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Estimativa da área foliar de genótipos de Coffea canephora
por meio de redes neurais e regressão múltipla

Edney L. da Vitória2* , André O. Nardotto Júnior2 , Luis F. O. Ribeiro2 ,
Danielly Dubberstein3  & Fábio L. Partelli2

ABSTRACT: Leaf area data from coffee plants are important for studies and analyses of grain yield, physiology, 
adaptation to environmental conditions, and cultural management. The objective of this study was to predict leaf 
area of coffee plants using artificial neural networks and compare the efficiency of this methodology with multiple 
regression models. Forty-three genotypes of similar reproduction and age were evaluated, testing 14 types of multiple 
regression equations from combinations of leaf length and width. The backpropagation algorithm was used to develop 
multilayer perceptron neural networks; several combinations were tested between two activation functions of the 
intermediate layer (hidden layer) and the number of neurons in this layer. The best fitting results in the artificial 
neural network modeling were found with the sigmoid activation function and three neurons in the hidden layer 
(R² = 0.990 and RMSE = 2.855 in the training phase). Considering the errors (RMSE, MAE, and MAPE) and the 
coefficient of determination as criteria for best fit, the artificial neural network models better estimated the leaf area 
in the training and validation phases. Therefore, the artificial neural network methodology can be used as alternative 
for estimating leaf area of coffee plants.
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RESUMO: Dados de área foliar de plantas de café são importantes para estudos e análises de produtividade, fisiologia, 
adaptação às condições ambientais e manejos culturais. O objetivo deste trabalho foi predizer a área foliar de plantas 
de café por meio de redes neurais artificiais e avaliar a eficiência dessa metodologia por meio de comparação com 
modelos de regressão múltipla. Foram avaliados 43 genótipos de reprodução e idade semelhantes e testados 14 
tipos de equações de regressão múltipla a partir de combinações de comprimento e largura de folhas O algoritmo 
backpropagation foi utilizado para desenvolver redes neurais do tipo perceptron multicamadas, e foram testadas 
possíveis combinações entre duas funções de ativação da camada intermediária e o número de neurônios na camada 
intermediária. Na modelagem de redes neurais artificiais, os melhores resultados de ajuste foram encontrados com a 
função de ativação sigmoide e três neurônios na camada oculta (R² = 0,990; RMSE = 2,855 na fase de treinamento). 
Considerando os erros (RMSE, MAE e MAPE) e coeficientes de determinação como parâmetros estatísticos 
comparando os dois métodos utilizados, os modelos que utilizaram redes neurais artificiais apresentaram as melhores 
estimativas de área foliar nas fases de treinamento e validação. O método de redes neurais artificiais pode ser utilizado 
como alternativa ou modelo de apoio para estimativa de área foliar de cafeeiros.
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HIGHLIGHTS:
Backpropagation neural networks can be used to estimate leaf area of Coffea canephora.
The use of non-destructive methods is a viable alternative for determining leaf area of C. canephora.
Multiple regression can be replaced by artificial neural network models for estimating leaf area.
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Introduction

Leaf area is an important variable for studies evaluating 
agronomic aspects related to plant growth, development, and 
physiology, crop management and yield, efficacy of pesticide 
applications, water stress, and other crop-related aspects (Liu 
et al., 2021; Planas et al., 2022). 

Different methods are available to measure leaf area, 
including direct and indirect methods (Teobaldelli et al., 2020). 
However, these methods are time-consuming, expensive, 
complex, and only suitable for some specific plant species 
(Kandiannan et al., 2009).

Mathematical and statistical approaches with modeling 
through linear and nonlinear regressions are often used 
to estimate leaf area based on leaf length, width, or their 
combination (Espindula et al., 2018; Lee et al., 2018; 
Dubberstein et al., 2019). Artificial intelligence techniques 
have recently been used to assist in decision-making, 
predictions, and estimates of morphological and physiological 
characteristics of agricultural crops (Azeem et al., 2020).

Artificial neural networks (ANNs) have been widely 
used to non-destructively estimate leaf area in several crops 
(Emamgholizadeh et al., 2015; Lee et al., 2018; Ercanlı et al., 
2018; Azeem et al., 2020; Liu et al., 2021; Sá et al., 2022) based 
on leaf length and width data. In this sense, ANNs have yielded 
significant and accurate results for solving recurring problems 
connected to estimates involving complex nonlinear systems. 
ANNs can be used in agriculture systems for pest and disease 
control (Shah et al., 2020), root growth (Aji et al., 2020), and 
drought monitoring (Liu et al., 2020). 

Studies on the use of ANNs to estimate leaf area have been 
carried out in several crops, such as wheat (Apolo-Apolo et al., 
2020), Capsicum annuum L. (Lee et al., 2018), and peanuts (Qi 
et al., 2020); however, there are no studies on the use of this 
methodology for coffee crops. In this context, the objective 
of this study was to predict leaf area of coffee plants through 
artificial neural networks and compare its efficiency with 
multiple regression models.

Material and Methods

The experiment was conducted in a field containing 
43 genotypes of Coffea canephora selected by local coffee 
growers (Table 1) in Nova Venécia, Espírito Santo, Brazil 
(18o 66’ 23” S, 40° 43’ 07” W, and altitude of 200 m). The 
climate of the region was classified as Aw, according to 
the Köppen classification, characterized by hot and humid 
summers and dry winters (Alvares et al., 2013), with a mean 
annual temperature of 23 °C. 

The planting had been carried out with a spacing of 3.0 × 
1.0 m, providing a density of 3,333 plants per hectare. Four-
year-old coffee trees were evaluated in the experiment. The 
crop was irrigated using a drip irrigation system, and the plants 
were grown with four orthotropic stems.

Regarding the 43 genotypes, 42 of them were propagated 
by cuttings and one by seeds, using a randomized block 

experimental design with three replicates and seven plants 
per plot (Table 1).

The third or fourth leaf of plagiotropic branches in the 
middle third of the plants were collected, resulting in 20 leaves 
for each genotype. The leaves were placed in identified bags 
and then sent to a laboratory for leaf measurements. Leaf 
dimensions were measured using a steel ruler with a precision 
of 0.5 mm. Leaf length was measured from the leaf tip to 
the leaf blade base on the petiole; leaf width was measured 
at the longest line perpendicular to the midrib of the leaf 
blade, considering the nearest millimeter. Leaf area was then 
measured using a leaf area meter (LI-3100, LI-COR, Lincoln, 
USA). These assessments were carried out in October 2016 and 
February 2017, totaling 1,720 leaf measurements.

Fourteen multiple regression equations were selected for 
estimating leaf area from combinations of the variables L (leaf 
length), W (leaf width), LW, L², W², L²W², L²W, and LW² (Table 
2), as described in Encarli et al. (2018). 

The use of few independent variables in the model can result 
in a low accuracy of the regression coefficient estimates; when 
low accuracy was found, factors connected to collinearity, i.e., 
the variance inflation factor (VIF) and tolerance values (T) 
were calculated. These measures are calculated based on the 
correlation coefficient. A VIF value less than 10 or T value 
higher than 0.10 represent no collinearity problems and no 
effect on the estimates using L, W, and their combinations.

Leaf blade length and width data were used as the input 
variable, while the measured leaf area data were used as the 
output variable; 70% (1,204 leaves) and 30% (516 leaves) 
of the data were used in the neural network training and 
validation processes, respectively. The input and output data 
were normalized to the range of 0.0 to 1.0 to improve network 
training efficiency, using Eq. 1.

Table 1. Identification of the 43 genotypes of Coffea canephora 
used in the experiment
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where:
Vnorm - normalized value;
Vobs - observed value; 
Vmax - maximum value of the data sample; and,
Vmin - minimum value of the data sample.

The backpropagation algorithm was used to develop the 
multilayer perceptron (MLP) neural networks; the learning 
rate and the number of training times set in the Levenberg-
Marquardt optimization algorithm were 0.2 and 1000, 
respectively. The best network configuration was established 
by testing possible combinations between two activation 
functions of the intermediate layer (hidden layer) and the 
number of neurons in this layer (1 to 10), as recommended 
by Emamgholizadeh et al. (2015). The activation functions 
used were the hyperbolic tangent and the sigmoid (Eq. 2 and 
3, respectively).

where:
n - sample size; 
yi - observed values; 
yi - estimated values; and,
y - mean values.
 
The neural network modeling and multiple regression 

analysis were performed using the Neuranet package in R (R 
Core Team, 2023).

Results and Discussion

Descriptive statistical parameters and Pearson linear 
correlation coefficients for leaf length, width, and area of 
coffee plants are shown in Table 3. The results showed a range 
(difference between the maximum and minimum means of 

Table 2. Types of multiple regression equations selected from combinations of the variables L (leaf length), W (leaf width), LW, 
L², W², L²W², L²W, and LW² for estimating leaf area of coffee (Coffea canephora) plants
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+
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The efficiency of the trained networks was compared with 
the 14 multiple regression models tested by comparing the 
coefficient of determination (R²), root mean square error 
(RMSE), mean absolute error (MAE), and mean absolute 
percentage error (MAPE), using Eqs. 4 to 7. The criteria for 
selecting the best models considered the highest R² values and 
the lowest errors.
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*Significant at p ≤ 0.05 by the t-test; VIF - Variance inflation factor; Values in parentheses 
refer to standard deviations

Table 3. Descriptive statistics and Pearson correlation 
coefficients for leaf length, width, and area of Coffea canephora 
genotypes (n = 1,720)
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each variable) of 10.00, 5.90, and 80.98 cm2 for leaf length, 
width, and area, respectively. The ranges of means and standard 
deviations for these variables showed a data variability 
(coefficients of variation) of 12.24, 16.93, and 27.80%, 
respectively. According to the methodological classification 
proposed by Costa et al. (2002), coefficient of variations 
between 10.00 and 30.00% are considered moderate. Similar 
results were found by Dubberstein et al. (2019), who reported 
coefficients ranging from 9.56 to 32.51% when evaluating leaf 
area of coffee plants.

Variability in leaf length, width, and area across different 
coffee genotypes is essential information for developing more 
accurate mathematical models for leaf area estimation, favoring 
the development of models for application to small, medium, 
and large leaves. Effects of leaf length and width variability on 
leaf area estimates have been found for coffee (Partelli et al., 
2006), guava (Vitória et al., 2018), Capsicum annuum L. (Lee 
et al., 2018), and soybean (Sá et al., 2022) plants.

The independent variables leaf length and area had a 
moderate correlation (r = 0.643), whereas the correlations 
between leaf area and leaf length (r = 0.921) and between 
leaf area and leaf width (r = 0.823) were high, according to 
the classification proposed by Rousseau et al. (2018), which 
considers correlation coefficients above 0.7 as high and 
between 0.3 and 0.7 as moderate. Espindula et al. (2018) and 
Dubberstein et al. (2019) found similar trends for correlation 
coefficients between leaf length, width, and area of C. canephora 
plants. Studying the correlations between variables to be used 
in trained models provides important information to assess 
how variation in one variable affects another and how these 
effects impact the accuracy of model estimates (Dubberstein 
et al., 2019; Ercanlı et al., 2018).

The variance inflation factor (VIF) values ranged from 
1.073 to 6.579 and the tolerance (T) values from 0.152 to 
0.587. According to Gill (1986), a VIF value lower than 10.0 
or T value higher than 0.10 denotes negligible collinearity 
between leaf length and width. Thus, both variables can be 
included in the model.

The results of the 14 multiple linear regression equations 
tested to estimate leaf area of C. canephora genotypes are shown 
in Table 4. The models had coefficients of determination (R2) 
higher than 0.970, except for models 1, 2, and 3; the highest R² 
(0.973) was found for models 7, 8, 9, and 11. The lowest error 

values were used a an additional criterion for selecting the best 
model; the lowest RMSE and MAE (Figure 1D) were found for 
model 7, in which the variables L and W and the product of 
these variables resulted in the best leaf area estimate.

Model 7 (R² = 0.973; RMSE = 3.303) was selected and then for 
validated using a 35% subsample of the total collected data; the 
values were not used to define the model in the training process. 
The leaf area estimated by the selected model and its correlation 
with the observed leaf area are shown in Figure 1A. The leaf area 
estimated by the selected regression model had a high correlation 
(R² = 0.946) with the observed leaf area. The difference between 
observed and estimated leaf areas ranged from approximately -20 
cm² and +20 cm², and more than 70% of relative errors ranged 
from -5 to 5%, as shown in Figures 1B and C.

One hundred neural networks were trained for each 
configuration; the highest R² and lowest RMSE for each 
configuration are shown in Table 5. Overall, the sigmoid 
activation function showed higher R² and lower RMSE than 
hyperbolic tangent. The sigmoid function with 3 to 8 neurons 
in the hidden layer presented the same high correlations in both 
the training (R² = 0.990) and validation (R² = 0.989) phases. 
Considering the lowest RMSE as the selection criterion, the 
neural network with sigmoid activation function showed the 
highest R² and lowest RMSE in the training (R² = 0.990; RMSE 
= 2.853) and validation (R² = 0.989 and RMSE = 2.862) phases.

The results for the efficiency of neural networks in 
estimating leaf area in coffee plants are shown in Figure 2. 
The estimated leaf area was highly correlated with that the 
observed leaf area in the training (R² = 0.944) and validation 
(R² = 0.946) phases, i.e., 94.4 and 94.6% of the variation in 
estimated leaf area values can be explained by the observed 
values in the training and validation phases, respectively 
(Figures 2A and B). The absolutes errors ranged from -20.0 
to + 20.0 cm² in both phases (Figures 2C and D). More than 
70% of the MAPE was between -5 and +5% in the training 
phase, and more than 75% was within the same range in the 
validation phase (Figures 2E and F).

The leaf area of the evaluated coffee genotypes showed a 
good regularity in length and width when estimated by the 
selected neural network (Figure 3A). Information on which 
input variable (leaf length or width) is more important for 
estimating leaf area is useful because it enables the estimation 
of leaf area considering only one of these variables, depending 

L - Leaf length; W - Leaf width; LW – Multiplication of leaf length and width; RMSE - Root mean square error; * - Significant at p < 0.05; ns - Not significant

Table 4. Multiple regression models for estimating leaf area (LA) of Coffea canephora genotypes
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Figure 1. Leaf area estimated by the selected model and its correlation with the observed leaf area. Correlation between observed 
and estimated leaf area (A); distribution of absolute errors between observed and estimated values (B); distribution of error 
frequency (C); mean absolute error (D)

Table 5. Root mean square error (RMSE) and coefficients of determination (R²) for 100 neural networks trained for each 
network configuration

on its contributions (Dubberstein et al., 2019; Ercanlı et al., 
2018). The method of Garson (1991) enables the obtaining 
the percentage of contribution of input variables to leaf area 

estimation. Leaf length contributed more (56.8%) to leaf area 
estimation through neural network than leaf width (Figure 
3B). This higher contribution was expected, as leaf length had 
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Figure 2. Results of the efficiency in estimating coffee leaf area by neural networks. Correlation between estimated and observed 
areas in the training (A) and validation (B) phases; distribution of absolute errors between observed and estimated values in 
the training (C) and validation (D) phases; distribution of error frequency in the training (E) and validation (F) phases

higher correlation with leaf area (r = 0.921) than leaf width (r 
= 0.823) (Table 3).

The comparison between the selected multiple regression 
model (model 7) and the trained and validated neural network 
model is shown in Table 6.

The coefficient of determination of the artificial neural 
network model was higher than that found for the multiple 
linear regression model in both the testing and validation 
phases. The same trend was found for the root mean square 

error. Artificial neural networks were more flexible when using 
nonlinear models between the input variables (leaf length and 
width) and the output variable (leaf area), which is essential 
for explaining the variability found. Therefore, the comparison 
with the multiple linear regression model showed the superior 
performance of the artificial neural network in estimating leaf 
area of the evaluated coffee genotypes.

Considering the errors (RMSE, MAE, and MAPE) and 
coefficient of determination (R² = 0.989), the artificial neural 
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Figure 3. Leaf area estimation in coffee plants based on leaf 
width and length (A) by neural network, and percentage of 
contribution of leaf width and length to leaf area estimation (B)

Table 6. Comparison of the coefficient of determination (R2) 
and root mean square error (RMSE) between the multiple 
regression model (model 7) and the neural network model

network model better estimated leaf area in the training and 
validation phases (Tables 4, 5, and 6). This better performance 
can be attributed to the large amount of data from different 
coffee genotypes used for the estimations and to the use of 
nonlinear correlations for input and output data by artificial 
neural networks.

The efficiency of leaf area estimation by artificial neural 
networks depends on variations in leaf length and width, i.e., 
the greater the variability, the higher accuracy of the estimation. 
The variability in leaf length and width was assured by the high 
number of coffee genotypes evaluated in the present study. 

The efficiency of artificial neural networks in predicting 
leaf area depends on the variability in leaf shape data (length 
and width data) used in the training phase (Wang et al., 2017). 
Thus, the use of a high number of genotypes contributes to 
make the trained network generalist for different leaf shapes 
and sizes. 

Conclusions

1. Artificial neural networks are more efficient to estimate 
leaf area of Coffea canephora plants than multiple regression 
models. 

2. A network architecture with three neurons in the 
hidden layer provides better leaf area estimation. 

3. The proposed artificial neural network model is simple 
and fast, requiring only leaf length and leaf blade width data, 
allowing repeated, non-destructive measurements on the 
same leaves.
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