C. L.; Rodrigues, M. Fertilizer recommendation methods for precision agriculture - a systematic literature study. Engenharia Agricola, v.42, p.1-18, 2022. https://doi.org/10.1590/1809-4430-eng.agric.v42n1e20210185/2022
https://doi.org/10.1590/1809-4430-eng.ag...
; Moreira et al., 2022Moreira, W K. O.; Godoy, E.; Beneduzzi, H. M.; Pereira, H.; Bazzi, C.; Maggi, M. F.; Rodrigues, M.; Gavioli, A. Methods to recommend corrective measures for agricultural soils: a systematic literature study. Communications in Soil Science and Plant Analysis, v.54, p.1102-1133, 2022. https://doi.org/10.1080/00103624.2022.2137194
https://doi.org/10.1080/00103624.2022.21...
).

(iii) Systematic literature review (SLR) then integrated the findings from both SLM and SB. To ensure a targeted and efficient review, the study selection followed the following steps (Figure 2): 1. Retrieving and deduplicating articles, where studies were retrieved from the database removing duplicates, resulting in a pool of 772 studies; 2. Title screening, where the titles were reviewed to identify relevant articles, narrowing the selection down to 427; 3. Abstract analysis, which consisted of further refinement through abstract review, leaving 156 studies for in-depth evaluation; 4. Full-text reading and assessment, where the remaining 86 studies were carefully read and assessed; 5. Snowballing integration, where additional studies identified through snowballing were incorporated (10 from BSB and 6 from FSB). This meticulous process yielded a final pool of 102 studies for analysis (Table 1).

Figure 2
Workflow used for Systematic Literature Study (SLS)

Table 1
Selection after reading the studies (102 selected). Systematic literature mapping (SLM, 86 references); Backward Snowballing (BSB, 10 references); and Forward Snowballing (FSB, 6 references)

In terms of the geographic distribution of the selected studies (Figure 3), every continent except Antarctica was represented by at least one research paper. As for the distribution across different publication outlets (Figure 4), the journals Computers and Electronics in Agriculture and Geoderma exhibited the highest number of selected studies, accounting for 19 and 16%, respectively. Journals featuring only one study in the review were consolidated into a single category labeled “others,” comprising 19% of the total.

Figure 3
Distribution of selected studies per country (where authors carried out the study and, in cases of theoretical manuscript, where it was published)

Figure 4
Scientific journals where the selected studies were published

Results and Discussion

Numerous sensors used for retrieving spatial data are integrated into agricultural machinery. However, errors in their data can arise during the construction of digital maps (Spekken et al., 2005). For instance, the movement of the harvester into and out of the crop field, as well as areas with minimal or no crop, can lead to gradual changes in yield readings rather than sudden fluctuations, as expected (Kharel et al., 2019Kharel, T. P.; Swink, S. N.; Maresma, A.; Youngerman, C.; Kharel, D.; Czymmek, K. J.; Ketterings, Q. M. Yield monitor data cleaning is essential for accurate corn grain and silage yield determination. Agronomy Journal, v.111, p.509-516, 2019. https://doi.org/10.2134/agronj2018.05.0317
https://doi.org/10.2134/agronj2018.05.03...
). Another potential source of errors is associated with the GPS (Global Positioning System) signal receiver, now commonly referred to as the GNSS (Global Navigation Satellite System) receiver (Blackmore & Moore, 1999Blackmore, S.; Moore, M. Remedial Correction of Yield Map Data. Precision Agriculture , v.1, p.53-66, 1999. https://doi.org/10.1023/A:1009969601387
https://doi.org/10.1023/A:1009969601387...
). The yield measurement using a monitor is automated, allowing for the collection of a large volume of data. Hence, errors may be introduced (Menegatti & Molin, 2004Menegatti, L. A. A.; Molin, J. P. Remoção de erros em mapas de produtividade via filtragem de dados brutos. Revista Brasileira de Engenharia Agrícola e Ambiental , v.8, p.126-134, 2004. https://doi.org/10.1590/s1415-43662004000100019
https://doi.org/10.1590/s1415-4366200400...
), including georeferencing errors, sensor inaccuracies, and operational errors (Sun et al., 2013Sun, W.; Whelan, B.; Mcbratney, A. B.; Minasny, B. An integrated framework for software to provide yield data cleaning and estimation of an opportunity index for site-specific crop management. Precision Agriculture , v.14, p.376-391, 2013. https://doi.org/10.1007/s11119-012-9300-7
https://doi.org/10.1007/s11119-012-9300-...
).

Outlier detection represents a primary task preceding analysis, aiming to identify anomalies within extensive datasets. Various terms, such as noise detection, anomaly detection, deviation detection, or outlier detection, are used to describe this process. According to Barnett & Lewis (1994Barnett, V.; Lewis, T. Outliers in statistical data. John Wiley & Sons, v.3, p.304, 1994. ), outliers are observations that deviate significantly from the general pattern or distribution of the dataset, highlighting the importance of removing outliers before making agronomic decisions (Taylor et al., 2007Taylor, J. A. A.; McBratney, A. B. B.; Whelan, B. M. M. Establishing management classes for broadacre agricultural production. Agronomy Journal, v.99, p.1366-1376, 2007. https://doi.org/10.2134/agronj2007.0070
https://doi.org/10.2134/agronj2007.0070...
). The removal of outliers is a crucial step that precedes the construction of thematic maps, ensuring the accuracy of agronomic decisions (Vega et al., 2019Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. Protocol for automating error removal from yield maps. Precision Agriculture , v.20, p.1030-1044, 2019. https://doi.org/10.1007/s11119-018-09632-8
https://doi.org/10.1007/s11119-018-09632...
).

Identifying and potentially removing outliers during data collection and analysis is often imperative. Thus, it is essential to establish that a given methodology is both objective and efficient in identifying outliers for removal (Amidan et al., 2005Amidan, B. G.; Ferryman, T. A.; Cooley, S. K. Data outlier detection using the Chebyshev theorem. IEEE Aerospace Conference Proceedings, v.2005, p.3-8, 2005. https://doi.org/10.1109/AERO.2005.1559688
https://doi.org/10.1109/AERO.2005.155968...
). Additionally, several automated methods are available for detecting and eliminating outliers (Table 2).

Table 2
Outlier removal techniques

Chebyshev’s inequality was developed to establish a lower bound on the percentage of data within a certain range of standard deviations from the mean. For data following a normal (bell-shaped) distribution, approximately 95% of the data typically lies within two standard deviations from the mean. Consequently, around 5% of the data would be expected to fall outside this range (Amidan et al., 2005Amidan, B. G.; Ferryman, T. A.; Cooley, S. K. Data outlier detection using the Chebyshev theorem. IEEE Aerospace Conference Proceedings, v.2005, p.3-8, 2005. https://doi.org/10.1109/AERO.2005.1559688
https://doi.org/10.1109/AERO.2005.155968...
).

Chebyshev’s inequality (Eq. 1) is applicable when the distribution of the data is unknown (Amidan et al., 2005Amidan, B. G.; Ferryman, T. A.; Cooley, S. K. Data outlier detection using the Chebyshev theorem. IEEE Aerospace Conference Proceedings, v.2005, p.3-8, 2005. https://doi.org/10.1109/AERO.2005.1559688
https://doi.org/10.1109/AERO.2005.155968...
):

P X - μ k σ 1 - 1 k 2 (1)

where: X - data; µ - data mean; σ - standard deviation of the data; and, k - number of standard deviations of the mean.

Chebyshev’s theorem asserts that a minimum of 89% of data falls within the range of the mean ± 3 standard deviations, irrespective of the distribution (Córdoba et al., 2016Córdoba, M. A.; Bruno, C. I.; Costa, J. L.; Peralta, N. R.; Balzarini, M. G. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosystems Engineering , v.143, p.95-107, 2016. https://doi.org/10.1016/j.biosystemseng.2015.12.008
https://doi.org/10.1016/j.biosystemseng....
). Table 2 outlines various other proposals for lower and upper limits based on the dataset (Table 2).

Adjusting the lower and upper limits of the standard deviation parameter for a specific field area can be accomplished through the iterative selection of values while observing the impact on the resulting yield data distribution (Sudduth & Drummond, 2007Sudduth, K. A.; Drummond, S. T. Yield Editor: Software for Removing Errors from Crop Yield Maps. Agronomy Journal, v.99, p.1471-1482, 2007. https://doi.org/10.2134/agronj2006.0326
https://doi.org/10.2134/agronj2006.0326...
). The interval of ± 3 standard deviations was the most commonly cited in the studies (Table 2).

The boxplot graph (Tukey, 1977Tukey, J. W. Exploratory Data Analysis. Addison-Wesley, 1977. ) is a useful tool that segments data based on four hidden boundaries: two inner fences and two outer fences (Figure 5). Typically, the interquartile range (IQR) is defined as Q3-Q1. The inner fences are Q1 - 1.5 IQR and Q3 + 1.5 IQR, while the outer fences are Q1 - 3 IQR and Q3 + 3 IQR. The whiskers extend to the most extreme data points within the inner fences. Data points outside the inner fences but within the outer fences are considered mild outliers, each marked with a symbol. Data points outside the outer fences are classified as extreme outliers and are marked with a different symbol. There is no consensus regarding the choice of symbols (Dawson, 2011Dawson, R. How significant is a boxplot outlier? Journal of Statistics Education, v.19, p.1-13, 2011. https://doi.org/10.1080/10691898.2011.11889610
https://doi.org/10.1080/10691898.2011.11...
).

Figure 5
Boxplot structure

Boxplots are effective tools for visualizing data distribution in terms of quartiles and identifying outliers (Prasad et al., 2019Prasad, R.; Deo, R. C.; Li, Y.; Maraseni, T. Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridizer algorithm approach. Catena , v.177, p.149-166, 2019. https://doi.org/10.1016/j.catena.2019.02.012
https://doi.org/10.1016/j.catena.2019.02...
). Consequently, several studies (Table 2) have utilized boxplots for outlier detection and removal.

Principal Components Analysis (PCA) (Hotelling, 1933Hotelling, H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, v.24, p.417-441, 1933. http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1037/h0071325...
) is a multivariate technique outlined in Table 2, involving the creation of a new set of orthogonal synthetic variables known as principal components (PC). The primary objective is to reduce the dimensionality of a dataset containing numerous interrelated variables while preserving as much variation as possible (Jolliffe, 2005Jolliffe, I. Principal Component Analysis. Encyclopedia of Statistics in Behavioral Science, v.2, p.15-23, 2005. http://dx.doi.org/10.1037/h0071325
http://dx.doi.org/10.1037/h0071325...
).

As described by Filzmoser et al. (2005Filzmoser, P.; Garrett, R. G.; Reimann, C. Multivariate outlier detection in exploration geochemistry. Computers and Geosciences, v.31, p.579-587, 2005. https://doi.org/10.1016/j.cageo.2004.11.013
https://doi.org/10.1016/j.cageo.2004.11....
), the covariance matrix characterizes the shape and size of multivariate data. The Mahalanobis distance is a commonly used distance measure that takes into account the covariance matrix. The Mahalanobis distance (Eq. 2) for a p-dimensional multivariate sample x_1, ..., x_n is given by:

M D i = x i - t T C - 1 x i - t 1 2   f o r   i = 1 ,   . . . ,   n (2)

where: t is the estimated multivariate location, and C is the covariance matrix. Typically, t is the multivariate arithmetic mean, the centroid, while C is the sample covariance matrix.

For multivariate normally distributed data, the squared Mahalanobis distances (MDi 2) are approximately distributed as chi-square (χp 2) with p degrees of freedom. By equating the squared Mahalanobis distance to a specific constant, corresponding to a certain quantile of χp 2, it becomes feasible to define ellipsoids that have the same Mahalanobis distance from the centroid (Filzmoser et al., 2005Filzmoser, P.; Garrett, R. G.; Reimann, C. Multivariate outlier detection in exploration geochemistry. Computers and Geosciences, v.31, p.579-587, 2005. https://doi.org/10.1016/j.cageo.2004.11.013
https://doi.org/10.1016/j.cageo.2004.11....
).

Inliers refer to data points that deviate significantly from their local surroundings but still fall within the overall range of variation of the dataset (Córdoba et al., 2016Córdoba, M. A.; Bruno, C. I.; Costa, J. L.; Peralta, N. R.; Balzarini, M. G. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosystems Engineering , v.143, p.95-107, 2016. https://doi.org/10.1016/j.biosystemseng.2015.12.008
https://doi.org/10.1016/j.biosystemseng....
; Vega et al., 2019Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. Protocol for automating error removal from yield maps. Precision Agriculture , v.20, p.1030-1044, 2019. https://doi.org/10.1007/s11119-018-09632-8
https://doi.org/10.1007/s11119-018-09632...
). The Local Moran’s Index of spatial autocorrelation (Ii) (Anselin, 1995Anselin, L. Local Indicators of Spatial Association-LISA. Geographical Analysis, v.27, p.93-115, 1995. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1111/j.1538-4632.1995...
) can be employed to identify inliers for each variable within the dataset. As described by Córdoba et al. (2016), Ii represents a Local Moran’s Index (LISA) applied individually to each neighborhood, indicating the degree of similarity or dissimilarity between the observation’s value and that of its neighbors (Table 3).

Table 3
Inlier removal techniques

According to Vega et al. (2019Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. Protocol for automating error removal from yield maps. Precision Agriculture , v.20, p.1030-1044, 2019. https://doi.org/10.1007/s11119-018-09632-8
https://doi.org/10.1007/s11119-018-09632...
), the spatial autocorrelation index Ii can be computed for yield data as a tool for identifying inliers, utilizing the following equation (Eq. 3):

I i = Z i - Z ¯ σ 2 i = 1 . j i n W i j Z j - Z ¯   f o r   i = 1 ,   . . . ,   n (3)

where: Z is the mean yield value, Zi is the local yield at location i, Zj is the yield at other locations (j ≠ i), σ2 is the yield variance, n is the sample size, and Wij is the weighted distance between Zi and Zj. Neighboring points are defined as continuous to calculate Wij (Anselin, 1995Anselin, L. Local Indicators of Spatial Association-LISA. Geographical Analysis, v.27, p.93-115, 1995. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
https://doi.org/10.1111/j.1538-4632.1995...
).

A positive Local Moran’s (LM) index value indicates spatial clustering of similar values, whereas a negative value suggests clustering of dissimilar values. For instance, a site with a low yield value surrounded by neighbors with high yield values would result in a negative LM index value. The p-value associated with each yield data point evaluates the statistical significance of the LM value. These probability values are adjusted using Bonferroni’s criterion to account for the multiplicity of indices evaluated simultaneously within the field. Bonferroni’s adjustment is applied to each test performed to maintain the overall study’s error rate at 0.05 (Vega et al., 2019Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. Protocol for automating error removal from yield maps. Precision Agriculture , v.20, p.1030-1044, 2019. https://doi.org/10.1007/s11119-018-09632-8
https://doi.org/10.1007/s11119-018-09632...
).

No studies comparing the efficiency of the reported data-cleaning methods were found. However, it is worth noting that the most recent data-cleansing software predominantly employs statistical methods, likely due to their ease of use and effectiveness.

Software used for detecting and removing outliers and inliers

An extensive array of sensors, such as yield monitors, is commonly integrated with agricultural machinery to collect spatial data. However, these data often contain systematic and random errors, as well as atypical values, necessitating post-processing for their elimination. Various methods and protocols have been developed to apply filter sequences and classify, identify, and remove outliers and inliers from grain yield data (Córdoba et al., 2016Córdoba, M. A.; Bruno, C. I.; Costa, J. L.; Peralta, N. R.; Balzarini, M. G. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosystems Engineering , v.143, p.95-107, 2016. https://doi.org/10.1016/j.biosystemseng.2015.12.008
https://doi.org/10.1016/j.biosystemseng....
; Leroux et al., 2018Leroux, C.; Jones, H.; Clenet, A.; Dreux, B.; Becu, M.; Tisseyre, B. A general method to filter out defective spatial observations from yield mapping datasets. Precision Agriculture , v.19, p.789-808, 2018. https://doi.org/10.1007/s11119-017-9555-0
https://doi.org/10.1007/s11119-017-9555-...
; Sudduth et al., 2018; Vega et al., 2019Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. Protocol for automating error removal from yield maps. Precision Agriculture , v.20, p.1030-1044, 2019. https://doi.org/10.1007/s11119-018-09632-8
https://doi.org/10.1007/s11119-018-09632...
). According to Vega et al. (2019Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. Protocol for automating error removal from yield maps. Precision Agriculture , v.20, p.1030-1044, 2019. https://doi.org/10.1007/s11119-018-09632-8
https://doi.org/10.1007/s11119-018-09632...
), approximately 30% of yield data were removed after data cleaning. A total of 13 software tools were used in different studies for data cleaning, including both proprietary and free software options (Table 4).

Table 4
Software programs used in data cleaning

Conclusions

  1. The systematic literature study (SLS) proved to be effective in identifying relevant research studies and enhancing understanding of the research subject.

  2. The survey conducted through systematic literature mapping (SLM) yielded 772 scientific studies, which were narrowed down to 86 studies following the selection process. Additionally, sixteen more studies identified through snowballing (FSB and BSB) were incorporated, resulting in a total of 102 studies used in this research.

  3. Three techniques for outlier removal were identified: (i) Chebyshev’s inequality, (ii) boxplot analysis, and (iii) principal component analysis. In terms of removing inliers, all studies employed the local Moran’s index. Furthermore, thirteen different software tools were identified across the analyzed studies.

Supplementary documents

There are no supplementary sources.

Conflict of interest

The authors declare no conflict of interest.

Financing statement

There are not financing statements to declare.

Acknowledgements

The authors would like to thank the Universidade Estadual do Oeste do Paraná (UNIOESTE), the Universidade Tecnológica Federal do Paraná (UTFPR), the Instituto Federal do Paraná (IFPR), the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES; finance code n° 001), and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq).

Literature Cited

  • Abbasi, R.; Martinez, P.; Ahmad, R. The digitization of agricultural industry - a systematic literature review on agriculture 4.0. Smart Agricultural Technology, v.2, 100042, 2022. https://doi.org/10.1016/j.atech.2022.100042
    » https://doi.org/10.1016/j.atech.2022.100042
  • Adeline, K. R. M.; Gomez, C.; Gorretta, N.; Roger, J.-M. Predictive ability of soil properties to spectral degradation from laboratory Vis-NIR spectroscopy data. Geoderma, v.288, p.143-153, 2017. https://doi.org/10.1016/j.geoderma.2016.11.010
    » https://doi.org/10.1016/j.geoderma.2016.11.010
  • Aikes Junior, J.; Souza, E.G.; Bazzi, C. L.; Sobjak, R. Thematic maps and management zones for precision agriculture - Systematic literature review, protocols and practical cases. Curitiba: Poncã, v.1, p.1-114, 2021.
  • Ali, M.; Deo, R. C.; Maraseni, T.; Downs, N. J. Improving SPI-derived drought forecasts incorporating synoptic-scale climate indices in multi-phase multivariate empirical mode decomposition model hybridized with simulated annealing and kernel ridge regression algorithms. Journal of Hydrology, v.576, p.164-184, 2019. https://doi.org/10.1016/j.jhydrol.2019.06.032
    » https://doi.org/10.1016/j.jhydrol.2019.06.032
  • Altdorff, D.; Galagedara, L.; Nadeem, M.; Cheema, M.; Unc, A. Effect of agronomic treatments on the accuracy of soil moisture mapping by electromagnetic induction. Catena, v.164, p.96-106, 2018. https://doi.org/10.1016/j.catena.2017.12.036
    » https://doi.org/10.1016/j.catena.2017.12.036
  • Amidan, B. G.; Ferryman, T. A.; Cooley, S. K. Data outlier detection using the Chebyshev theorem. IEEE Aerospace Conference Proceedings, v.2005, p.3-8, 2005. https://doi.org/10.1109/AERO.2005.1559688
    » https://doi.org/10.1109/AERO.2005.1559688
  • Amirinejad, A. A.; Kamble, K.; Aggarwal, P.; Chakraborty, D.; Pradhan, S.; Mittal, R. B. Assessment and mapping of spatial variation of soil physical health in a farm. Geoderma , v.160, p.292-303, 2011. https://doi.org/10.1016/j.geoderma.2010.09.021
    » https://doi.org/10.1016/j.geoderma.2010.09.021
  • Anselin, L. Local Indicators of Spatial Association-LISA. Geographical Analysis, v.27, p.93-115, 1995. https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
    » https://doi.org/10.1111/j.1538-4632.1995.tb00338.x
  • Araujo, V.; Mitra, K.; Saguna, S.; Åhlund, C. Performance evaluation of FIWARE: A cloud-based IoT platform for smart cities. Journal of Parallel and Distributed Computing, v.132, p.250-261, 2019. https://doi.org/10.1016/j.jpdc.2018.12.010
    » https://doi.org/10.1016/j.jpdc.2018.12.010
  • Arslan, S.; Colvin, T. S. Grain yield mapping: yield sensing, yield reconstruction, and errors. Precision Agriculture, v.3, p.135-154, 2002. https://doi.org/10.1023/A:1013819502827
    » https://doi.org/10.1023/A:1013819502827
  • Barca, E.; De Benedetto, D.; Stellacci, A. M. Contribution of EMI and GPR proximal sensing data in soil water content assessment by using linear mixed effects models and geostatistical approaches. Geoderma , v.343, p.280-293, 2019. https://doi.org/10.1016/j.geoderma.2019.01.030
    » https://doi.org/10.1016/j.geoderma.2019.01.030
  • Barnett, V.; Lewis, T. Outliers in statistical data. John Wiley & Sons, v.3, p.304, 1994.
  • Behera, S. K.; Mathur, R. K.; Shukla, A. K.; Suresh, K.; Prakash, C. Spatial variability of soil properties and delineation of soil management zones of oil palm plantations grown in a hot and humid tropical region of southern India. Catena , v.165, p.251-259, 2018. https://doi.org/10.1016/j.catena.2018.02.008
    » https://doi.org/10.1016/j.catena.2018.02.008
  • Beneduzzi, H. M.; Souza, E. G. D.; Moreira, W. K.; Sobjak, R.; Bazzi, C. L.; Rodrigues, M. Fertilizer recommendation methods for precision agriculture - a systematic literature study. Engenharia Agricola, v.42, p.1-18, 2022. https://doi.org/10.1590/1809-4430-eng.agric.v42n1e20210185/2022
    » https://doi.org/10.1590/1809-4430-eng.agric.v42n1e20210185/2022
  • Betzek, N. M.; Souza, E. G. De; Bazzi, C. L.; Schenatto, K.; Gavioli, A.; Magalhães, P. S. G. Computational routines for the automatic selection of the best parameters used by interpolation methods to create thematic maps. Computers and Electronics in Agriculture, v.157, p.49-62, 2019. https://doi.org/10.1016/j.compag.2018.12.004
    » https://doi.org/10.1016/j.compag.2018.12.004
  • Bitencourt, D. G. B.; Barros, W. S.; Timm, L. C.; She, D.; Penning, L. H.; Parfitt, J. M. B.; Reichardt, K. Multivariate and geostatistical analyses to evaluate lowland soil levelling effects on physico-chemical properties. Soil and Tillage Research, v.156, p.63-73, 2016. https://doi.org/10.1016/j.still.2015.10.004
    » https://doi.org/10.1016/j.still.2015.10.004
  • Blackmore, S.; Moore, M. Remedial Correction of Yield Map Data. Precision Agriculture , v.1, p.53-66, 1999. https://doi.org/10.1023/A:1009969601387
    » https://doi.org/10.1023/A:1009969601387
  • Bodner, G. S.; Robles, M. D. Enduring a decade of drought: Patterns and drivers of vegetation change in a semi-arid grassland. Journal of Arid Environments, v.136, p.1-14, 2017. https://doi.org/10.1016/j.jaridenv.2016.09.002
    » https://doi.org/10.1016/j.jaridenv.2016.09.002
  • Bökle, S.; Karampoiki, M.; Paraforos, D. S.; Griepentrog, H. W. Using an open source and resilient technology framework to generate and execute prescription maps for site-specific manure application. Smart Agricultural Technology , v.5, 100272, 2023. https://doi.org/10.1016/j.atech.2023.100272
    » https://doi.org/10.1016/j.atech.2023.100272
  • Calafat, C.; Gallego, A.; Quintanilla, I. Integrated geo-referenced data and statistical analysis for dividing livestock farms into geographical zones in the Valencian Community (Spain). Computers and Electronics in Agriculture , v.114, p.58-67, 2015. https://doi.org/10.1016/j.compag.2015.03.005
    » https://doi.org/10.1016/j.compag.2015.03.005
  • Camino, C.; González-Dugo, V.; Hernández, P.; Sillero, J. C.; Zarco‐Tejada, P. J. Improved nitrogen retrievals with airborne-derived fluorescence and plant traits quantified from VNIR-SWIR hyperspectral imagery in the context of precision agriculture. International Journal of Applied Earth Observation and Geoinformation, v.70, p.105-117, 2018. https://doi.org/10.1016/j.jag.2018.04.013
    » https://doi.org/10.1016/j.jag.2018.04.013
  • Castaldi, F.; Palombo, A.; Santini, F.; Pascucci, S.; Pignatti, S.; Casa, R. Evaluation of the potential of the current and forthcoming multispectral and hyperspectral imagers to estimate soil texture and organic carbon. Remote Sensing of Environment, v.179, p.54-65, 2016. https://doi.org/10.1016/j.rse.2016.03.025
    » https://doi.org/10.1016/j.rse.2016.03.025
  • Castrignanò, A.; Wong, M. T. F. T. F.; Stelluti, M.; De Benedetto, D.; Sollitto, D. Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation. Geoderma , v.175, p.78-89, 2012. https://doi.org/10.1016/j.geoderma.2012.01.013
    » https://doi.org/10.1016/j.geoderma.2012.01.013
  • Castrignanò, A.; Buttafuoco, G.; Quarto, R.; Parisi, D.; Viscarra Rossel, R. A.; Terribile, F.; Langella, G.; Venezia, A. A geostatistical sensor data fusion approach for delineating homogeneous management zones in Precision Agriculture. Catena , v.167, p.293-304, 2018. https://doi.org/10.1016/j.catena.2018.05.011
    » https://doi.org/10.1016/j.catena.2018.05.011
  • Cavallo, G.; De Benedetto, D.; Castrignanò, A.; Quarto, R.; Vonella, A. V.; Buttafuoco, G. Use of geophysical data for assessing 3D soil variation in a durum wheat field and their association with crop yield. Biosystems Engineering, v.152, p.28-40, 2016. https://doi.org/10.1016/j.biosystemseng.2016.07.002
    » https://doi.org/10.1016/j.biosystemseng.2016.07.002
  • Chung, S. O.; Sudduth, K. A.; Motavalli, P. P.; Kitchen, N. R. Relating mobile sensor soil strength to penetrometer cone index. Soil and Tillage Research , v.129, p.9-18, 2013. https://doi.org/10.1016/j.still.2012.12.004
    » https://doi.org/10.1016/j.still.2012.12.004
  • Cisternas, I.; Velásquez, I.; Caro, A.; Rodríguez, A. Systematic literature review of implementations of precision agriculture. Computers and Electronics in Agriculture , v.176, 105626, 2020. https://doi.org/10.1016/j.compag.2020.105626
    » https://doi.org/10.1016/j.compag.2020.105626
  • Coelho, A. L. De F.; De Queiroz, D. M.; Valente, D. S. M.; Pinto, F. De A. De C. An open-source spatial analysis system for embedded systems. Computers and Electronics in Agriculture , v.154, p.289-295, 2018. https://doi.org/10.1016/j.compag.2018.09.019
    » https://doi.org/10.1016/j.compag.2018.09.019
  • Córdoba, M. A.; Bruno, C. I.; Costa, J. L.; Peralta, N. R.; Balzarini, M. G. Protocol for multivariate homogeneous zone delineation in precision agriculture. Biosystems Engineering , v.143, p.95-107, 2016. https://doi.org/10.1016/j.biosystemseng.2015.12.008
    » https://doi.org/10.1016/j.biosystemseng.2015.12.008
  • Davatgar, N.; Neishabouri, M. R. R.; Sepaskhah, A. R. R. Delineation of site-specific nutrient management zones for a paddy cultivated area based on soil fertility using fuzzy clustering. Geoderma , v.173-174, p.111-118, 2012. https://doi.org/10.1016/j.geoderma.2011.12.005
    » https://doi.org/10.1016/j.geoderma.2011.12.005
  • Dawson, R. How significant is a boxplot outlier? Journal of Statistics Education, v.19, p.1-13, 2011. https://doi.org/10.1080/10691898.2011.11889610
    » https://doi.org/10.1080/10691898.2011.11889610
  • Demattê, J. A. M.; Ramirez-Lopez, L.; Marques, K. P. P.; Rodella, A. A. Chemometric soil analysis on the determination of specific bands for the detection of magnesium and potassium by spectroscopy. Geoderma , v.288, p.8-22, 2017. https://doi.org/10.1016/j.geoderma.2016.11.013
    » https://doi.org/10.1016/j.geoderma.2016.11.013
  • Dray, S.; Legendre, P.; Peres-Neto, P. R. Spatial modelling: a comprehensive framework for principal coordinate analysis of neighbour matrices (PCNM). Ecological Modelling, v.196, p.483-493, 2006. https://doi.org/10.1016/j.ecolmodel.2006.02.015
    » https://doi.org/10.1016/j.ecolmodel.2006.02.015
  • Driemeier, C.; Ling, L. Y.; Sanches, G. M.; Pontes, A. O.; Magalhães, P. S. G. G.; Ferreira, J. E. A computational environment to support research in sugarcane agriculture. Computers and Electronics in Agriculture , v.130, p.13-19, 2016. https://doi.org/10.1016/j.compag.2016.10.002
    » https://doi.org/10.1016/j.compag.2016.10.002
  • Eitel, J. U. H.; Magney, T. S.; Vierling, L. A.; Dittmar, G. Assessment of crop foliar nitrogen using a novel dual-wavelength laser system and implications for conducting laser-based plant physiology. ISPRS Journal of Photogrammetry and Remote Sensing, v.97, p.229-240, 2014. https://doi.org/10.1016/j.isprsjprs.2014.09.009
    » https://doi.org/10.1016/j.isprsjprs.2014.09.009
  • Eugster, W.; Moffat, A. M.; Ceschia, E.; Aubinet, M.; Ammann, C.; Osborne, B.; Davis, P. A.; Smith, P.; Jacobs, C.M.J.; Moors, E.J.; Dantec, V.; Béziat, P.; Saunders, M.; Jans, W. W. P.; Grünwald, T.; Rebmann, C.; Kutsch, W. L.; Czerný, R.; Janouš, Dalibor; Moureaux, C.; Buchmann, N. Management effects on European cropland respiration. Agriculture, Ecosystems & Environment v.139, p.346-362, 2010. https://doi.org/10.1016/j.agee.2010.09.001
    » https://doi.org/10.1016/j.agee.2010.09.001
  • Filzmoser, P.; Garrett, R. G.; Reimann, C. Multivariate outlier detection in exploration geochemistry. Computers and Geosciences, v.31, p.579-587, 2005. https://doi.org/10.1016/j.cageo.2004.11.013
    » https://doi.org/10.1016/j.cageo.2004.11.013
  • Fisch, C.; Block, J. Six tips for your (systematic) literature review in business and management research. Management Review Quarterly, v.68, p.103-106, 2018.
  • Fujinuma, R.; Kirchhof, G.; Ramakrishna, A.; Sirabis, W.; Yapo, J.; Woruba, D.; Gurr, G.; Menzies, N. Intensified sweet potato production in Papua New Guinea drives plant nutrient decline over the last decade. Agriculture, Ecosystems & Environment , v.254, p.10-19, 2018. https://doi.org/10.1016/j.agee.2017.11.012
    » https://doi.org/10.1016/j.agee.2017.11.012
  • Gavioli, A.; De Souza, E. G.; Bazzi, C. L.; Schenatto, K.; Betzek, N. M. Identification of management zones in precision agriculture: An evaluation of alternative cluster analysis methods. Biosystems Engineering , v.181, p.86-102, 2019. https://doi.org/10.1016/j.biosystemseng.2019.02.019
    » https://doi.org/10.1016/j.biosystemseng.2019.02.019
  • Gerstmann, H.; Doktor, D.; Glässer, C.; Möller, M. Phase: A geostatistical model for the kriging-based spatial prediction of crop phenology using public phenological and climatological observations. Computers and Electronics in Agriculture , v.127, p.726-738, 2016. https://doi.org/10.1016/j.compag.2016.07.032
    » https://doi.org/10.1016/j.compag.2016.07.032
  • Gholizadeh, A.; Žižala, D.; Saberioon, M.; Borůvka, L. Soil organic carbon and texture retrieving and mapping using proximal, airborne and Sentinel-2 spectral imaging. Remote Sensing of Environment , v.218, p.89-103, 2018. https://doi.org/10.1016/j.rse.2018.09.015
    » https://doi.org/10.1016/j.rse.2018.09.015
  • Gianquinto, G.; Orsini, F.; Fecondini, M.; Mezzetti, M.; Sambo, P.; Bona, S. A methodological approach for defining spectral indices for assessing tomato nitrogen status and yield. European Journal of Agronomy, v.35, p.135-143, 2011. https://doi.org/10.1016/j.eja.2011.05.005
    » https://doi.org/10.1016/j.eja.2011.05.005
  • Gili, A.; Álvarez, C.; Bagnato, R.; Noellemeyer, E. Comparison of three methods for delineating management zones for site-specific crop management. Computers and Electronics in Agriculture , v.139, p.213-223, 2017. https://doi.org/10.1016/j.compag.2017.05.022
    » https://doi.org/10.1016/j.compag.2017.05.022
  • Gnanadesikan, R. Methods for statistical analysis of multivariate observations. New York: Wiley, 1977.
  • González-Fernández, A. B.; Rodríguez-Pérez, J. R.; Sanz-Ablanedo, E.; Valenciano, J. B.; Marcelo, V. Delineating vineyard zones by fuzzy k-means algorithm based on grape sampling variables. Scientia Horticulturae, v.243, p.559-566, 2019. https://doi.org/10.1016/j.scienta.2018.09.012
    » https://doi.org/10.1016/j.scienta.2018.09.012
  • Haghverdi, A.; Leib, B. G.; Washington-Allen, R. A.; Ayers, P. D.; Buschermohle, M. J. Perspectives on delineating management zones for variable rate irrigation. Computers and Electronics in Agriculture , v.117, p.154-167, 2015. https://doi.org/10.1016/j.compag.2015.06.019
    » https://doi.org/10.1016/j.compag.2015.06.019
  • Henriques, R.; Bacao, F.; Lobo, V. Exploratory geospatial data analysis using the GeoSOM suite. Computers, Environment and Urban Systems, v.36, p.218-232, 2012. https://doi.org/10.1016/j.compenvurbsys.2011.11.003
    » https://doi.org/10.1016/j.compenvurbsys.2011.11.003
  • Hong, Y.; Liu, Y. Y. Y.; Chen, Y.; Liu, Y. Y. Y.; Yu, L.; Liu, Y. Y. Y.; Cheng, H. Application of fractional-order derivative in the quantitative estimation of soil organic matter content through visible and near-infrared spectroscopy. Geoderma , v.337, p.758-769, 2019. https://doi.org/10.1016/j.geoderma.2018.10.025
    » https://doi.org/10.1016/j.geoderma.2018.10.025
  • Hotelling, H. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology, v.24, p.417-441, 1933. http://dx.doi.org/10.1037/h0071325
    » http://dx.doi.org/10.1037/h0071325
  • ISPA - International Society of Precision Agriculture . Definition of Precision Agriculture, 2024. https://www.ispag.org/about/definition Accessed on: Jan. 2024.
    » https://www.ispag.org/about/definition
  • Johann, J. A.; Opazo, M. A. U.; Souza, E. G. De; Rocha, J. V. Variabilidade espacial dos atributos físicos do solo e da produtividade em um Latossolo Bruno distrófico da região de Cascavel, PR. Revista Brasileira de Engenharia Agrícola e Ambiental, v.8, p.212-219, 2004. https://doi.org/10.1590/S1415-43662004000200008
    » https://doi.org/10.1590/S1415-43662004000200008
  • Jolliffe, I. Principal Component Analysis. Encyclopedia of Statistics in Behavioral Science, v.2, p.15-23, 2005. http://dx.doi.org/10.1037/h0071325
    » http://dx.doi.org/10.1037/h0071325
  • Jordanova, N.; Jordanova, D.; Petrov, P. Soil magnetic properties in Bulgaria at a national scale-Challenges and benefits. Global and Planetary Change, v.137, p.107-122, 2016. https://doi.org/10.1016/j.gloplacha.2015.12.015
    » https://doi.org/10.1016/j.gloplacha.2015.12.015
  • Kanellopoulos, A.; Reidsma, P.; Wolf, J.; Van Ittersum, M. K. Assessing climate change and associated socio-economic scenarios for arable farming in the Netherlands: An application of benchmarking and bio-economic farm modelling. European Journal of Agronomy , v.52, p.69-80, 2014. https://doi.org/10.1016/j.eja.2013.10.003
    » https://doi.org/10.1016/j.eja.2013.10.003
  • Kaniu, M. I.; Angeyo, K. H. Challenges in rapid soil quality assessment and opportunities presented by multivariate chemometric energy dispersive X-ray fluorescence and scattering spectroscopy. Geoderma , v.241-242, p.32-40, 2015. https://doi.org/10.1016/j.geoderma.2014.10.014
    » https://doi.org/10.1016/j.geoderma.2014.10.014
  • Karunathilake, E. M. B. M.; Le, A. T.; Heo, S.; Chung, Y. S.; Mansoor, S. The path to smart farming: innovations and opportunities in precision agriculture. Agriculture, v.13, p.1-26, 2023. https://doi.org/10.3390/agriculture13081593
    » https://doi.org/10.3390/agriculture13081593
  • Kharel, T. P.; Swink, S. N.; Maresma, A.; Youngerman, C.; Kharel, D.; Czymmek, K. J.; Ketterings, Q. M. Yield monitor data cleaning is essential for accurate corn grain and silage yield determination. Agronomy Journal, v.111, p.509-516, 2019. https://doi.org/10.2134/agronj2018.05.0317
    » https://doi.org/10.2134/agronj2018.05.0317
  • Knadel, M.; Thomsen, A.; Schelde, K.; Greve, M. H. Soil organic carbon and particle sizes mapping using vis-NIR, EC and temperature mobile sensor platform. Computers and Electronics in Agriculture , v.114, p.134-144, 2015. https://doi.org/10.1016/j.compag.2015.03.013
    » https://doi.org/10.1016/j.compag.2015.03.013
  • Krishna, G.; Sahoo, R. N.; Singh, P.; Bajpai, V.; Patra, H.; Kumar, S.; Dandapani, R.; Gupta, V. K.; Viswanathan, C.; Ahmad, T.; Sahoo, P. M. Comparison of various modelling approaches for water deficit stress monitoring in rice crop through hyperspectral remote sensing. Agricultural Water Management, v.213, p.231-244, 2019. https://doi.org/10.1016/j.agwat.2018.08.029
    » https://doi.org/10.1016/j.agwat.2018.08.029
  • Lamsal, S.; Bliss, C. M.; Graetz, D. A. Geospatial mapping of soil nitrate-nitrogen distribution under a mixed-land use system. Pedosphere, v.19, p.434-445, 2009. https://doi.org/10.1016/S1002-0160(09)60136-3
    » https://doi.org/10.1016/S1002-0160(09)60136-3
  • Landrum, C.; Castrignanò, A.; Mueller, T.; Zourarakis, D.; Zhu, J.; De Benedetto, D. An approach for delineating homogeneous within-field zones using proximal sensing and multivariate geostatistics. Agricultural Water Management , v.147, p.144-153, 2015. https://doi.org/10.1016/j.agwat.2014.07.013
    » https://doi.org/10.1016/j.agwat.2014.07.013
  • Leroux, C.; Jones, H.; Clenet, A.; Dreux, B.; Becu, M.; Tisseyre, B. A general method to filter out defective spatial observations from yield mapping datasets. Precision Agriculture , v.19, p.789-808, 2018. https://doi.org/10.1007/s11119-017-9555-0
    » https://doi.org/10.1007/s11119-017-9555-0
  • Li, Q.; Luo, Y.; Wang, C.; Li, B.; Zhang, X.; Yuan, D.; Gao, X.; Zhang, H. Spatiotemporal variations and factors affecting soil nitrogen in the purple hilly area of Southwest China during the 1980s and the 2010s. Science of The Total Environment, v.547, p.173-181, 2016. https://doi.org/10.1016/j.scitotenv.2015.12.094
    » https://doi.org/10.1016/j.scitotenv.2015.12.094
  • Li, T.; Zhan, Z. A systematic review on design thinking Integrated Learning in K-12 education. Applied Sciences, v.12, p.2-34, 2022. https://doi.org/10.3390/app12168077
    » https://doi.org/10.3390/app12168077
  • Li, X.; Lee, W. S.; Li, M.; Ehsani, R.; Mishra, A. R.; Yang, C.; Mangan, R. L. Spectral difference analysis and airborne imaging classification for citrus greening infected trees. Computers and Electronics in Agriculture , v.83, p.32-46, 2012. https://doi.org/10.1016/j.compag.2012.01.010
    » https://doi.org/10.1016/j.compag.2012.01.010
  • Liang, W.; Kirk, K. R.; Greene, J. K. Estimation of soybean leaf area, edge, and defoliation using color image analysis. Computers and Electronics in Agriculture , v.150, p.41-51, 2018. https://doi.org/10.1016/j.compag.2018.03.021
    » https://doi.org/10.1016/j.compag.2018.03.021
  • Liu, X.; Guanter, L.; Liu, L.; Damm, A.; Malenovský, Z.; Rascher, U.; Peng, D.; Du, S.; Gastellu-Etchegorry, J.-P. Downscaling of solar-induced chlorophyll fluorescence from canopy level to photosystem level using a random forest model. Remote Sensing of Environment , v.231, 110772, 2019. https://doi.org/10.1016/ j.rse.2018.05.035
    » https://doi.org/10.1016/ j.rse.2018.05.035
  • Liu, X.; Zhang, W.; Zhang, M.; Ficklin, D. L.; Wang, F. Spatio-temporal variations of soil nutrients influenced by an altered land tenure system in China. Geoderma , v.152, p.23-34, 2009. https://doi.org/10.1016/j.geoderma.2009.05.022
    » https://doi.org/10.1016/j.geoderma.2009.05.022
  • Maldaner, L. F.; Molin, J. P. Data processing within rows for sugarcane yield mapping. Scientia Agricola, v.77, p.1-8, 2020. https://doi.org/10.1590/1678-992x-2018-0391
    » https://doi.org/10.1590/1678-992x-2018-0391
  • Mat, N. N.; Rowshon, K. M.; Guangnan, C.; Troy, J. Prediction of Sugarcane Quality Parameters Using Visible-shortwave Near Infrared Spectroradiometer. Agriculture and Agricultural Science Procedia, v.2, p.136-143, 2014. https://doi.org/10.1016/j.aaspro.2014.11.020
    » https://doi.org/10.1016/j.aaspro.2014.11.020
  • McFadden, J.; Njuki, E.; Griffin, T. Precision Agriculture in the Digital Era: Recent Adoption on U.S. Farms. US Department of Agriculture, Economic Research Service, 2023. 248p. Available at: <Available at: https://www.ers.usda.gov >. Accessed on: Jan. 2024.
    » https://www.ers.usda.gov
  • Medina, H.; De Jong Van Lier, Q.; García, J.; Ruiz, M. E. Regional-scale variability of soil properties in Western Cuba. Soil and Tillage Research , v.166, p.84-99, 2017. https://doi.org/10.1016/j.still.2016.10.009
    » https://doi.org/10.1016/j.still.2016.10.009
  • Menegatti, L. A. A.; Molin, J. P. Remoção de erros em mapas de produtividade via filtragem de dados brutos. Revista Brasileira de Engenharia Agrícola e Ambiental , v.8, p.126-134, 2004. https://doi.org/10.1590/s1415-43662004000100019
    » https://doi.org/10.1590/s1415-43662004000100019
  • Mieza, M. S.; Cravero, W. R.; Kovac, F. D.; Bargiano, P. G. Delineation of site-specific management units for operational applications using the topographic position index in La Pampa, Argentina. Computers and Electronics in Agriculture , v.127, p.158-167, 2016. https://doi.org/10.1016/j.compag.2016.06.005
    » https://doi.org/10.1016/j.compag.2016.06.005
  • Milani, L.; Souza, E. G. De; Uribe-Opazo, M. A.; Gabriel Filho, A.; Johann, J. A.; Pereira, J. O. Unidades de manejo a partir de dados de produtividade. Acta Scientiarum. Agronomy, v.28, p.591-598, 2006. https://doi.org/10.4025/actasciagron.v28i4.937
    » https://doi.org/10.4025/actasciagron.v28i4.937
  • Mirzaeitalarposhti, R.; Demyan, M. S.; Rasche, F.; Cadisch, G.; Müller, T. Mid-infrared spectroscopy to support regional-scale digital soil mapping on selected croplands of South-West Germany. Catena , v.149, p.283-293, 2017. https://doi.org/10.1016/j.catena.2016.10.001
    » https://doi.org/10.1016/j.catena.2016.10.001
  • Molin, J.P. Definição de unidades de manejo a partir de mapas de produtividade. Engenharia Agrícola, v.22, p.83-92, 2002.
  • Monteiro, A.; Santos, S.; Gonçalves, P. Precision agriculture for crop and livestock farming-brief review. Animals, v.11, 2345, 2021. https://doi.org/10.3390/ani11082345
    » https://doi.org/10.3390/ani11082345
  • Moreira, W K. O.; Godoy, E.; Beneduzzi, H. M.; Pereira, H.; Bazzi, C.; Maggi, M. F.; Rodrigues, M.; Gavioli, A. Methods to recommend corrective measures for agricultural soils: a systematic literature study. Communications in Soil Science and Plant Analysis, v.54, p.1102-1133, 2022. https://doi.org/10.1080/00103624.2022.2137194
    » https://doi.org/10.1080/00103624.2022.2137194
  • Morellos, A.; Pantazi, X. E.; Moshou, D.; Alexandridis, T.; Whetton, R.; Tziotzios, G.; Wiebensohn, J.; Bill, R.; Mouazen, A. M. Machine learning based prediction of soil total nitrogen, organic carbon and moisture content by using VIS-NIR spectroscopy. Biosystems Engineering , v.152, p.104-116, 2016. https://doi.org/10.1016/j.biosystemseng.2016.04.018
    » https://doi.org/10.1016/j.biosystemseng.2016.04.018
  • Moura-Bueno, J. M.; Dalmolin, R. S. D.; Ten Caten, A.; Dotto, A. C.; Demattê, J. A. M. M. Stratification of a local VIS-NIR-SWIR spectral library by homogeneity criteria yields more accurate soil organic carbon predictions. Geoderma , v.337, p.565-581, 2019. https://doi.org/10.1016/j.geoderma.2018.10.015
    » https://doi.org/10.1016/j.geoderma.2018.10.015
  • Mura, S.; Cappai, C.; Greppi, G. F.; Barzaghi, S.; Stellari, A.; Cattaneo, T. M. P. Vibrational spectroscopy and Aquaphotomics holistic approach to determine chemical compounds related to sustainability in soil profiles. Computers and Electronics in Agriculture , v.159, p.92-96, 2019. https://doi.org/10.1016/j.compag.2019.03.002
    » https://doi.org/10.1016/j.compag.2019.03.002
  • Neave, H. W.; Lomb, J.; Weary, D. M.; Leblanc, S. J.; Huzzey, J. M.; Von Keyserlingk, M. A. G. Behavioral changes before metritis diagnosis in dairy cows. Journal of Dairy Science, v.101, p.4388-4399, 2018. https://doi.org/10.3168/jds.2017-13078
    » https://doi.org/10.3168/jds.2017-13078
  • Nouri, M.; Gomez, C.; Gorretta, N.; Roger, J. M. Clay content mapping from airborne hyperspectral Vis-NIR data by transferring a laboratory regression model. Geoderma , v.298, p.54-66, 2017. https://doi.org/10.1016/j.geoderma.2017.03.011
    » https://doi.org/10.1016/j.geoderma.2017.03.011
  • Oliver, M. A.; Webster, R. A tutorial guide to geostatistics: Computing and modelling variograms and kriging. Catena , v.113, p.56-69, 2014. https://doi.org/10.1016/j.catena.2013.09.006
    » https://doi.org/10.1016/j.catena.2013.09.006
  • Paccioretti, P.; Córdoba, M.; Balzarini, M. FastMapping: Software to create field maps and identify management zones in precision agriculture. Computers and Electronics in Agriculture , v.175, 105556, 2020. https://doi.org/10.1016/j.compag.2020.105556
    » https://doi.org/10.1016/j.compag.2020.105556
  • Paraforos, D. S.; Hübner, R.; Griepentrog, H. W. Automatic determination of headland turning from auto-steering position data for minimising the infield non-working time. Computers and Electronics in Agriculture , v.152, p.393-400, 2018. https://doi.org/10.1016/j.compag.2018.07.035
    » https://doi.org/10.1016/j.compag.2018.07.035
  • Paraforos, D. S.; Reutemann, M.; Sharipov, G.; Werner, R.; Griepentrog, H. W. Total station data assessment using an industrial robotic arm for dynamic 3D in-field positioning with sub-centimetre accuracy. Computers and Electronics in Agriculture , v.136, p.166-175, 2017. https://doi.org/10.1016/j.compag.2017.03.009
    » https://doi.org/10.1016/j.compag.2017.03.009
  • Páscoa, R. N. M. J.; Lopo, M.; T. Santos, C. A.; Graça, A. R.; Lopes, J. A. Exploratory study on vineyards soil mapping by visible/near-infrared spectroscopy of grapevine leaves. Computers and Electronics in Agriculture , v.127, p.15-25, 2016. https://doi.org/10.1016/j.compag.2016.05.014
    » https://doi.org/10.1016/j.compag.2016.05.014
  • Pei, T.; Qin, C.-Z.; Zhu, A.-X.; Yang, L.; Luo, M.; Li, B.; Zhou, C. Mapping soil organic matter using the topographic wetness index: A comparative study based on different flow-direction algorithms and kriging methods. Ecological Indicators, v.10, p.610-619, 2010. https://doi.org/10.1016/j.ecolind.2009.10.005
    » https://doi.org/10.1016/j.ecolind.2009.10.005
  • Pelosi, A.; Medina, H.; Villani, P.; D’urso, G.; Chirico, G. B. Probabilistic forecasting of reference evapotranspiration with a limited area ensemble prediction system. Agricultural Water Management , v.178, p.106-118, 2016. https://doi.org/10.1016/j.agwat.2016.09.015
    » https://doi.org/10.1016/j.agwat.2016.09.015
  • Ping, J. L.; Dobermann, A. Processing of yield map data. Precision Agriculture , v.6, p.193-212, 2005. https://doi.org/10.1007/s11119-005-1035-2
    » https://doi.org/10.1007/s11119-005-1035-2
  • Pires, J. L. F.; Cunha, G. R. da; Pasinato, A.; França, S.; Rambo, L. Discutindo agricultura de precisão: aspectos gerais. Passo Fundo: EMBRAPA Trigo, 2004. Available at: Available at: http://www.agencia.cnptia.embrapa.br/Repositorio/p_do42_000fkl0aoyi02wyiv80sq98yqj0l5xns.pdf Accessed on: Oct. 2018.
    » http://www.agencia.cnptia.embrapa.br/Repositorio/p_do42_000fkl0aoyi02wyiv80sq98yqj0l5xns.pdf
  • Prasad, R.; Deo, R. C.; Li, Y.; Maraseni, T. Weekly soil moisture forecasting with multivariate sequential, ensemble empirical mode decomposition and Boruta-random forest hybridizer algorithm approach. Catena , v.177, p.149-166, 2019. https://doi.org/10.1016/j.catena.2019.02.012
    » https://doi.org/10.1016/j.catena.2019.02.012
  • Raj, A.; Chakraborty, S.; Duda, B. M.; Weindorf, D. C.; Li, B.; Roy, S.; Sarathjith, M. C.; Das, B. S.; Paulette, L. Soil mapping via diffuse reflectance spectroscopy based on variable indicators: An ordered predictor selection approach. Geoderma , v.314, p.146-159, 2018. https://doi.org/10.1016/j.geoderma.2017.10.043
    » https://doi.org/10.1016/j.geoderma.2017.10.043
  • Reunanen, N.; Räty, T.; Jokinen, J. J.; Hoyt, T.; Culler, D. Unsupervised online detection and prediction of outliers in streams of sensor data. International Journal of Data Science and Analytics, v.9, p.285-314, 2020. https://link.springer.com/article/10.1007/s41060-019-00191-3
    » https://link.springer.com/article/10.1007/s41060-019-00191-3
  • Robert, P.C. Precision agriculture: a challenge for crop nutrition management. Plant and Soil, v.247, p.143-149, 2002. https://doi.org/10.1023/A:1021171514148
    » https://doi.org/10.1023/A:1021171514148
  • Rodriguez-Moreno, F.; Zemek, F.; Kren, J.; Pikl, M.; Lukas, V.; Novak, J. Spectral monitoring of wheat canopy under uncontrolled conditions for decision-making purposes. Computers and Electronics in Agriculture , v.125, p.81-88, 2016. https://doi.org/10.1016/j.compag.2016.05.002
    » https://doi.org/10.1016/j.compag.2016.05.002
  • Rosemary, F.; Vitharana, U. W. A.; Indraratne, S. P.; Weerasooriya, R.; Mishra, U. Exploring the spatial variability of soil properties in an Alfisol soil. Catena , v.150, p.53-61, 2017. https://doi.org/10.1016/j.catena.2016.10.017
    » https://doi.org/10.1016/j.catena.2016.10.017
  • Sanches, G. M.; Graziano Magalhães, P. S.; Junqueira Franco, H. C. Site-specific assessment of spatial and temporal variability of sugarcane yield related to soil attributes. Geoderma , v.334, p.90-98, 2019. https://doi.org/10.1016/j.geoderma.2018.07.051
    » https://doi.org/10.1016/j.geoderma.2018.07.051
  • Schönhart, M.; Trautvetter, H.; Parajka, J.; Blaschke, A. P.; Hepp, G.; Kirchner, M.; Mitter, H.; Schmid, E.; Strenn, B.; Zessner, M. Modelled impacts of policies and climate change on land use and water quality in Austria. Land Use Policy, v.76, p.500-514, 2018. https://doi.org/10.1016/j.landusepol.2018.02.031
    » https://doi.org/10.1016/j.landusepol.2018.02.031
  • Shaddad, S. M.; Buttafuoco, G.; Elrys, A.; Castrignanò, A. Site-specific management of salt-affected soils: A case study from Egypt. Science of The Total Environment , v.688, p.153-161, 2019. https://doi.org/10.1016/j.scitotenv.2019.06.214
    » https://doi.org/10.1016/j.scitotenv.2019.06.214
  • Simbahan, G. C.; Dobermann, A.; Ping, J. L. Screening yield monitor data improves grain yield maps. Agronomy Journal, v.96, p.1091-1102, 2004. https://doi.org/10.2134/agronj2004.1091
    » https://doi.org/10.2134/agronj2004.1091
  • Sirsat, M. S.; Cernadas, E.; Fernández-Delgado, M.; Barro, S. Automatic prediction of village-wise soil fertility for several nutrients in India using a wide range of regression methods. Computers and Electronics in Agriculture , v.154, p.120-133, 2018. https://doi.org/10.1016/j.compag.2018.08.003
    » https://doi.org/10.1016/j.compag.2018.08.003
  • Spekken, M. A. R. K.; Anselmi, A. A.; Molin, J. P. A simple method for filtering spatial data. In: Precision agriculture’13. Wageningen Academic Publishers, 2013. p.259-266.
  • Squalli, J.; Adamkiewicz, G. Organic farming and greenhouse gas emissions: A longitudinal U.S. state-level study. Journal of Cleaner Production, v.192, p.30-42, 2018. https://doi.org/10.1016/j.jclepro.2018.04.160
    » https://doi.org/10.1016/j.jclepro.2018.04.160
  • Stockmann, U.; Malone, B. P.; McBratney, A. B.; Minasny, B. Landscape-scale exploratory radiometric mapping using proximal soil sensing. Geoderma , v.239-240, p.115-129, 2015. https://doi.org/10.1016/j.geoderma.2014.10.005
    » https://doi.org/10.1016/j.geoderma.2014.10.005
  • Sudduth, K. A.; Drummond, S. T. Yield Editor: Software for Removing Errors from Crop Yield Maps. Agronomy Journal, v.99, p.1471-1482, 2007. https://doi.org/10.2134/agronj2006.0326
    » https://doi.org/10.2134/agronj2006.0326
  • Sudduth, K. A.; Drummond, S. T.; Myers, D. B. Yield Editor 2.0: Software for Automated Removal of Yield Map Errors. 2012 ASABE Annual International Meeting, v.7004, 14, 2012. https://doi.org/10.13031/2013.41893
    » https://doi.org/10.13031/2013.41893
  • Sun, W.; Whelan, B.; Mcbratney, A. B.; Minasny, B. An integrated framework for software to provide yield data cleaning and estimation of an opportunity index for site-specific crop management. Precision Agriculture , v.14, p.376-391, 2013. https://doi.org/10.1007/s11119-012-9300-7
    » https://doi.org/10.1007/s11119-012-9300-7
  • Talavera, J. M.; Tobón, L. E.; Gómez, J. A.; Culman, M. A.; Aranda, J. M.; Parra, D. T.; Quiroz, L. A.; Hoyos, A.; Garreta, L. E. Review of IoT applications in agro-industrial and environmental fields. Computers and Electronics in Agriculture , v.142, p.283-297, 2017. https://doi.org/10.1016/j.compag.2017.09.015
    » https://doi.org/10.1016/j.compag.2017.09.015
  • Taylor, J. A. A.; McBratney, A. B. B.; Whelan, B. M. M. Establishing management classes for broadacre agricultural production. Agronomy Journal, v.99, p.1366-1376, 2007. https://doi.org/10.2134/agronj2007.0070
    » https://doi.org/10.2134/agronj2007.0070
  • Tesfahunegn, G. B.; Tamene, L.; Vlek, P. L. G. Catchment-scale spatial variability of soil properties and implications on site-specific soil management in northern Ethiopia. Soil and Tillage Research , v.117, p.124-139, 2011. https://doi.org/10.1016/j.still.2011.09.005
    » https://doi.org/10.1016/j.still.2011.09.005
  • Trevisan, R. G.; Bullock, D. S.; Martin, N. F. Spatial variability of crop responses to agronomic inputs in on-farm precision experimentation. Precision Agriculture , v.22, p.342-363, 2021. https://doi.org/10.1007/s11119-020-09720-8
    » https://doi.org/10.1007/s11119-020-09720-8
  • Tripathi, R.; Nayak, A. K.; Shahid, M.; Lal, B.; Gautam, P.; Raja, R.; Mohanty, S.; Kumar, A.; Panda, B. B.; Sahoo, R. N. Delineation of soil management zones for a rice cultivated area in eastern India using fuzzy clustering. Catena , v.133, p.128-136, 2015. https://doi.org/10.1016/j.catena.2015.05.009
    » https://doi.org/10.1016/j.catena.2015.05.009
  • Tukey, J. W. Exploratory Data Analysis. Addison-Wesley, 1977.
  • Turner, P. A.; Griffis, T. J.; Mulla, D. J.; Baker, J. M.; Venterea, R. T. A geostatistical approach to identify and mitigate agricultural nitrous oxide emission hotspots. Science of The Total Environment , v.572, p.442-449, 2016. https://doi.org/10.1016/j.scitotenv.2016.08.094
    » https://doi.org/10.1016/j.scitotenv.2016.08.094
  • Uribeetxebarria, A.; Daniele, E.; Escolà, A.; Arnó, J.; Martínez-Casasnovas, J. A. Spatial variability in orchards after land transformation: Consequences for precision agriculture practices. Science of The Total Environment , v.635, p.343-352, 2018. https://doi.org/10.1016/j.scitotenv.2018.04.153
    » https://doi.org/10.1016/j.scitotenv.2018.04.153
  • Uribeetxebarria, A.; Martínez-Casasnovas, J. A.; Tisseyre, B.; Guillaume, S.; Escolà, A.; Rosell-Polo, J. R.; Arnó, J. Assessing ranked set sampling and ancillary data to improve fruit load estimates in peach orchards. Computers and Electronics in Agriculture , v.164, 104931, 2019. https://doi.org/10.1016/j.compag.2019.104931
    » https://doi.org/10.1016/j.compag.2019.104931
  • Van Meirvenne, M.; Islam, M. M.; De Smedt, P.; Meerschman, E.; Van De Vijver, E.; Saey, T. Key variables for the identification of soil management classes in the aeolian landscapes of northwest Europe. Geoderma , v.199, p.99-105, 2013. https://doi.org/10.1016/j.geoderma.2012.07.017
    » https://doi.org/10.1016/j.geoderma.2012.07.017
  • Vašát, R.; Heuvelink, G. B. M.; Borůvka, L. Sampling design optimization for multivariate soil mapping. Geoderma , v.155, p.147-153, 2010. https://doi.org/10.1016/j.geoderma.2009.07.005
    » https://doi.org/10.1016/j.geoderma.2009.07.005
  • Vega, A.; Córdoba, M.; Castro-Franco, M.; Balzarini, M. Protocol for automating error removal from yield maps. Precision Agriculture , v.20, p.1030-1044, 2019. https://doi.org/10.1007/s11119-018-09632-8
    » https://doi.org/10.1007/s11119-018-09632-8
  • Wang, N.; Jassogne, L.; Van Asten, P. J. A.; Mukasa, D.; Wanyama, I.; Kagezi, G.; Giller, K. E. Evaluating coffee yield gaps and important biotic, abiotic, and management factors limiting coffee production in Uganda. European Journal of Agronomy , v.63, p.1-11, 2015. https://doi.org/10.1016/j.eja.2014.11.003
    » https://doi.org/10.1016/j.eja.2014.11.003
  • Waruru, B. K.; Shepherd, K. D.; Ndegwa, G. M.; Sila, A.; Kamoni, P. T. Application of mid-infrared spectroscopy for rapid characterization of key soil properties for engineering land use. Soils and Foundations, v.55, p.1181-1195, 2015. https://doi.org/10.1016/j.sandf.2015.09.018
    » https://doi.org/10.1016/j.sandf.2015.09.018
  • Yao, R. J.; Yang, J. S.; Zhang, T. J.; Gao, P.; Wang, X. P.; Hong, L. Z.; Wang, M. W. Determination of site-specific management zones using soil physico-chemical properties and crop yields in coastal reclaimed farmland. Geoderma , v.232-234, p. 381-393, 2014. https://doi.org/10.1016/j.geoderma.2014.06.006
    » https://doi.org/10.1016/j.geoderma.2014.06.006
  • Zhou, J.; Fu, X.; Zhou, S.; Zhou, J.; Ye, H.; Nguyen, H. T. Automated segmentation of soybean plants from 3D point cloud using machine learning. Computers and Electronics in Agriculture , v.162, p.143-153, 2019. https://doi.org/10.1016/j.compag.2019.04.014
    » https://doi.org/10.1016/j.compag.2019.04.014
  • 1 Research developed at Universidade Estadual do Oeste do Paraná, Cascavel, PR, Brazil

Edited by

Editors: Toshik Iarley da Silva & Carlos Alberto Vieira de Azevedo

Publication Dates

  • Publication in this collection
    22 July 2024
  • Date of issue
    Sept 2024

History

  • Received
    18 Sept 2023
  • Accepted
    14 Apr 2024
  • Published
    10 June 2024
Unidade Acadêmica de Engenharia Agrícola Unidade Acadêmica de Engenharia Agrícola, UFCG, Av. Aprígio Veloso 882, Bodocongó, Bloco CM, 1º andar, CEP 58429-140, Campina Grande, PB, Brasil, Tel. +55 83 2101 1056 - Campina Grande - PB - Brazil
E-mail: revistagriambi@gmail.com