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A maximum margin-based kernel width estimator and its application 
to the response to neoadjuvant chemotherapy
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Abstract	 Introduction: Function induction problems are frequently represented by affinity measures between the 
elements of the inductive sample set, and kernel matrices are a well-known example of affinity measures. 
Methods: The objective of the present work is to obtain information about the relations between data from 
a calculated kernel matrix by initially assuming that those geometric relations are consistent with known 
labels. To assess the relation between the data structure and the labels, a classifier based on kernel density 
estimation (KDE) was used. The performance of the selected width using the method presented in this paper 
was compared to the performance of a method described in the literature; the literature method was based on 
minimizing error minimization and balancing bias and variance. The main case study, which was to predict 
the response to neoadjuvant chemotherapy treatment, consists of evaluating whether a set of training data from 
genomic expression data from breast tumors and the genomic expression from the tumor of one patient can be 
used to determine whether there will be a pathological complete response. Results: For the tested databases, 
the proposed method showed statistically equivalent results with the literature method; however, in some 
cases, the proposed method had a better overall performance when considering both large and small classes. 
Conclusion: The results demonstrate the feasibility of selecting models by directly calculating densities and 
the geometry from the class separation.
Keywords	 Kernel, Classification model, Maximum margin, Neoadjuvant chemotherapy.

Introduction
Induction of function problems are frequently 
represented by affinity measurements, or distance 
metrics, between the elements of the set of inductive 
samples. Inductive approximations are based on the 
relative similarity measures between the training 
samples and their labels. The use of kernel matrices 
to represent affinities became widespread after the 
popularization of support vector machines (SVMs) 
(Vapnik, 1999), where kernels are used to represent 
the inductive sample set in the feature space (Cortes 
and Vapnik, 1995; Vapnik, 1999) through non-linear 
mappings. The kernel matrix, where the non-linear 
transformation is performed, also contains the similarity 
measures between the samples and groups of samples 
for all the elements of the inductive set.

Non-parametric kernel density estimation (KDE) 
uses those matrices to deduce a function from the 
structural information contained in data; this method 
only uses the kernel function width as a parameter 
and does not require a priori assumptions about the 
generating function.

In this work, we propose a method to estimate the 
kernel width based on the concept that the separation 
region between classes must occur at a low density 
location (Chapelle et al., 2006), thus minimizing the 

model error. Simultaneously, we aim to control the 
complexity of the model, characterizing the problem 
as bi-objective.

The proposed method does not aim to construct a 
universal classification model; instead, the method aims 
to explore the possibility of deducing functions from 
the geometric information in data that are obtained 
from the kernel function. We show that the results 
are comparable to those obtained from a method that 
assumes that the data were generated from a Gaussian 
function and attempts to balance the bias and variance 
of the model; this finding confirms the hypothesis of 
consistency between assigned labels and the function 
that generated the data.

Methods
Given a set Du = {xi}

N
i=1, where N is the sample size, 

the elements aij form an affinity matrix A = [aij] that 
contains a measure of the affinity (or similarity) 
between the samples (xi, xj) (Scott and Longuet-
Higgins, 1990). Similarities measures are usually 
reflexive; thus, the matrix A is generally symmetric, 
that is, aij = aji. There are many ways to represent 
the affinities between patterns; these representations 
include distance metrics, which are typically used in 

Volume 30, Número 1, p. 17-26, 2014



Wanderley MFB, Torres LCB, Natowicz R, Braga AP

clustering methods (Johnson, 1967), and kernels. The 
Gaussian kernel is represented in Equation 1, as follows

2
i jx x

h
i jk(x ,x )= e

− 
−    	 (1)

where h is the radius or standard deviation of the 
Gaussian function, and k(xi, xj) = aij.

For a given value of h, the N×N kernel matrix 
that results from Equation 1 contains the reflexive 
relationships for all pairs (xi, xj) and can be represented 
as a diagonal block matrix, as shown in Equation 2,
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where c is the number of clusters from the sample 
set Du = {xi}

N
i=1.

Each of the sub-matrices Kij from Equation 2 
contains the affinity measures between the elements 
of groups i and j from the sample set. Therefore, the 
representation as clusters also allows other important 
information to be extracted from the kernel matrix, 
such as information about the data distribution and 
the relationship between the samples and sample 
sets. In Figure 1, 150 bidimensional vectors are 
presented; these vectors were sampled from 5 Gaussian 
distributions with means m1 = [1, 4], m2 = [3, 4], 
m3 = [4, 4], m4 = [2, 2], and m5 = [4, 2] and standard 
deviation 0.3. Figure 2 represents the Gaussian kernel 
matrix that results from the samples of Figure 1; the 
samples were ordered according to the generating 
distributions, which were known beforehand for this 
example. Figure 2 shows that the affinity relationship 
between elements from the same group and from 
different ones is visually distinguishable in this type 

of representation, demonstrating the power of the 
information contained inside the kernel matrix.

The representation of affinities as a kernel 
matrix allows classification and regression models 
to be deduced from data (Cortes and Vapnik, 1995). 
Furthermore, the matrix contains the information for 
deducing an estimator for f (x), the generating density 
function of the set Du = {xi}

N
i=1.

Kernel density estimators, which will be described 
in the next sub-section, utilize reflexive relationships 
k(xi, xj) = kij to make local estimations of the density 
function f (x), the function that generates the data. 
Those non-parametric estimators only have one 
adjustable parameter; this parameter is usually related 
to the kernel smoothness, for example, the h parameter 
of Equation 1. Although kernel density estimators only 
rely on one global parameter, neither the number of 
variables nor the approximating multimodal density 
functions are limited. Thus, kernel density estimators 
are potentially attractive for applications where the 
samples and a priori information about the density 
function that generated the data are scarce; these two 
situations frequently occur in bioinformatics problems.

Kernel Density Estimator – KDE

A kernel density estimator, or KDE (Parzen, 1962), 
is obtained by the superposition of kernel functions, 
as described in Equation 1, that are centered on each 
of the elements xi(i = 1...N) from the sample set. 
The density estimator f̂ (xt) at xt depends only on the 
spatial relationship between xt and the elements of 
the sample xi(i = 1...N); this relationship is quantified 
by the metric embedded in the kernel function. In 
general, Equation 3 describes a univariate kernel 
density estimator.

Figure 1. Bidimensional data sampled from five distinct distributions 
with means m1 = [1, 4], m2 = [3, 4], m3 = [4, 4], m4 = [2, 2], and 
m5 = [4, 2] and standard deviation 0.3.

Figure 2. Proximity matrix for the five clusters shown in Figure 1.
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1ˆ
t t if(x )= K(x ,x )

Nh
∑ 	 (3)

In Equation 3, N is the sample size, h is the kernel 
smoothing parameter, and K(xt, xi) is the kernel 
operator, whose integral ∫K(u)du must be unitary. The 
argument of the function K(.) is, in fact, the point xt 
where one wants to make the estimation, given that the 
samples xi(i = 1...N) are fixed and known beforehand.

An example of an estimation with a KDE is 
shown in Figure 3. This figure shows a histogram 
representation and the continuous estimation of 
Equation 3 for data sampled from two normal 
distributions with means at –4 and 4. The KDE 
estimation represents the joint distribution of two 
modes of the generating function. Utilizing the 
parametric model of this bimodal distribution requires 
finding the two generating partitions, modeling each 
of them individually and then mixing them to obtain 
the joint distribution. In addition, the clustering 
parameters, such as the number of partitions, and the 
parameters of each individual distribution must be 
estimated. The estimation with KDE only requires 
determining the parameter h, which is associated with 
the spread of the Gaussian function.

Multidimensional KDE

If the input variables are independent, a multivariate 
density estimation with KDE, as described by 
Equation  3, can be obtained directly through 
multidimensional kernel functions, which are described 
in Equation 1. However, in the case of dependency, 
the KDE estimation also considers using different 
values of h for each of the dimensions of the vector x.

Consider that an arbitrary vector xj can be 
represented with its n dimensions as xj = (xj1, xj2, ..., xjn). 
Consequently, the general form of the multidimensional 
KDE is presented in Equation 4.

( ) ( ) 11 2 1

1ˆ N
t1 i1 tn in

t
i=n n

x x x xf x = K , ,
N h h h h h
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An alternative to a multidimensional kernel 
function is the multiplicative kernel (Scott, 1992). In 
this case, a unidimensional kernel is used for each of 
the dimensions, and each kernel has its own width 
h. Thus, the n-dimensional kernel is represented by 
the product of kernels in each of the n univariate 
dimensions, resulting in Equation 5.
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Assuming independence and the same width h for 
all dimensions, the Gaussian KDE density estimation of 
a given arbitrary point xi may be obtained through the 
sum of the cumulative products in all dimensions for 

all variables of the sample set. Re-writing the product 
and considering that the summation of Equation 5 
corresponds to the sum of all elements of a line (or 
column) of the Gaussian kernel matrix K(xi, xk) = [kij] 
with width h, Equation 6 is obtained.

( ) ( )
1

1ˆ N
h i i kn

k=
f x = K x ,x

Nh
∑ 	 (6)

At this point, it is important to stress that the 
Gaussian kernel for density estimation using the 
multiplicative method and the one used for building 
inductive models, such as SVMs, have the same shape 
and only differ by the parameter h. Thus, the same 
parameter h might be able to satisfy both problems 
(Queiroz et al., 2009) when the density is estimated 
by KDE using a multiplicative kernel.

According to Equation 6, the density estimation 
f̂h(xi) decreases upon locating the h value that 
satisfies some restriction of the objective function. 
However, determining the characteristics of the 
objectives that are used to estimate density functions 
is not as straightforward once the problem becomes 
unsupervised. Previously, Silverman (1986) described a 
method for estimating h by assuming that the generative 
functions are Gaussians. Aiming to approximate the 
Gaussian function that generated the data and to 
balance the bias and variance (Geman et al., 1992) 
of the model, the author defined an objective function 
to determine h.

In contrast to Silverman’s (1986) approach, in this 
work, data normality is not assumed when determining 
h through an objective function. The basic principle of 
the approach presented in the following sub-sections 
is that structural information of the data, which are 
contained in the sample set D = {xi, yi}

N
i=1, is sufficient 

to determine h. This principle seems to be valid, 
particularly given that the same kernel can represent 

Figure 3. Density estimation performed with a histogram and with 
kernel density estimation. The generating functions have means 
equal to –4 and 4.
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the data structure and serve as a basic element for 
deducing models such as SVMs, as stated in previous 
paragraphs. The challenge of this approach, however, 
is to obtain coherent structural information using only 
the sample set and to describe this information using 
a quantitative measure that can be used to determine 
h. The method that will be presented is based on the 
idea that the solution to the classification model should 
be located in a low density region; this principle is 
one of the assumptions of semi-supervised learning 
(Chapelle et al., 2006). The model is smoothed by 
adjusting h based on the consistency of the responses 
to the kernel function at the separation region, and 
this smoothing allows for control of the bias and 
variance and the separation margin between classes 
(Vapnik, 1999; Geman et al., 1992).

Selection method
Constructing generative classifiers by estimating 
the density of the generative functions relies on 
coherence between the labels that are given to data 
and the functions that have generated the data. Thus, 
according to this principle, the estimated generative 
functions, i.e., KDE, should be consistent with the 
labels yi given a sample set D = {xi, yi}

N
i=1. For 

Bayesian classifiers, the a posteriori probability 
P(Cj  | xi) that a pattern belongs to a given class Cj 
should be greater for the class to which the pattern 
has been assigned. This principle not only guarantees 
the minimization of the empiric risk (Vapnik, 1999) 
of the data set but also guarantees the robustness of 
the model before its application to the test set. For 
binary classification problems with two classes, C1 
and C2, the ratio between the posterior probabilities 
determines the classifier represented in Equation 7.

( ) ( )
( )

1 2
1

2

2

P x C NClass x = C ,if >
P x C N1

C ,otherwise.







	 (7)

Based on labeling information, the likelihoods 
P(x  | C1) and P(x  | C2) for the classes C1 and C2, 
respectively, can be estimated with KDE, and a final 
classification can be performed. As discussed in the 
previous sub-sections, a consistent estimation of the 
densities by KDE will depend on the chosen value 
of h for Gaussian kernels. Nevertheless, knowing the 
labels yi allows for analysis of the problem based on 
the coherence between the generative density function 
and the labels given to each sample.Consider the 
sample set shown in Figure 4 and its matrix K for 
h = 1, as presented in Figure 5. Although this example 
is synthetic and well controlled, it represents the 
problem in a general way.

Visualizing the kernel matrix that corresponds to 
the data clearly allows for the identification of four 

distinct sub-matrices that form the kernel, which 
will be termed K11, K12, K21 and K22. Those two 
data groupings represent two distinct classes: the 
sub-matrices K11 and K22 contain the intra-class 
relationships, and the sub-matrices K12 and K21 
contain the interclass relationships. Thus, the density 
estimation according to Equation 6 can be re-written 
by determining the estimated densities for the adjacent 
matrices, as in Equations 8 and 9. In these equations, 
the terms P({xi, yi = –1} | C1), P({xi, yi = –1} | C2), 
P({xi, yi = +1} | C1) e P({xi, yi = +1} | C2) represent 
the P(xi | Ci) estimated for the labels yi.
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Figure 4. Data sampled from two Gaussian distributions with means 
m1 = [2, 2]T and m2 = [4, 4]T.

Figure 5. Gaussian kernel K for Figure 4 example with h = 1.

Rev. Bras. Eng. Bioméd., v. 30, n.1, p. 17-26, mar. 2014
Braz. J. Biom. Eng., 30(1), 17-26, Mar. 201420



A kernel width estimator applied to the response to neoadjuvant chemotherapy

P(C1) and P(C2) are known; therefore, it is possible 
to estimate the likelihood of the patterns for each of 
the classes, C1 and C2, using Equations 10 through 13. 
For a binary classification problem, the probabilities 
estimated by Equations 10 and 12 are expected to be 
maximized and those estimated by Equation 11 and 
13 are expected to be minimized for each pattern 
xi ∈ D. Indeed, maximizing the difference between 
those two quantities provides a method of minimizing 
the approximation error of the data set using only the 
coherence of the labeling and the estimated densities.

{ }( ) ( )1
1 11

11

11
N

i i i kn
k=

P x , y = |C = K x ,x
N h

− ∑ 	 (10)
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N h
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N h
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The labels yi, ∀xi ∈ D are known; thus, the 
density estimation by KDE according to Equation 6 
is expected to be capable of maximizing the posterior 
probabilities P(C1 | xi ∈ C1) and P(C2 | xi ∈ C2) while 
also minimizing the cross probabilities P(C1 | xi ∈ C2) 
and P(C2 | xi ∈ C1). In other words, the KDE should 
find the maximum of the functions represented in 
Equations 14 and 15.

( ) ( )1 1
11 211 1 11 1

1 1N N

C i k i kn n
k= k=

f = K x ,x K x ,x
N h N h

−∑ ∑ 	 (14)

( ) ( )2 2
22 122 1 12 2

1 1N N

C i k i kn n
k= k=

f = K x ,x K x ,x
N h N h

−∑ ∑ 	 (15)

Thus, the width h that is used should maximize 
the cost functions represented in Equations 14 and 15; 
however, in practice, the maximization of the 
differences leads to a range of values for h. This 
behavior was expected because the general problem 
of approximation requires not only error minimization 
but also minimization of the model complexity; thus, 
this is a bi-objective problem in terms of optimization 
(Okabe et al., 2003; Teixeira et al., 2000). In a 
manner similar to that for the procedure adopted by 
Silverman (1986), the goal of this method is not only 
the maximization of the cost function represented 
by Equations 14 and 15 but also minimization of 
the structural risk (Vapnik, 1999) by maximizing 
the separation margin between classes. Therefore, 
in this work, the value of h is selected in two steps. 
Initially, a range of h values is defined based on an 
allowed error value e, which is obtained through the 
cost functions represented by Equation 14 and 15. 
In the next step, the h value that leads to the greatest 
margin separation between classes is selected from the 

values of the previous step.The methodology adopted 
in this work to select h using two objective functions; 
this procedure is similar to that described for other 
learning models, such as artificial neural networks, 
SVMs or even polynomial approximation. In those 
models, an error function and a complexity function 
are minimized. The method described here is based 
on the structure of the data and on the separating 
the low density region; therefore, it does not require 
an exhaustive search for the parameter h once the 
cost functions are described for the error and the 
model’s response smoothness. Moreover, the error 
function is limited by e; thus, the bi-objective problem 
(Okabe et al., 2003; Teixeira et al., 2000) is described 
as mono-objective sub-problems. The model is based 
on an a priori consideration of the characteristics of 
the separation margin; thus, the performance of the 
model will depend on the validity of this assumption 
for each specific problem. Of course, due to the basis 
on the a priori consideration of a characteristic split 
range, the performance of the model depends on the 
validity of this interpretation of the problem at hand. 
However, even other learning machines, such as SVMs, 
are based on some type of ad hoc principle, such as 
the maximization of the separation margin. Presenting 
a general method for classifier construction is not the 
objective of this work because many of the results 
from the literature are already near the performance 
limit for the available data sets. The aim in this work 
is to explore the consistency between the geometry 
of the problem and the results deduced by learning 
machines, particularly in the case of binary classifiers.

Selection method: decision rule

To identify the points of the margin separation 
region for which the densities will be calculated, a 
previously described method (Torres et al., 2012), 
which is based on the Gabriel graph (De Berg, 2000), 
was used. This method was originally proposed 
for selecting large margin neural models of multi-
objective learning (Teixeira et al., 2000; Torres et al., 
2012); this method includes a stage that identifies 
the midpoints between samples of two classes. In 
this work, the midpoints will be used as reference 
points for the separation region at which the densities 
should be evaluated to select the parameter h. From 
the midpoints, the densities are individually calculated 
using the KDE with values of h that satisfy the 
restrictions imposed by Equations 14 and 15. The 
general problem of optimization that results from the 
combination of these two equations can be described 
as a problem of error minimization; this problem can 
also be considered the maximization of the objective 
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subjected to a smoothing condition that is described 
as a restriction on a second function J2, which is given 
in Equation 16.

1
max

2

Arg J

subjected to J < δ
	 (16)

The general form presented in Equation 16 
resembles the one described in many other inductive 
methods, such as SVMs or neural networks; in 
these methods, a function of the empirical error is 
minimized while subjected to a condition that somehow 
imposes a restriction on the effective capacity of the 
model (or error, in the case of SVMs). In the general 
formulation of the training of SVMs and also in the 
multi-objective learning of neural networks, the 
cost function that represents the model complexity, 
such as J2, is related to the norm of the weights, thus 
guaranteeing maximization of the separation margin. 
In both approaches, a decision stage is necessary for 
selecting the final model. An example of the decision 
method for neural networks is the large margin based 
on the Gabriel graph decision method (Torres et al., 
2012); a more common decision method for SVMs 
is an exhaustive search by cross validation or a grid-
search (Van Gestel et al., 2004). Although the problem 
of quadratic programming (QP) that characterizes 
SVM learning has one global solution, it is solved 
for a given constant value of regularization, which is 
selected beforehand. Thus, in a manner analogous to 
other learning models, the function J2 of Equation 16 
will represent the selection model to which some a 
priori criteria will be applied.

When the function J1 is minimized, a range of 
values of h is obtained; these values all satisfy the error 
tolerance from Equation 16, [hmin, herror ≤ ε], where hmin 
is the smallest width that minimizes J1, and herror ≤ ε is 
the largest width that minimizes J1 subjected to a slack 
variable e. Any value of h within the range satisfies 
the restriction on J1; however, the restriction on J2 
will determine which value of h is chosen.

Consider PM to be the matrix of coordinates 
of the midpoints that is calculated according to the 
method of Torres et al. (2012) and consider D to be 
the matrix of estimated densities that is calculated 
according to Equation 6 at the midpoints for all 
values of h that belong to the interval. Because the 
densities should be minimized in the separation region 
(Chapelle et al., 2006), the selected value of h must 
guarantee minimization on PM. The decision criteria 
must make the behavior of all points of PM coherent; 

thus, the selected criterion is the one described by 
Equation 17, which guarantees minimization for all 
midpoints.

0,dD p PM
dh

< ∀ ∈ 	 (17)

As seen in Figure 6, the decision criterion of 
Equation 17 leads to consistency in the behavior of 
the densities with respect to h. The direct minimization 
of the sum of the densities of all points, for example, 
may not be a good decision criterion because the 
density values may differ from the values observed 
in the graph. The decision criterion of Equation 17 
guarantees a condition of minimum coherence for 
the values of the densities at the midpoints, that is, 
the approximation function tends to smoothness at 
all midpoints.

Experimental Stages

The experiments performed in the present work may 
be divided into two stages, which will be presented 
below.

Data modeling and selection of the Kernel 
Width h

After normalization of the data to use the kernel width 
estimated by the proposed method for all data variables, 
the midpoints between the classes are calculated. At 
the midpoints, the density is calculated for different 
width values of a Gaussian kernel, as seen in Figure 6.

The method for choosing h considers the behavior 
of the densities for the utilized value of the width. 
The goal is to avoid small width values, which lead to 
complex separation curves that are over fitted to the 
data; these types of curves have little generalization 
power. Similarly, large values should be avoided 
because they produce overly smooth responses of the 
model. Therefore, the chosen h is the one for which 
the derivative at all midpoints is negative, indicating 

Figure 6. Density variation at the margin points with respect to the 
kernel width variation.
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that the density curves downward, as described in 
Equation 17.

Classification and performance analysis with 
respect to Width

After the kernel width estimation, the performance of 
the resulting model is compared with the performance 
of the method proposed by Silverman (1986). For this 
comparison, the KDE-Bayes method (Wanderley et al., 
2010), which consists of a probabilistic classifier based 
on Bayes Theorem, was used. This method is divided 
into two stages: the non-parametric density estimation 
for each class (KDE stage) and data classification 
using the Bayesian decision rule and the densities 
of the first stage (Bayes stage).

The performance of the classifier for each value 
of width is then evaluated according to three metrics: 
accuracy (Ac), specificity (Sp) and sensitivity (Se). 
Next, an analysis of variance (ANOVA) is performed 
to determine whether the means of each metric are 
substantially different.

Databases
For this work, the experiments were conducted using 
two types of databases. The initial tests, using 7 public 
databases (Table 1) from the University of California, 
Irvine (http://archive.ics.uci.edu/ml/), were performed 
to verify the behavior of the proposed method.

Next, experiments were conducted on genetic 
expression data from tumor cancer cells (available 
at http://bioinformatics.mdanderson.org/pubdata.
html). The clinical trial was conducted at the Nellie 
B. Connally Breast Center, M.D. Anderson Cancer 
Center, University of Texas (Hess et al., 2006). Data 
were collected from 82 patients in Houston, USA and 
51 patients in Villejuif, France; all patients had breast 
cancer that was between stages I – III. Before the 
beginning of the neoadjuvant treatment, samples from 
the tumor were collected by fine needle aspiration. 
By the end of the treatment, all patients underwent 
surgeries for tumor bed resection to determine whether 
the pathologic response was complete. For each 
patient, 22283 probes were obtained from the genetic 

expression of tumor samples using a microarray 
technique.

For each dataset, 100 repetitions of 3-fold cross 
validation were made in which the performance 
was analyzed for the kernel width proposed by 
Silverman (1986) and for the method proposed in this 
paper that considers that maximum margin between 
classes. To train the model, 2/3 of the data from the 
7 public databases was used, and the other 1/3 of 
the data was used for the test. For the neoadjuvant 
chemotherapy, the data from Houston were used for 
training, and the data from Villejuif were used for the 
test. The results were evaluated according to mean 
and standard deviation of the accuracy, sensibility 
and specificity, which were calculated from the 
results for each repetition of cross validation. For 
a statistical comparison of the results obtained with 
KDE-Bayes for each of the proposed h values, an 
analysis of variance (ANOVA) was performed on 
the means of the metrics used for evaluating the 
performance of the width h.

Results

All databases

Table 2 presents the results of the KDE-Bayes 
classifier for the proposed width using this work 
(Ac, Sp, Se, Ac Test, Sp Test, Se Test) and using the 
method of Silverman (Acs, Sps, Ses, Acs Test, Sps 
Test, Ses Test). The values shown in the table are the 
mean and standard deviation of the results obtained 
for cross validation executions using the training 
and test sets.

Bioinformatics

Similarly, Table 3 presents the results for the problem 
of predicting the effectiveness of the neoadjuvant 
chemotherapy for the breast cancer patients. The 
indicated metrics and values are the same as those 
used for the experiments presented in Table 2.

Discussion
The analysis of variance (ANOVA) (Scheffé, 1959) 
using the results presented in Tables 2 and 3 indicated 
statistical equivalence between the values obtained 
using the two methods of estimating kernel width: the 
method proposed in this paper and the one proposed 
by Silverman (1986). These results support the goal of 
this work, which is discussed in the Methods section, 
and indicate that the data labeling and the function 
that generates the data are consistent. Although the 
results are statistically equivalent, the performances 

Table 1. Summary of the UCI Datasets that were used.

Name No. of 
characteristics Class 1 Class 2

ACR 14 383 307
BLD 6 145 200
ION 33 225 126
SNR 60 97 111
TTT 9 626 332
WBC 9 444 239
HEA 13 150 120
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for the larger and smaller classes are better balanced 
using the proposed method, while Silverman’s method 
performs better for the large class.

For predicting the effectiveness of neoadjuvant 
chemotherapy (Table 3), the two methods have 
similar performance using the training set; however, 
the proposed method is slightly superior with the test 
set. Because this problem aims to determine whether 
patients should be treated before surgery, the number 
of false negatives should be as small as possible, even 

if the number of false positives is slightly larger. The 
value of h proposed by Silverman misses 36% of the 
cases, compared with 30% for the value selected in 
the present study.

Because the presented method is based on the 
existence of a low density region between classes, 
it has some limitations. This method is mainly 
applicable to binary classification problems because 
of its difficulty in determining the separation 
margin for three or more classes. Similarly, it is 

Table 2. UCI Datasets: results of 3-fold cross validation using the kernel width chosen by the proposed method (error limited on 0.05) and 
the width chosen the method of Silverman. Ac = Accuracy, Sp = Specificity, Se = Sensitivity, Acs = Accuracy Silverman, Sps = Specificity 
Silverman, Ses = Sensitivity Silverman.

ACR

Ac Sp Se Ac Test Sp Test Se Test
0.993 ± 0.002 0.999 ± 0.001 0.986 ± 0.004 0.802 ± 0.010 0.837 ± 0.016 0.759 ± 0.009 

Acs Sps Ses Acs Test Sps Test Ses Test
0.986 ± 0.002 0.999 ± 0.002 0.970 ± 0.006 0.819 ± 0.011 0.859 ± 0.012 0.769 ± 0.015

BLD

Ac Sp Se Ac Test Sp Test Se Test
0.980 ± 0.006 0.975 ± 0.010 0.983 ± 0.009 0.631 ± 0.016 0.529 ± 0.043 0.705 ± 0.027 

Acs Sps Ses Acs Test Sps Test Ses Test
0.901 ± 0.010 0.812 ± 0.027 0.966 ± 0.006 0.636 ± 0.025 0.442 ± 0.049 0.777 ± 0.028 

ION

Ac Sp Se Ac Test Sp Test Se Test
0.997 ± 0.001 0.996 ± 0.001 0.999 ± 0.003 0.862 ± 0.012 0.983 ± 0.007 0.646 ± 0.024 

Acs Sps Ses Acs Test Sps Test Ses Test
0.996 ± 0.002 0.998 ± 0.001 0.992 ± 0.000 0.882 ± 0.009 0.988 ± 0.006 0.694 ± 0.032 

SNR

Ac Sp Se Ac Test Sp Test Se Test
1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.847 ± 0.013 0.792 ± 0.035 0.895 ± 0.030 

Acs Sps Ses Acs Test Sps Test Ses Test
1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.842 ± 0.013 0.785 ± 0.031 0.892 ± 0.035 

TTT

Ac Sp Se Ac Test Sp Test Se Test
1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.883 ± 0.010 1.000 ± 0.000 0.662 ± 0.030 

Acs Sps Ses Acs Test Sps Test Ses Test
1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.921 ± 0.007 1.000 ± 0.000 0.771 ± 0.020 

WBC

Ac Sp Se Ac Test Sp Test Se Test
0.996 ± 0.002 0.998 ± 0.004 0.993 ± 0.004 0.957 ± 0.005 0.977 ± 0.005 0.921 ± 0.014 

Acs Sps Ses Acs Test Sps Test Ses Test
0.991 ± 0.001 1.000 ± 0.000 0.975 ± 0.003 0.961 ± 0.005 0.976 ± 0.004 0.933 ± 0.014 

HEA

Ac Sp Se Ac Test Sp Test Se Test
1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.782 ± 0.019 0.803 ± 0.026 0.757 ± 0.033 

Acs Sps Ses Acs Test Sps Test Ses Test
0.999 ± 0.002 1.000 ± 0.000 0.997 ± 0.004 0.788 ± 0.018 0.807 ± 0.025 0.764 ± 0.022 

Table 3. Breast Cancer Problem: results of 3-fold cross validation to the kernel width chosen by the proposed method (error limited on 
0.05) and the width chosen by the method of Silverman. Ac = Accuracy, Sp = Specificity, Se = Sensitivity, Acs = Accuracy Silverman, 
Sps = Specificity Silverman, Ses = Sensitivity Silverman.

Ac Sp Se Ac Test Sp Test Se Test
1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.753 ± 0.039 0.783 ± 0.032 0.668 ± 0.064 

Acs Sps Ses Acs Test Sps Test Ses Test
1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.755 ± 0.024 0.814 ± 0.030 0.582 ± 0.063 
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also difficult to use semi-supervised learning for 
cases in which the class is composed of two or 
more clusters, which could be considered a multiple 
class problem.

The results support the proposed hypothesis: this 
work provides an alternative to model selection and 
is based on the problem geometry and the known 
labels for each class.

The principle that the separation region is located 
in a low density area has been used in other studies 
to guide the construction of large margin classifiers. 
This principle suggests that the maximum margin 
separator and the minimum error of the inductive 
data set should be located in a region of low density. 
Although this is the general principle of large 
margin classifiers, such as SVMs, the densities 
at separation points are not directly calculated. 
Generally, a region of low density is identified as the 
result of the maximization of the separation margin 
through an objective function that is associated 
with the magnitude of the parameters (weights) 
of the model. In this work, however, an approach 
was presented that aimed to first identify the low 
density region that would be used for the selection 
criterion to obtain an adequately smooth separation 
surface, thus leading to a large margin separator. 
By constructing appropriate kernel matrices and 
geometrically identifying the separation midpoints 
through the Gabriel graph, objective functions for 
minimizing the classification error were described. 
The smoothness of the response of the minimum 
error model is obtained by utilizing a selection 
method that is based on calculating the densities at 
the midpoints. The final model was evaluated using 
several databases and was shown to be robust for 
the test set, suggesting that a good balance between 
bias and variance is obtained indirectly through the 
selector based on the densities calculation. The results 
are compatible with the ones obtained by methods 
that explicitly control the bias and variance, such as 
the one proposed by Silverman (1986). Many of the 
results are within the limit of the benchmarking for 
the databases that were used for the tests. This work 
was not designed to develop a new methodology 
that outperforms the current methods, which may 
not even be possible for the used databases. Thus, in 
this work, a new method was described; this method 
was capable of selecting models using direct density 
calculations and the geometry of the separation 
problem. Focusing on the point densities instead 
of the direct calculation of the separation margin 
is a viable alternative for constructing generative 
models of separation.
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