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Closed-form solutions of generalized linear first-order
differential equations by Picard’s method

Soluções em forma fechada de equações diferenciais lineares de primeira ordem generalizadas pelo método
de Picard
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For homogeneous linear first-order differential equations, it is shown that Picard’s method of successive
approximations is effective to furnish a closed-form solution even if the coefficient is an arbitrary function.
Keywords: Picard’s method, successive approximations, first-order differential equation.

Para equações diferenciais lineares de primeira ordem homogêneas, é demonstrado que o método de sucessivas
aproximações de Picard é eficaz para fornecer uma solução em forma fechada mesmo quando o coeficiente é uma
função arbitrária.
Palavras-chave: Método de Picard, sucessivas aproximações, equação diferencial de primeira ordem.

In a recent didactic paper, Diniz [1] presented twelve
different ways to solve the well-known simple harmonic
oscillator problem. Among these methods lies Picard’s
method of successive approximations, commonly utilized
for resolving particular cases of first-order differen-
tial equations (see, e.g. [2–7]). Here, after providing
a succinct overview of this method, we demonstrate
its effectiveness in yielding a closed-form solution for
a homogeneous linear first-order differential equation,
even when the coefficient is an arbitrary function.

Differential equations akin to

dy (x)
dx

= f [x, y (x)] (1)

can be reformulated as integral equations:

y (x) = y0 +
x∫

x0

dζ f [ζ, y (ζ)] . (2)

These integral equations can be solved iteratively.
In Picard’s method, we derive a sequence of func-
tions {yn (x)}n=0,1,2,...,N , each satisfying the condition
yn (x)|x=x0

= y0. It is supposed that there is an interval
about y0 on which this sequence approaches the solution
y (x) as N → ∞ and that it is the only continuous
solution which does so (see, e.g. [2–7]). Because each
succeeding function improves the prior one, this method
is termed the method of successive approximations.
The initial approximation is y0 (x) = y0. Subsequent
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approximations are obtained as

yn+1 (x) = y0 +
x∫

x0

dζ f [ζ, yn (ζ)] , (3)

resulting in

y (x) = lim
n→∞

yn+1 (x) = y0 +
x∫

x0

dζ f
[
ζ, lim

n→∞
yn (ζ)

]
,

(4)
For the general homogeneous linear first-order differ-

ential equation

dy (x)
dx

+ Q (x) y (x) = 0, (5)

where y(0) = y0 and the coefficient Q (x) is an arbitrary
function, Picard’s method of successive approximations
yields

yn+1 (x) = y0 −
x∫

0

dζ Q (ζ) yn (ζ) , (6)

with yn(0) = y0. The first approximation is y0 (x) = y0,
and the subsequent approximations follow suit:

y1 (x) = y0

1 −
x∫

0

dx1 Q (x1)

 , (7)
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y2 (x) = y0

1 −
x∫

0

dx1 Q (x1)

+
x∫

0

dx1

x1∫
0

dx2 Q (x1) Q (x2)

 ,

(8)

y3 (x) = y0

1 −
x∫

0

dx1 Q (x1)

+
x∫

0

dx1

x1∫
0

dx2 Q (x1) Q (x2)

−
x∫

0

dx1

x1∫
0

dx2

x2∫
0

dx3 Q (x1) Q (x2) Q (x3)

 ,

(9)

so that

yn (x) = y0

1 −
x0∫

0

dx1 Q (x1)

+
x0∫

0

dx1

x1∫
0

dx2 Q (x1) Q (x2)

−
x0∫

0

dx1

x1∫
0

dx2

x2∫
0

dx3 Q (x1) Q (x2) Q (x3)

+ · · · + (−1)n

x0∫
0

dx1

x1∫
0

dx2

x2∫
0

dx3

...

xn−1∫
0

dxn Q (x1) Q (x2) Q (x3) . . . Q (xn)

 ,

(10)
where we have defined x0 = x. This can be compactly
written as

yn (x) = y0

[
1 +

n∑
k=1

(−1)k
Ik (x)

]
, (11)

where

Ik (x) =
k∏

j=1

xj−1∫
0

dxj Q (xj) . (12)

The definite integral

I2 (x) =
x∫

0

dx1

x1∫
0

dx2 Q (x1) Q (x2) (13)

is depicted in Figure 1 as an integral over the triangle
above the dashed line x2 = x1 for 0 < x2 < x. The first
integral is over the area of a horizontal slice of width dx2

Figure 1: Graphical representation of the double integral∫ x

0 dx1
(∫ x1

0 dx2 Q (x1) Q (x2)
)

is over the triangle above
the dashed line x2 = x1 for 0 < x2 < x, and∫ x

0 dx2
(∫ x2

0 dx1 Q (x2) Q (x1)
)

is represented over the triangle
below the dashed line for 0 < x1 < x. Both are equivalent to
half of the integral over a square with sides equal to x.

ranging from 0 to x1, whereas the second integral adds
up all the contributions from these horizontal slices from
0 to x. Because x1 and x2 are dummy variables, I2 (x)
can also be written as

I2 (x) =
x∫

0

dx2

x2∫
0

dx1 Q (x2) Q (x1) . (14)

Now, we can see an integral of the very same integrand
over the triangle below the line x2 = x1. The first
integral is over the area of a vertical slice of width dx1
ranging from 0 to x2. The second integral adds up all the
vertical slices from 0 to x. Concisely, I2 (x) represents
half of the integral covering the square with 0 < x1 < x
and 0 < x2 < x, i.e.

I2 (x) = 1
2

 x∫
0

dζ Q (ζ)

2

. (15)

It is instructive to note that, even without resorting
to geometry, this result can be analytically derived by
identifying

u (x) =
x∫

0

dζ Q (ζ) , (16)

and subsequently applying integration by parts of
u (x) du (x) /dx.
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In general,

Ik (x) = 1
k!

 x∫
0

dζ Q (ζ)

k

, (17)

because there are k! identical terms of the type (13),
corresponding to the k! possible ways of interchanging
the dummy variables x1, x2, . . . , xk. As a result,

yn (x) = y0

n∑
k=0

1
k!

−
x∫

0

dζ Q (ζ)

k

, (18)

such that lim
n→∞

yn (x) equals

y (x) = y0 exp

−
x∫

0

dζ Q (ζ)

 , (19)

which represents the general solution of (5).
It can be confirmed that incorporating a constant

nonhomogeneous term into equation (5) poses no addi-
tional challenge for Picard’s method. With diligent
application of Leibniz’s theorem for differentiation under
the integral sign and integration by parts repeatedly,
we can smoothly include any arbitrary nonhomogeneous
term.
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