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Abstract Introduction: Breast cancer is the second most common type of cancer in the world, being more common 
among women and representing 22% of all new cancer cases every year. The sooner it is diagnosed, the better 
the chances of a successful treatment are. Mammography is one way to detect non-palpable tumors that cause 
breast cancer. However, it is known that the sensitivity of this exam can vary considerably due to factors 
such as the specialist’s experience, the patient’s age and the quality of the images obtained in the exam. The 
use of computational techniques involving artificial intelligence and image processing has contributed more 
and more to support the specialists in obtaining a more precise diagnosis. Methods: This paper proposes a 
methodology that exclusively uses texture analysis to describe features of masses in digitized mammograms. 
To increase the efficiency of texture feature extraction, the diversity index’s capability to detect patterns of 
species co-occurrence is used. For this purpose, the Gleason and Menhinick indexes are used. Finally, the 
extracted texture is classified using the Support Vector Machine, looking to differentiate the malignant masses 
from the benign. Results: The best result was obtained using the Gleason index, with 86.66% accuracy, 90% 
sensitivity, 83.33% specificity and an area under the ROC Curve (Az) of 0.86. Conclusion: Both indexes 
showed statistically similar performance; however, the Gleason index was slightly superior.
Keywords Breast cancer, Medical images, Gleason Diversity Index, Menhinick Diversity Index, Computer-

aided diagnosis.

Introduction
Breast cancer is the second most common type of 
cancer in the world, being more common among 
women and representing 22% of all new cancer 
cases every year. The occurrence of this type of 
cancer has grown 3.1% per year (American…, 2011). 
Mammography is one way of detecting non-palpable 
tumors that cause breast cancer. On average, it detects 
80% to 90% of breast cancers in asymptomatic women 
(American…, 2011). Since this exam began being used 
as a routine check-up, a reduction in the mortality rate 
related to this pathology has been observed. This can 
be largely explained by a mammogram’s ability to 
detect the cancer in its initial stage, when treatment can 
be more efficient and a cure is more likely. However, 
it is known that the sensitivity of this exam can vary 
considerably due to factors such as the specialist’s 
experience, the patient’s age and the quality of the 
images obtained in the exam.

The use of computational techniques of artificial 
intelligence and image processing has contributed 
more and more to support specialists in obtaining 
more precise diagnoses. In this way, since the last 
decade, the interest in systems for detection (Computer-
Aided Detection – CAD) and diagnosis (Computer-
Aided Diagnosis – CADx) has been growing, in 

order to support the radiologists in interpreting the 
mammograms (Kinoshita et al., 2004).

One of the visibly detectable anomalies in 
mammographic images is the cell masses, or clusters 
of cells that create a denser band than the surrounding 
tissue. Masses can be caused by both benign and 
malignant conditions. Therefore, characterizing mass 
features such as size, shape and margin disposition 
is fundamental in establishing the probability of 
malignancy (Kopans, 2000).

Because texture is an attribute that is hard for 
the human analyst to interpret, it is common to use 
features of the outlines of the masses to diagnose these 
regions. However, such features are not always clear 
in these exams. For example, there can be lesions 
without a well-defined outline that can overlap 
regions of masses and calcifications, preventing their 
proper visualization. This difficulty contributes to 
an increase in the number of biopsies with negative 
results. Therefore, the development of techniques of 
texture feature extraction can help specialists produce 
more precise diagnoses. Many studies have been 
developed to perform the texture analysis, aiming 
to differentiate suspicious regions in mammography 
exams in order to establish their benign or malignant 
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behavior. In this paper, several of these systems will 
be described along with their respective techniques.

One strategy largely used to extract texture 
features is the use of gray levels co-occurrence 
matrixes (GLCM), whose features can be described 
using the measures of Haralick et al. (1973). 
Various works adopt this technique, including Lim 
and Er (2004) and Rangayyan et al. (2010). In 
Mavroforakis et al. (2006), gray level run length 
matrixes (GLRLM) were used along with the GLCM 
matrixes as a texture descriptor. In the methods 
proposed in this work, we use the GLCM matrix, 
the GLRLM matrixes and the gray level gap length 
matrixes (GLGLM), though we use it only as a way 
of representing the region of interest (ROI), as will 
be explained in the methodology.

The feature extraction stage can be performed both 
by texture analysis and by mass geometry. However, 
given the difficulty of differentiation between benign 
and malignant patterns, many studies usually combine 
texture features and geometry to perform this task, such 
as Sahiner et al. (2001), Shi et al. (2007), Suganthi and 
Madheswaran (2010), Varela et al. (2006), Mu et al. 
(2008) and Liu et al. (2010, 2011).

In Table 1, a summary of related works is presented, 
containing the technique used to extract texture, the 
classifier used, the adopted image base, the number 
of test samples (with M = malignant and B = benign) 
and the results in percentages.

Here, we see a necessity for developing a 
technique with exclusive usage of texture analysis 
for feature extraction to analyze mammographic 
images with ill-defined mass outlines to determine 
malignancy.

The goal of this paper is to propose a methodology 
to differentiate between malignancy and benignancy 
using the texture of masses in digitized mammograms 
using Gleason and Menhinick diversity indexes over 
regions of interest, represented in the form of gray 
level co-occurrence matrixes (GLCM), gray level run 
length matrixes (GLRLM) and gray level gap length 
matrixes (GLGLM). Furthermore, the Support Vector 
Machine is used to discriminate whether the features 
produced by the masses should be in the malignant 
or benign classes.

Methods
The steps of the proposed methodology for 
differentiation between the benign and malignant 
classes in digitized mammography masses, using 
texture characterization through the diversity indexes 
of Gleason and Menhinick, are presented in Figure 1. 
They are Image Acquisition, Pre-processing, Image 
Representation, Feature Extraction and Pattern 
Recognition.

Image acquisition
The first stage of the methodology was dedicated to 
obtaining the mammographic images that were used 
in the tests. For this purpose, the Digital Database for 
Screening Mammography (DDSM) public database 
of digitized mammograms, available on the Internet, 
(Heath et al., 2001) was used. Because the focus of 
this research was to characterize the mass textures 
through diversity indexes and determine their malignant 
nature, we did not use the complete mammogram 
image. For the sample selection, we adopted the 
same approach used by Braz et al. (2009). With this 

Table 1. Summary of related work.

Work  Technique 
Texture Classifier Base ROIs (M/B) Accuracy

(%) Az

Lim and Er (2004) GLCM Neural Network DDSM 343(163/180) 70 -
Rangayyan et al. (2010) GLCM FLD Own 111(46/65) - 0.75

Mavroforakis et al. (2006) GLCM, GLRLM SVM, ANN DDSM 130(84/46) 83.9 -
Liu et al. (2010) GLCM, Geometry SVM DDSM 309(167/142) 65 0.7
Liu et al. (2010) GLCM, Geometry SVM, LDA DDSM 309(167/142) 76
Mu et al. (2008) GLCM, Geometry SVM Own 111(46/65) - 0.93

Varela et al. (2006) GLCM, Geometry, 
Histogram

Neural Network 
Backpropagation DDSM 1076(590/486) - 0.81

Sahiner et al. (2001) Histogram, 
Geometry Leave-one-out Own 249(127/129) - 0.87

Shi et al. (2007) Histogram, 
Geometry LDA Own 909(451/458) - 0.83

Suganthi and Madheswaran 
(2010)

GLRLM, 
Geometry, 
Histogram

Neural Network 
Backpropagation DDSM 350(175/175) 99.5 0.95
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approach, from the markings performed by specialists 
in mammography, we extracted the bounding box 
(minimum area-enclosing rectangle) containing only 
regions that have masses, yielding a total of 3559 ROIs.

For the tests performed in this project, a subset of 
300 ROIs was used, all chosen at random, totaling 160 
malignant masses and 140 benign masses. Although 
this number of samples does not represent the total 
set of samples in the DDSM database, it does not 
compromise the generalization capacity of the classifier 
because the selection is performed at random and 
there is not a significant imbalance between the two 
groups. In addition, it allows comparison with other 
works that use the same database and sample size.

Pre-processing

The goal of this stage is to improve the contrast of 
the object of interest in relation to the background 
that may exist in the ROIs and consequently provide 
a better description of their texture. In this way, we 
use the logarithmic transformation and average filter 
(Gonzalez and Woods, 2002).

The logarithmic transformation is defined by 
the equation:

gt(x, y) = Glg10(g(x, y) + 1) (1)

where gt(x, y) is the new value of gray level at the point 
(x, y), g(x, y) is the original gray level value, and G 
is the factor defined by the maximum and minimum 
limits of the image. This factor aims to guarantee that 
the new values are between zero and the maximum 
gray level allowed for the image representation. In 
this work, G will be equal to 255 because the ROIs 
have 8 bits per pixel.

The logarithmic transformation is used to give 
more relevance to dark gray levels, which are rarer 
in mass images (ROIs) of mammograms (lower 
frequency of occurrence). This way, when we apply 

the logarithmic transformation in an ROI, the darker 
gray levels are grouped to increase their quantitative 
importance. This process is illustrated in Figure 2.

In applying the logarithmic transformation, the 
noise in the ROI is amplified (Figure 2b); therefore, 
we use an average filter with a window size of 5×5 
to soften the noise, smoothing the ROI.

Image representation
This stage was introduced in the proposed methodology 
due to the necessity of adopting the concept of 
ecological diversity as a technique to perform 
the feature extraction. Thus, based on the image 
enhancement performed in the previous stage, the 
image was represented using first-order statistics 
in order to calculate the diversity indexes based on 
the ROI’s histogram (Gonzalez and Woods, 2002); 
second-order statistics through the GLCM matrix 
(Haralick et al., 1973); and superior-order statistics 
using the GLRLM matrixes (Galloway, 1975) and 
GLGLM (Xinli et al., 1994).

Feature extraction
This stage aims to produce descriptive measures for 
the images, which will form the feature vectors that 
will be used in the classifying stage. In this work, 
texture analysis was performed using the statistical 
approach in Gonzalez and Woods (2002), through 
adapting the concept of the Ecological Diversity index.

Ecological diversity indexes

In ecology, the term ‘diversity’ is used to refer to the 
variety of species present in a community, habitat or 
region. A community is defined as a set of species that 
occur in a specific time and place (Magurran, 2004). 
In this way, the usage of indexes, even though it does 
not represent the total composition of a community, 
makes it possible to measure the richness, equality 
and diversity of species in the different studied 

Figure 1. Steps of the proposed methodology.
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environments. This tool is useful to monitor and 
predict environmental changes.

The concept of diversity involves two parameters: 
richness, which represents the number of species; 
and relative abundance, which represents the number 
of individuals of a particular species that occur in a 
place or sample. This way, communities with the 
same richness can differ in diversity depending 
on the distribution of individuals among species 
(Mcintosh, 1967). In this paper, we used Gleason 
and Menhinick’s Indexes.

The Gleason Diversity Index considers only 
the number of species (s) and the logarithm (base 
10 or natural) of the total number of individuals 
(Brower et al., 1997). This index is defined by the 
equation:

g
sD

LogN
=  (2)

where s is the number of sampled species and N is 
the total number of individuals in all species.

Another diversity index used in this paper is 
Menhinick (1964), which considers only the number 
of species (s) and the square root of the total number 
of individuals and is calculated by the equation:

b
sD
N

=  (3)

where s is the number of sampled species, and N is 
the total number of individuals in all species.

Adaptation of the concept of ecological diversity

In order to adapt the concept of ecological diversity 
for our purposes, two abstractions are used. The first 
considers that a community will be formed by the 
pixels of the ROI (each pixel is an individual, and its 
value defines the species). The second considers that 
the community is defined by the internal elements 
of the co-occurrence matrixes of calculated species, 
and the species will be formed by the values of those 
elements. This way, we can investigate whether, within 
the ROIs, there is a dominance of some gray levels 
over others. Independent of the index, the procedure 
to extract the features remains the same.

First, the highlighted samples were quantized from 
256 to 128, 64, 32, 16 and 8 gray levels, considering 
each ROI as a community of 256, 128, 64, 32, 16 and 
8 species. Along with the quantization, we looked to 
reproduce the ROIs’ representations in different scales 
of gray levels in such a way to make the description 
of the texture in those scales possible. After that, these 
ROIs had their diversity indexes calculated.

Through the histogram of the ROI, we registered 
the frequency of each gray level (species). This made 
it possible to extract the richness of species (d) through 
the quantity of non-null entries (bins) of the histogram, 
as well as the relative abundance of each species 
through the value of each bin. The produced feature 
vector presents 6 variations because we calculated 
the diversity value for each quantization.

Figure 2. Logarithmic transformation. (a) Original image with its histogram; (b) Enhanced image with its histogram.
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The idea of using the GLCM matrix (Haralick et al., 
1973) as a way of representing the ROI was to verify 
the diversity of the dominance of some pairs of 
gray levels over others. Two approaches are used to 
represent the community of gray level pairs. In the 
first, the individuals correspond to the occurrence 
of a pair of pixels (i, j) with the same value (gray 
level) separated by a distance, d, and positioned 
in a direction θ. The population of each species is 
represented in the main diagonal of the GLCM matrix 
(Figure 3b). In the second, we consider the occurrence 
of members of the community as pairs of pixels (i, j) 
with different values. This way, the elements outside 
the main diagonal of the GLCM matrix represent the 
population of individuals (Figure 3c).

For the θ direction, we adopted the values 0°, 45°, 
90° and 135°. For the distance d, the values were 1, 
2, 3, 4 and 5. The feature vector generated presented 
120 texture attributes (5 distances × 4 directions × 6 
quantizations), because a GLCM is needed for each 
θ and d, and 6 quantizations were considered.

The goal of using the GLRLM matrix (Galloway, 
1975) is to analyze whether there is a predominance 
of relatively long run lengths in relation to the short 
runs or vice-versa. Therefore, the community was 
formed by the occurrence of consecutive and collinear 
sequences of n pixels of the same value and a direction 
θ. This scheme is presented in Figure 4.

The usage of diversity indexes with the GLGLM 
matrix (Xinli et al., 1994) seeks to investigate whether 
a mass presents, in a general way, a more homogeneous 
texture than other mass. It is possible that it contains 
a higher concentration of homogeneous neighbors, 
suggesting low diversity. Otherwise, if it possesses a 
lower concentration of homogeneous neighbors, it is 
likely to have a high diversity. This way, a community 
is composed of pixels with intensity i when this 

pixel is found only in the beginning and the end of 
a sequence of consecutive and collinear pixels in a 
direction θ (Figure 5).

For both the GLRLM matrix and the GLGLM 
matrix, the values adopted for θ were equal to 0°, 45°, 
90° and 135°. In both situations, because a matrix is 
necessary for each direction, and six quantizations 
were considered, the resulting feature vector presented 
24 variables.

Pattern recognition
To analyze whether the produced features 
differentiate between a benign and a malignant 
pattern, a pattern recognition stage was included in 
the following methodology, which will be detailed 
in sequence.

Support Vector Machine

To validate the proposed methodology and classify the 
masses as benign or malignant, we used the Support 
Vector Machine (SVM) (Vapnik, 1998). This technique 
has performed well when applied to image processing 
of mammograms, especially to distinguish patterns 
of the mammogram in mass or normal tissue, as 
reported in Braz et al. (2009), Carvalho et al. (2012) 
and Martins et al. (2010). Previously, in Rocha et al. 
(2012), the SVM was used successfully for diagnosing 
breast regions as benign and malignant.

Broadly, given the set of training samples (xi, yi), 
the input vector is xi ∈ ℜn, the correct classification of 
the samples is yi, and the index of each sample point is 
i = 1, ..., n. The aim of the classification is to estimate 
the function f : ℜn → {±1}, which correctly separates 
the test samples into distinct classes. Each sample x 
is mapped to a feature space of the highest dimension 
through the transformation function z = Φ(x). The 
hypothesis is that in this new space, the samples can 
be discriminated by linear iterations. This way, we 

Figure 3. GLCM matrix calculation for θ = 0° and d = 2. (a) ROI 5×5; (b) Occurrences of pairs of pixels with the same gray level values; 
(c) Occurrences of pairs of pixels with different gray level values.
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can say that the decision function can be improved 
with support from the kernel function K(x, y), which 
is represented by Φ(x) (Haykin and Engel, 2001). 
Therefore, the SVM issue is treated as a linear function 
of optimization represented by:

f (x) = ∑l
(i=1)α(i)yiK(x, xi) + b (4)

where K(x, xi) = Φ(x), and that the coefficient ai and 
the variable b are obtained through the optimization 
of a dual quadratic system based on the equation:

min(w,b,ξ)1/2wT ⋅ w + C∑l
(i=1)ξi (5)

subject to: y(i)[wT.Φ(x) + b] ≥ 1 – ξ(i) e ξi ≥ 0 (6)

where C > 0 is a parameter estimated by the user, 
which corresponds to a classifying error penalty, and 
ξi are the slack variables that penalize training errors.

SVM can perform very complex boundary 
separations. To do so, we use a function of space 
transformation (kernel function), which transforms 
the data in the feature space in a space of a higher 
dimension tending to infinity, where it is possible 

to trace a separation hyperplane. In this paper, we 
investigated the linear function (xi

Txj) and the Radial 
Basis Function (RBF) (exp(–γ ||xi – xj||

2)). The goal 
was to analyze which of them better discriminates 
the studied pattern.

In this paper, to perform the experiments, various 
criteria were adopted for the division of the training and 
test bases in the training stage of the SVM. The criteria 
were 50/50, 60/40, 70/30, and 80/20. Independent 
of the adopted proportion, for each configuration, 
the test was repeated 5 times at random. Because it 
is a random selection, each experiment had the cost 
parameters (C) and complexity level of the mapping 
function g, which is used when the chosen kernel is 
RBF of the SVM estimated.

The goal was to analyze whether the accuracies, 
in all repetitions, behave in a similar way, evidencing 
how the approach represents the texture pattern in 
the samples of benign and malignant masses. We 
used the implementation of the SVM available 
in the LIBSVM library (Chang and Lin, 2011) to 
conduct this stage.

Figure 4. GLRLM matrix calculation for θ = 0°. (a) ROI 5×5; (b) Occurrences of gray levels with run length of k = 3.

Figure 5. GLGLM matrix calculation for θ = 0°. (a) ROI 5×5; (b) Occurrences of gray levels with gap length of k = 2.
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Result validation
To measure the performance of the proposed 
methodology, we calculated certain statistics of the 
test results. The statistics were accuracy (A), sensitivity 
(S) and specificity (Sp). Accuracy is defined as (TP 
+TN)/(TP +FP+TN +FN). Sensitivity is given by 
TP/(TP+FN). Specificity is defined as: TN/(TN+FP), 
where TP (true positive), TN (true negative), FP (false 
positive) and FN (false negative) (Bland, 2000).

Finally, we also performed the performance 
evaluation of the classifiers by analyzing the Receiver 
Operating Characteristic (ROC) curve, which relates 
the sensitivity and specificity of the classifier 
(Mazurowski et al., 2008).

The index used by this paper in the analysis of 
the ROC curve was the Az, which represents the 
area under the ROC curve. The closer the Az index 
is to 1, the better the discrimination performed by 
the classifier between benign and malignant classes 
in the test samples. When the index Az equals 0.5, 
it means that the classifier could not differentiate 
between the benign and malignant classes (Brown 
and Davis, 2006).

Results
The results produced by applying the proposed 
methodology when performing the tests can be found 
in sequence. As described in the methods section, for 
each proportion of training and testing, 5 repetitions 
were performed. The parameters used for each test 
were estimated using genetic methods of selection, 
implemented in the reference library used. The 
parameters are unique for each test and represent the 
mapping function of the feature vectors for support 
vectors. Thus, due to the random selection of the train 
and test bases, the parameters cannot be reused. We 
also present the average accuracy, sensitivity, and 
specificity of each proportion with their standard 
deviation and present the best result obtained by the 
experiment.

Table 2 presents the results produced by the 
experiment using the Gleason index. The approach 
that presented the best result was the GLCM from 
the representation of the ROI performed by the main 
diagonal of the matrix, combined with the RBF kernel 
in 80/20 proportion, presenting an average accuracy 
of 84.33%. At this proportion, the best result was 
86.66% accuracy, 90% sensitivity, 83.33% specificity 
and an area Az of 0.86.

The results obtained using the Menhinick Index are 
listed in Table 3. In this configuration, the technique 
with the best results was GLCM using the whole 
matrix to represent the ROI and RBF kernel but at 
the proportion 50/50, with an 83.33% average of 

accuracy. The best result generated at this proportion 
had 85.33% accuracy, 81.71% sensitivity, 89.70% 
specificity and an area Az of 0.85.

Discussion
As we found from the obtained results, the two 
indexes present very similar performances; however, 
in general, the Gleason index was slightly superior, if 
we consider the greater average of accuracy.

By analyzing all results produced in both 
experiments, we noticed that the best performance 
of each index was obtained through the combination 
of RBF kernel with GLCM matrixes. In the Gleason 
index, the standard deviations of the attained average 
accuracies were 2.02% and 0.44% for diagonal GLCM 
and whole matrix, respectively. In the Menhinick 
Index case, the standard deviations of the averages 
were 0.99% and 0.91%, respectively, for the diagonal 
GLCM and whole matrix. We can observe that, in 
both situations, there were no discrepancies in the 
averages. This shows that the results behave in a 
similar way, evidencing that the tested approaches 
represent well the texture pattern of the samples of 
benign and malignant masses.

To have a more detailed analysis of the results 
produced by this work, we chose, at random, 5 
malignant ROIs and 5 benign ROIs from the set of 
samples used in the tests of the DDSM database.

As we can observe from Figures 6a and b, the 
masses visually have a spiculated outline, indicating 
a high probability of malignancy. Figures 7a and b 
have a regular outline, suggesting a high probability 
of benignancy. However, only by visual analysis of 
Figures 6c, d, e, 7c, d and e, it is not possible for the 
specialist to perform a precise diagnosis because those 
samples do not have well-defined outline features and 
have similar textures.

Given the difficulty of differentiation between 
malignant and benign patterns of the masses, the 
ideal for a more precise classification is to combine 
geometry and texture features to perform this task. 
However, the proposed method shows good results 
if compared to related works (Table 1), even using 
only texture analysis to describe the masses.

To provide evidence of the relevance of the 
proposed method, from the results presented in Table 2 
and Table 3, graphs were generated for some of the 
produced texture features, in the best and worst case 
of each diversity index using the RBF kernel, for all 
samples in Figure 6 and Figure 7.

The worst result presented by the Gleason index 
was for the feature extraction performed from the 
diversity calculated by the histogram. This can be 
verified by the graph in Figure 8a, where the 6 produced 
texture features (one for each quantization), for both 
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the malignant samples and the benign, present many 
values in the same range, making the differentiation 
of the sample classes difficult by the classifier.

Figure 8b shows the graph generated by the 
best result produced by the Gleason index, obtained 
through the GLCM matrix parting from the ROI 
representation performed by the diagonal of the matrix. 
In the construction of the graph, 10 features were used 
(1 quantization × 5 distances × 2 directions). The 
quantization used 8 gray levels, distance d = 1, 2, 3, 
4 and 5, and θ = 0° and 45°. We can observe that, for 

each line in the graph, this form of representation of 
the ROI produces the majority of the features of the 
malignant and benign classes with different value 
ranges, making it possible for the classifier to have 
an average accuracy of 84.33%.

The Menhinick index, in the RBF kernel, as 
well as the Gleason index also presented the worst 
results, through feature extraction performed via 
diversity calculation, using the histogram (Figure 9a). 
However, the best results were obtained through the 
diversity calculation with the GLCM approach, using 

Table 2. Results Gleason Index.

Technique Kernel Proportion Average 
accuracy

Average 
sensitivity

Average 
specificity

Histogram Linear 50/50 57.06 ± 5.64 54.08 ± 17.23 60.05 ± 12.08
60/40 59.66 ± 2.56 60.17 ± 9.48 59.07 ± 7.95
70/30 57.99 ± 4.24 65.42 ± 11.95 50.47 ± 13.97
80/20 57.00 ± 5.41 55.53 ± 11.04 58.57 ± 9.63

RBF 50/50 56.40 ± 3.83 59.26 ± 5.44 53.49 ± 5.88
60/40 58.66 ± 2.72 58.02 ± 7.81 59.33 ± 7.32
70/30 56.44 ± 4.63 72.92 ± 6.68 39.93 ± 6.22
80/20 56.00 ± 4.90 61.28 ± 12.94 50.80 ± 12.40

GLCM Main 
Diagonal

Linear 50/50 72.13 ± 10.32 88.40 ± 8.38 55.90 ± 28.45
60/40 76.50 ± 6.57 84.37 ± 7.06 68.55 ± 17.05
70/30 63.33 ± 10.54 98.21 ± 2.65 28.58 ± 25.37
80/20 82.92 ± 5.45 86.86 ± 5.99 78.97 ± 15.10

RBF 50/50 79.33 ± 1.40 83.13 ± 3.99 75.35 ± 4.60
60/40 80.16 ± 3.09 84.16 ± 7.32 76.07 ± 6.20
70/30 82.89 ± 1.94 85.43 ± 7.62 80.29 ± 3.99
80/20 84.33 ± 3.59 82.75 ± 7.32 85.86 ± 3.74

GLCM
Whole Matrix

Linear 50/50 55.73 ± 1.91 96.16 ± 4.71 15.34 ± 10.24
60/40 67.00 ± 8.14 85.98 ± 9.00 47.93 ± 20.77
70/30 58.88 ± 9.35 89.18 ± 3.94 28.61 ± 19.59
80/20 60.33 ± 7.33 89.20 ± 7.51 31.46 ± 18.27

RBF 50/50 77.86 ± 2.68 83.86 ± 7.85 71.82 ± 5.29
60/40 79.00 ± 4.70 81.64 ± 7.47 76.34 ± 7.53
70/30 78.44 ± 2.29 81.70 ± 8.57 75.28 ± 7.86
80/20 78.00 ± 2.67 82.14 ± 6.77 73.92 ± 6.76

GLGLM Linear 50/50 56.66 ± 3.91 85.75 ± 17.49 27.49 ± 28.12
60/40 55.00 ± 4.34 74.98 ± 15.07 34.96 ± 23.27
70/30 58.88 ± 5.35 87.50 ± 10.54 30.19 ± 22.74
80/20 57.00 ± 5.21 86.25 ± 18.60 27.86 ± 23.97

RBF 50/50 59.60 ± 3.54 69.25 ± 4.21 50.07 ± 8.06
60/40 60.83 ± 6.43 71.25 ± 11.67 50.43 ± 10.27
70/30 60.66 ± 4.53 77.92 ± 4.29 43.35 ± 11.21
80/20 63.66 ± 4.52 73.53 ± 8.05 53.82 ± 2.66

GLRLM Linear 50/50 53.06 ± 2.41 75.43 ± 20.53 30.68 ± 23.75
60/40 49.50 ± 3.68 89.23 ± 16.34 9.80 ± 19.59
70/30 49.33 ± 6.07 79.90 ± 19.78 18.85 ± 24.07
80/20 50.33 ± 5.81 81.82 ± 22.52 18.90 ± 24.77

RBF 50/50 53.33 ± 4.28 64.56 ± 10.28 42.03 ± 6.27
60/40 52.33 ± 4.13 72.32 ± 12.41 32.33 ± 15.05
70/30 52.66 ± 6.23 71.24 ± 12.00 34.09 ± 16.67
80/20 55.66 ± 8.27 68.52 ± 14.75 42.74 ± 9.79
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the whole matrix to represent the ROI. In the graph 
construction of Figures 9a and b, we respected the 
same requisites used in elaborating the graphs referring 
to the Gleason index.

The overlap among the values of the malignant and 
benign samples shown in the graphs of Figure 8b and 
Figure 9b happen because the two techniques produce 
some texture features with the same range of values. 
These data are possibly explained by the fact that the 
two researched indexes only take into consideration 
two parameters in the diversity calculation: the number 

of species and the total number of individuals. Factors 
such as the size of samples and weight given to rare 
species are not considered in the calculation of those 
indexes. However, as previously demonstrated, the 
textures of malignant and benign masses are similar; 
therefore, such factors can be determinants for a better 
discrimination between the mass classes. This way, 
it is necessary to research other diversity indexes in 
order to prove this supposition.

Comparing results produced by this work with 
related ones (presented in the introduction) was not 

Table 3. Results Menhinick Index.

Technique Kernel Proportion Average 
accuracy

Average 
sensitivity

Average 
specificity

Histogram Linear 50/50 54.53 ± 4.53 60.97 ± 21.86 47.44 ± 22.45
60/40 53.00 ± 2.15 77.85 ± 29.39 27.38 ± 34.19
70/30 54.44 ± 7.13 65.67 ± 21.02 43.17 ± 22.41
80/20 55.42 ± 5.12 75.96 ± 21.36 34.93 ± 29.00

RBF 50/50 56.53 ± 4.35 66.96 ± 11.96 45.82 ± 8.51
60/40 60.00 ± 2.04 71.15 ± 7.21 48.46 ± 8.25
70/30 59.50 ± 6.46 65.29 ± 16.41 53.62 ± 5.45
80/20 57.66 ± 1.34 64.66 ± 7.94 49.96 ± 10.32

GLCM Main 
Diagonal

Linear 50/50 71.20 ± 11.03 90.27 ± 8.46 52.23 ± 27.27
60/40 72.99 ± 6.29 94.35 ± 4.01 51.50 ± 14.96
70/30 68.22 ± 13.06 90.90 ± 9.31 45.54 ± 30.82
80/20 69.00 ± 12.45 98.05 ± 1.62 40.00 ± 22.53

RBF 50/50 78.00 ± 2.39 81.13 ± 5.01 74.37 ± 4.02
60/40 80.66 ± 4.20 83.71 ± 5.12 77.36 ± 5.90
70/30 79.77 ± 3.33 77.97 ± 3.73 81.62 ± 6.31
80/20 78.86 ± 2.63 84.35 ± 6.58 72.88 ± 6.33

GLCM
Whole Matrix

Linear 50/50 70.00 ± 10.46 89.26 ± 7.37 50.37 ± 15.91
60/40 76.99 ± 10.39 85.53 ± 6.86 67.95 ± 21.07
70/30 77.33 ± 4.13 94.85 ± 1.81 59.78 ± 6.42
80/20 77.33 ± 5.64 96.24 ± 2.66 58.50 ± 10.42

RBF 50/50 83.33 ± 1.52 87.40 ± 3.96 79.12 ± 6.25
60/40 81.00 ± 3.81 82.00 ± 6.13 79.90 ± 7.22
70/30 82.00 ± 3.54 87.36 ± 5.37 76.78 ± 7.22
80/20 83.00 ± 1.63 82.19 ± 4.86 83.66 ± 4.61

GLGLM Linear 50/50 60.93 ± 6.75 80.51 ± 14.88 40.97 ± 29.50
60/40 60.33 ± 5.26 86.94 ± 8.97 33.78 ± 23.35
70/30 54.88 ± 6.83 94.92 ± 6.19 14.85 ± 8.45
80/20 60.66 ± 6.55 80.89 ± 15.28 39.91 ± 29.03

RBF 50/50 67.33 ± 1.46 68.18 ± 8.34 66.50 ± 9.83
60/40 66.16 ± 3.86 63.15 ± 7.86 69.25 ± 2.60
70/30 69.77 ± 1.78 69.34 ± 5.78 70.25 ± 6.95
80/20 66.33 ± 2.45 65.71 ± 2.21 66.82 ± 4.78

GLRLM Linear 50/50 51.06 ± 2.25 54.98 ± 16.05 47.36 ± 16.18
60/40 53.00 ± 5.34 58.77 ± 14.66 47.29 ± 12.43
70/30 55.77 ± 2.93 64.71 ± 15.80 46.64 ± 14.50
80/20 58.00 ± 4.14 87.97 ± 14.44 27.93 ± 21.43

RBF 50/50 55.46 ± 2.04 57.95 ± 6.51 53.01 ± 5.81
60/40 53.16 ± 4.79 58.46 ± 13.51 47.76 ± 13.72
70/30 59.77 ± 4.35 74.66 ± 8.67 44.61 ± 11.05
80/20 58.33 ± 6.24 71.70 ± 8.44 44.85 ± 7.81
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a simple task because, as previously discussed, the 
works present different methodologies, image bases and 
number of samples used in the experiments. However, 
by analyzing Table 1, it is possible to establish 
some conclusions. The first is that, from approaches 
that extract features only via texture analysis, the 
performance of the methodology proposed in this 
work is, in general, superior to the results presented 
by other works. Even when comparing the results 
of this work with those that combine texture and 
geometry features, we can observe that the results 
generated here are superior to the majority of the 
related works, outlining that the proposed methodology 
is quite promising.

Another point that deserves attention is that, in 
this work, a detailed analysis of the results shows 

the average accuracy, sensitivity, and specificity 
obtained. In other words, not only isolated results 
are considered. This way, it is possible to verify the 
consistency of the produced results for discriminating 
between malignant and benign patterns.

Overall, although the two indexes presented 
statistically similar performances, the Gleason index 
was slightly superior. The Gleason diversity index, 
combined with the approach of the GLCM matrix, 
resulted in 86.66% accuracy, 90% sensitivity, 83.33% 
specificity and an area Az of 0.86. However, it is still 
necessary to not only perform more tests but also 
investigate the performance in other bases of regions 
of interest, as well as other diversity indexes, in order 
to perform a more detailed analysis of the proposed 
methodology.

Figure 6. Malignant ROI. (a) to (e) correspond to the malignant samples labeled M1 to M5.

Figure 7. Benignant ROIs. (a) to (e) correspond to the benignant samples labeled B1 to B5.
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