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Simple pendulum in a rotating reference frame
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Describing the harmonic motion of a simple pendulum observed from a rotating reference frame necessitates
solving the differential equations governing three-dimensional motion in a non-inertial reference frame, which can
be a challenging endeavor for newcomers to this subject. However, in this study, we propose a highly didactic and
visually accessible approach by considering the rotating reference frame as a matrix transformation. This approach
enables a deeper understanding of the origin of Coriolis and centrifugal accelerations, which are responsible for
the curved trajectories exhibited by the simple pendulum in a rotating reference frame.
Keywords: Harmonic motion, simple pendulum, non-inertial reference frame, foucault pendulum, bravais
pendulum.

1. Introduction

Simple pendulums have been of great historical impor-
tance for humanity [1] by allowing time intervals to
be measured with reasonable precision, being the fun-
damental piece to count a second of lapse in ancient
mechanical clocks [2]. In the middle of the 19th century,
a pair of French scientists, Léon Foucault and Augustine
Bravais, independently developed experiments related
to pendulums in Paris to prove the Earth’s rotation
motion. On the one hand, Foucault observed how the
plane of oscillation of the pendulum in its back-and-
forth movement changed subtly as the hours passed
[3]. On the other hand, Bravais analyzed the motion
of a conical pendulum in clockwise or counterclockwise
circular paths, and observed a difference in the period of
oscillation between these two situations [4]. In summary,
both experiments reveal the existence of the terrestrial
rotational motion, for this reason Newtonian mechanics
considers our planet as a non-inertial frame of reference,
or rotating reference frame.

Thus, when someone starts this study for the first
time, one is faced with the need to seek the solution of
the differential equations associated with the dynamics
of the three-dimensional motion of the simple pendulum
in a rotating reference frame. According to the initial
conditions of motion, one could have the situation of the
pendulum of Foucault [5–8] or the pendulum of Bravais
[9, 10].

For that reason, in this work, we present an analytical
and didactic approach that avoids the need for intricate
solutions to describe the pendulum motion in the rotat-
ing frame. Instead, we focus on analyzing the motion of
the simple pendulum within an inertial reference frame,
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utilizing the small angle approximation 2. Subsequently,
we introduce the concept of the rotating frame 3 to
describe the pendulum’s motion relative to this frame of
reference. Finally, we demonstrate how to correlate the
motion observed in the rotating frame with the motion
of the pendulum in the inertial frame 4. To enhance
comprehension, we provide visual examples and concise
videos that are easily accessible and shareable.

2. Simple Pendulum

In this section, the motion of a simple pendulum is
analyzed under the small angle approximation, consid-
ering it to be a point-shaped object, with mass m, and
suspended by a rigid rod of length L of negligible mass.
To describe its motion, a three-dimensional inertial
reference frame expressed in the Cartesian coordinates
xyz will be assumed, whose origin will be located on the
mass when it is in its equilibrium position, and the axis
z represents the vertical direction. Thus, in the xy plane,
its oscillatory back and forth motion will be registered.

If initially we consider the pendulum deviated from
its equilibrium orientation along the z axis, so that it
only exhibits a horizontal displacement along the x axis,
related to the angle θ as we can observe in Figure 1, due
to there is not imbalance along the y axis, its position in
relation to time can be described by instantly knowing
the angle θ, then its coordinates can be expressed as
(x, y, z) =

(
L sin θ, 0, L(1 − cos θ)

)
. Thus, when we

analyze the dynamics of the pendulum without frictional
forces or air drag, we have that the force responsible to
return it to its equilibrium position corresponds to one of
the components of the pendulum’s weight perpendicular
to the direction of the rod, F = −mg sin θ, where the
negative sign is related to the decrease of the angular
deviation, allowing the pendulum to return always to the
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Figure 1: Decomposition of the weight force according to the
orientation of the simple pendulum that moves in the plane of
oscillation according to the inertial reference.

equilibrium position, for this reason this class of force is
known as restoring force.

Based on that, Newton’s second law is re-expressed
after a few algebraic steps as,

−mg sin θ = mL
d2θ

dt2 , ⇒ d2θ

dt2 = − g

L
sin θ. (1)

This is a second order nonlinear differential equation,
it independents of the mass of the suspended object,
corresponding to the angular motion of the pendulum,
whose analytical solution is quite difficult to obtain [11].
However, if initially it is considered that the horizontal
deviation is small in relation to the length of the
pendulum itself, related to small angular deviation,
smaller than a radian θ ≪ 1 rad. Then, you can apply
the trigonometric approximation for small angles [12],
letting us to re-write the sine function of eq. (1) to its
own argument, sin θ ≈ θ. Thus, the second time deriva-
tive of the angular orientation function θ(t) is related
to itself through the negative of the constant ω2

0 = g/L,
which depends inversely proportional by the pendulum’s
length. Therefore, the differential equation related to
angular motion for small deviations is expressed as,

d2θ

dt2 = −ω2
0θ, (2)

whose solution θ(t) = A cos(ω0t + ϕ) represents a simple
harmonic motion with angular frequency ω0, and period
T = 2π

√
L/g. Where A is the angular amplitude of

the oscillation expressed in radians, and a phase factor
ϕ related to the initial conditions of the motion. Since
the previous pair of terms will depend on the initial
conditions, below we will briefly present three possible
cases of the initial motion of the simple pendulum.

Case 1: If initially the pendulum starts from an inclina-
tion denoted by the angle θ0 ̸= 0, and with zero speed
v0 = 0, which implies the phase factor ϕ = 0, then
the angular orientation function and its time derivative

denoted by a dot, are expressed as,

θ(t) = θ0 cos ω0t,

θ̇(t) = −θ0ω0 sin ω0t.
(3)

Where θ̇ is the function that represents the angular
velocity of the periodic motion of the simple pendulum.

Case 2: If initially the pendulum starts its motion from
the equilibrium position θ0 = 0, with an initial speed
v0 ̸= 0. The maximum angular velocity is related to the
initial tangential velocity of the pendulum v0 = Lθ̇max,
as a consequence the phase factor must be ϕ = π/2. So,
after a brief simplification we obtain that the angular
deviation and its angular velocity as,

θ(t) = (v0/L)
ω0

sin ω0t,

θ̇(t) = (v0/L) cos ω0t.

(4)

Case 3: When initially the angle of the pendulum is
θ0 ̸= 0 and the initial speed v0 ̸= 0, then the amplitude
of angular motion and the phase factor will be,

A = θ0

cos ϕ
, ϕ = arctan

(
−(v0/L)

θ0ω0

)
. (5)

Regardless of the case in question for the initial condi-
tions of the pendulum, its coordinates as a function of
time are:

x = L sin θ,

y = 0,

z = L
(
1 − cos θ

)
.

(6)

The velocity vector can be obtained by taking the time
derivative of every coordinates,

ẋ = Lθ̇ cos θ,

ẏ = 0,

ż = Lθ̇ sin θ.

(7)

The acceleration vector can be obtained by taking the
second time derivative of the position coordinates, which
is denoted by a double dot in its notation,

ẍ = Lθ̈ cos θ − Lθ̇2 sin θ,

ÿ = 0,

z̈ = Lθ̈ sin θ + Lθ̇2 cos θ.

(8)

Thus, we explored the dynamics of a simple pendulum
in an inertial reference frame, revealing the intricate
interplay between weight and angular motion. In the
next section, we delve into rotating reference frames
to understand pendulum motion, particularly in the
context of Foucault and Bravais experiments. Through
this transition, we unify theoretical concepts with exper-
imental findings, elucidating the intricate effects of
rotation on pendulum dynamics.

Revista Brasileira de Ensino de Física, vol. 46, e20230204, 2024 DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0204



Villamizar e20230204-3

3. Rotating Reference Frame

A rotating reference frame is defined as a reference
system that presents only a rotational motion with a
constant angular velocity Ω, in relation to some previ-
ously established constant direction. Based on this defi-
nition, a three-dimensional Cartesian rotating reference
frame could be algebraically described by assuming the
particular case in which z is the axis of rotation, and it is
coaxial with an inertial reference frame at the instant t =
0. Therefore, the description of the events that happen in
the plane xy for any particular subsequent instant t, will
be related to the counterclockwise deviation, α = Ωt, of
the rotating reference frame in relation to the inertial
frame. Based on this definition, we will consider any fixed
point P whose coordinates in the inertial reference frame
plane xy are (xP , yP ), as shown in Figure 2.

In contrast, in the rotating reference frame the point
is observed at coordinates (XP , YP ), whose relationship
with the coordinates of the inertial reference frame can
be found when we consider an independent information
on rotations, the distance from the coordinate origin to
the object P , defined as r =

√
x2

P + y2
P . In addition, the

orientation of the object relative to the x-axis of the iner-
tial frame is defined using the angle φ = arctan

(
yP /xP

)
.

These last two pieces of information, r and φ, allow us to
define the curvilinear polar coordinates, enabling us to
re-express the Cartesian coordinates of the object P as
xP = r cos φ and yP = r sin φ. In this way, if we consider
the orientation difference of the rotating reference frame
α in relation to the inertial one, then we can express
the coordinates of the object P in the rotating reference
frame as,

XP = r cos(φ − α) = xP cos α + yP sin α,

YP = r sin(φ − α) = yP cos α − xP sin α.
(9)

The previous pair of coordinates can be condensed using
matrix notation,(

XP

YP

)
=

(
cos α sin α

− sin α cos α

) (
xP

yP

)
. (10)

Thus, we can define a three-dimensional transformation
matrix that allows us to express the coordinates of

Figure 2: The point P in relation to the inertial frame (xP , yP ),
and according to the rotating frame (XP , YP ), where α is the
orientation difference between both references.

any object in the rotating frame with respect to its
coordinates in the inertial frame when the rotation
occurs along the z-axis,

R̂z(α) =

 cos α sin α 0
− sin α cos α 0

0 0 1

 . (11)

For instance, if the rotating frame with a constant
angular velocity Ω observes a simple pendulum whose
coordinates in the inertial frame are given by eq. (6), its
position will be expressed as:X

Y
Z

 =

 cos Ωt sin Ωt 0
− sin Ωt cos Ωt 0

0 0 1

  L sin θ
0

L
(
1 − cos θ

)
 ,

(12)
thus, its coordinates are,

X = L sin θ cos Ωt,

Y = −L sin θ sin Ωt,

Z = L
(
1 − cos θ

)
.

(13)

Then, the pendulum’s velocity vector components in this
frame exhibit an compound motion,

Ẋ = Lθ̇ cos θ cos Ωt − LΩ sin θ sin Ωt,

Ẏ = −Lθ̇ cos θ sin Ωt − LΩ sin θ cos Ωt,

Ż = ż.

(14)

Additionally, the components of its acceleration vector
are,

Ẍ = Lθ̈ cos θ cos Ωt − Lθ̇2 sin θ cos Ωt

− 2Lθ̇Ω cos θ sin Ωt − LΩ2 sin θ cos Ωt,

Ÿ = −Lθ̈ cos θ sin Ωt + Lθ̇2 sin θ sin Ωt

− 2Lθ̇Ω cos θ cos Ωt + LΩ2 sin θ sin Ωt,

Z̈ = z̈.

(15)

Consequently, this description reveals a more complex
swing pendulum motion from a non-inertial reference
frame. Therefore, to have a good understanding of
every acceleration term obtained, we should change the
description by using Polar coordinates and expressing
the unitary vectors of this coordinate system as functions
of the Cartesian coordinates, as follows,

r̂ = cos φ x̂ + sin φ ŷ,

φ̂ = − sin φ x̂ + cos φ ŷ.
(16)

In Polar Coordinates, as shown in Figure 3, the vector
position of an object is given by,

r⃗ = r r̂, (17)

where r is the distance from the origin coordinate system
to the object, and r̂ represent its radial orientation.
If both information changes in function of time, when
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Figure 3: The solid curve represent the trajectory of an object
in the inertial frame. Over its position at any instant of time, we
see represent the Cartesian unitary vectors and the Polar unitary
vector.

we calculate the time derivative of position vector taking
into account the product derivative rule and chain rule,
we have,

˙⃗r = ṙ r̂ + r
dr̂

dφ

dφ

dt
, (18)

Looking at the eq. (16), we can get that dr̂/dφ = φ̂,

˙⃗r = ṙ r̂ + rφ̇ φ̂. (19)

When the motion of an object is described in polar
coordinates, the velocity vector has two components, ṙ is
the radial velocity and rφ̇ is the tangential velocity [13].

The second time derivative of position vector repre-
sented the acceleration vector of the object. Additionally,
alone the derivation process and taking into account
the product rule and chain rule, we will get that
dφ̂/dφ = −r̂. After some steps we get,

¨⃗r =
(
r̈ − rφ̇2)

r̂ +
(
2ṙφ̇ + rφ̈

)
φ̂. (20)

Where the first term alone the radian orientation repre-
sents the radial acceleration r̈, and the second one rφ̇2

represents the centripetal acceleration. The first term
alone angular orientation 2ṙφ̇ is equivalent to Coriolis
acceleration, and the second one rφ̈ is the tangential
acceleration [14]. This representation of the acceleration
vector could be re-expressed in a general way for a non-
inertial frame by the vectorial notation [15],

a⃗ = ¨⃗r + ˙⃗φ ×
( ˙⃗φ × r⃗

)
+ 2

( ˙⃗φ × ˙⃗r
)

+
( ¨⃗φ × r⃗

)
. (21)

For the particular case in which the rotating frame have
a constant angular velocity Ω, the acceleration vector in
eq. (20) is expressed by,

¨⃗r =
(
r̈ − rΩ2)

r̂ + 2ṙΩ φ̂. (22)

Alternatively, we can re-express the acceleration vector
in the Polar coordinates (22) to the Cartesian coordi-
nates by using the unitary vectors (16) and applying the
kinematics of the pendulum in which there is a relation
one to one between r and x position of the pendulum

and its derivatives. Then we have,

¨⃗r =
(
Lθ̈ cos θ − Lθ̇2 sin θ + LΩ2 sin θ

)
×

(
cos Ωt x̂ + sin Ωt ŷ

)
+ 2Lθ̇2Ω cos θ

(
− sin Ωt x̂ + cos Ωt ŷ

)
,

(23)

The acceleration alone each coordinate is,

Ẍ = Lθ̈ cos θ cos Ωt − Lθ̇2 sin θ cos Ωt

− 2Lθ̇Ω cos θ sin Ωt − LΩ2 sin θ cos Ωt,
(24)

and,

Ÿ = Lθ̈ cos θ sin Ωt − Lθ̇2 sin θ sin Ωt

+ 2Lθ̇Ω cos θ cos Ωt − LΩ2 sin θ sin Ωt.
(25)

Is worth to be clarified that the rotating frame spins
at clockwise direction, −Ω, this end up to visualize the
pendulum at the opposite Y direction. Thus, throughout
this description using Polar coordinates, we can under-
stand the reason why the acceleration vector component
appears complicated when applying a matrix transfor-
mation eq. (15). Despite this complexity, this reasoning
allows us to avoid solving the differential equation of
motion obtained from Newton’s second law for a simple
pendulum in a rotating frame.

In the next section, we will analyze the motion
perception of the simple pendulum according to the
angular velocity of the rotating frame as the Foucault
and Bravais pendulum.

4. Pendulum in the Rotating Frame

In this section, we scrutinize the motion of the pendulum
from a rotating reference frame, which maintains a
consistent angular velocity. Unlike Earth’s rotational
angular velocity, ΩE , which is constrained by geographi-
cal latitude λ as Ω = ΩE sin λ, our examination does not
adhere to this constraint. Instead, we explore a rotating
frame with a predefined angular velocity, which serves
as a multiple of the angular frequency of the simple
pendulum oscillation. Denoting this constant angular
velocity as Ω = kω0, where 0 < k ≤ 1 is a real
constant, aligns with the experimental setup observed
by Foucault and Bravais. This approach enables us to
delve into the interplay between the pendulum’s motion
and the predetermined rotational dynamics, shedding
light on the fundamental dynamics of rotating frames
and pendulum systems.

Prior to this, we established the X and Y coordi-
nates of any object within the rotating frame relative
to the inertial frame (10). Now, we delve into the
specifics of the pendulum’s motion as observed from
this rotating reference frame. By using the relationship
between the angular velocity of the rotating frame and
the simple pendulum’s angular frequency, we can gain
valuable insights into the system’s behavior. Note that
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the choice of Ω allows us to explore a broad range
of scenarios beyond a direct association with Earth’s
rotational parameters, enabling us to study the pendu-
lum’s dynamics under various conditions and external
influences.

For instance, in the particular case k = 1, the
rotating frame will return to the initial orientation after
a complete pendulum oscillation. Then, if we assume
that, in the inertial frame when the pendulum starts
its motion satisfying the initial conditions (case 1 ), it
will be restricted to the plane defined by the xz axes.
However, when we observe it in the rotating reference
frame, contrary to our intuition, the pendulum will
follow a distinct path along the positive X-axis, with a
shape that closely resembles a circle, especially under the
small angle approximation. Analyzing its speed, we find
a constant value, which is indicative of circular motion,

Ẋ2 + Ẏ 2 = L2[
θ̇2 cos2 θ + Ω2 sin2 θ

]
,

= L2ω2
0
[
θ2

0 sin2 ωt cos2 θ + sin2 θ
]
,

≈ L2ω2
0
[
θ2

0 sin2 ω0t + θ2
0 cos2 ω0t

]
= L2ω2

0θ2
0.

(26)

In this particular case, the pendulum displays a dis-
tinct behavior, exhibiting an oscillation with an angular
frequency precisely twice as high as its characteristic
frequency, denoted by ω0. This intriguing phenomenon
arises due to the synchronization between the rotat-
ing reference frame and the pendulum’s motion. As a
consequence of this synchronized motion, the pendulum
undergoes a unique circular trajectory along the positive
region of the X-axis, as illustrated in Figure 4. This
fascinating behavior highlights the profound influence
of the tuned interaction between the rotating frame and
the pendulum system, leading to the observed doubling
of its angular frequency during oscillation. For a better
visualization of the pendulum motion observed by the
rotating frame in the previous condition, we recommend
to watch the videos by clicking here [16] and here [17].

To gain insights into the pendulum’s motion relative
to the rotating reference frame, we will explore cases

Figure 4: The thick curve represents the trajectory of the
pendulum according to the rotating reference frame, while the
thin line shows the plane oscillatory motion of the pendulum in
the inertial frame of reference.

where this frame exhibits an angular frequency smaller
than the oscillation frequency of the pendulum, with
values in the range 0 < k < 1. For instance, when
the angular frequency of rotation is exactly half the
angular frequency of the pendulum, k = 1/2, it takes two
complete oscillations of the pendulum for the rotating
reference frame to return to its initial orientation. As a
result, the observed trajectory takes on the unique shape
of a flower with four distinct petals, a visually intriguing
pattern indicative of the dynamic interplay between the
rotating frame and the pendulum system.

Similarly, for fractional values of k, such as one-
third, one-fourth, one-fifth, and so on, the pendulum
traces trajectories that form flower-like patterns with
a distinct number of petals, as depicted in Figure 5.
For a better visualization of the flower-like trajectories
of the pendulum in the rotating reference frame, we
recommend watching the video by clicking here [18].

Notably, trajectories corresponding to these fractional
values of k have finite lengths. However, when k is
expressed as an irrational fractional number, such as
1/

√
2, it does not represent a natural number partition of

unity as in the previous examples, leading to trajectories
with infinite lengths, see Figure 6.

Figure 5: Trajectories in the shape of flower performed by the
simple pendulum recorded in the rotating reference frame when
its angular velocity of rotation is a fraction of the characteristic
angular frequency of the pendulum.

Figure 6: When k = 1/
√

2, the rotating frame observes a
segment of the open pendulum’s trajectory.
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In contrast to the previous analysis, from now on, we
will consider the pendulum attached to the X-axis of
the rotating reference frame, so both rotate together.
When the position of the pendulum coincides with the
orientation of the positive x-axis of the inertial reference
frame, it is released at the instant t0. According to the
inertial reference, the pendulum that initially exhibited
uniform circular motion with a translational velocity
vt = ΩL sin θ0, it presents a motion that decomposed
in relation to xy-axis shows two oscillatory motions
with equal angular frequency ω0 =

√
g/L, but with

different amplitudes. In other words, along the x-axis
the motion will be that of a pendulum released from
rest from an initial angular opening θ0, satisfying the
initial condition (case 1 ). However, along the y-axis,
the pendulum will start its motion from the zero angle
with velocity vt, reaching a maximum amplitude θmax =
k sin θ0, satisfying the initial condition (case 2 ). Thus,
the angular functions associated with each axis are,

θx = θ0 cos ω0t,

θy = (k sin θ0) sin ω0t.
(27)

In this manner, the displacement of the pendulum from
its equilibrium position on the plane can be described
by considering its motion in both horizontal directions,
given by L

√
sin2 θx + sin2 θy. By recognizing that the

vertical distance from the pendulum’s support to its
position is L cos θz, we can use the Pythagorean theorem
to relate this horizontal displacement to the angular ori-
entation of the pendulum with respect to the vertical z-
axis. Thus, the cosine of the pendulum’s angular orienta-
tion can be expressed as cos θz =

√
1 − sin2 θx − sin2 θy.

Consequently, the coordinates of the pendulum in the
inertial frame are given by,

x = L sin θx,

y = L sin θy,

z = L
(
1 − cos θz

)
.

(28)

In this case, the pendulum’s motion will no longer be
restricted to a vertical plane, and it will follow a curved
trajectory whose projection on the xy-plane is similar to
the shape of an ellipse. But this is not exactly a plane
ellipse because the pendulum motion is tree-dimensional.
In other words, this happens over a spherical surface of
radius equal to the pendulum’s length. Thus, we have
this inequality,

x2

[L sin θ0]2 + y2

[L sin(k sin θ0)]2 ̸= 1. (29)

In which one of its ‘semi-axes’ will depend on the
initial tangential velocity, while the other ‘semi-axes’ will
depend on the initial position along the X-axis. Conse-
quently, the rotating reference frame will register the
pendulum motion in another way, where the pendulum

coordinates in this reference frame are easily obtained
through the action of the rotation matrix on the vector of
the pendulum coordinates in the inertial reference frame,X

Y
Z

 =

 cos(kω0t) sin(kω0t) 0
− sin(kω0t) cos(kω0t) 0

0 0 1

 L sin θx

L sin θy

L
(
1 − cos θz

)
,

(30)
thus, its coordinates are,

X = L sin θx cos(kω0t) + L sin θy sin(kω0t),
Y = −L sin θx sin(kω0t) + L sin θy cos(kω0t),
Z = L

(
1 − cos θz

)
.

(31)

As in the previous situation, we will assume the rota-
tion frequency of the rotating frame as being a fraction
of the oscillation frequency of the simple pendulum, k =
1/2, 1/3, 1/4, . . . ; So, the trajectory that the pendulum
performs in the rotating reference frame exhibits a
shape similar to a star. Because at the instants when
the pendulum reaches the maximum angular deviation,
its tangential velocity allows it to follow the motion
of the rotating frame, and for this reason it is seen
momentarily at rest. Furthermore, it is worth mentioning
that the circular spacing observed in the central region
of the star-shaped trajectory is related to the ‘elliptical’
motion of the pendulum in the inertial reference frame,
whose radius is related to L sin(k sin θ0), as shown in
Figure 7. For a better understanding of the star-shaped
trajectories of the pendulum in the rotating reference
frame, we recommend to watch the video by clicking
here [19].

In contrast, this is not solely a theoretical explication
of pendulum motion in a rotating frame. Empirical evi-
dence can verify some of the preceding findings through
experimental observation of a simple pendulum’s move-
ment recorded in a rotating reference frame. These
observations reveal distinctive trajectories resembling

Figure 7: The thick curves represent the star -shaped trajectories
performed by the simple pendulum released in the rotating
reference frame, while the thin curves show the ‘elliptical’
motion of the pendulum in the inertial reference frame.
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Figure 8: Theoretical pendulum’s trajectories when k = 1/9, as
we can see in the experiment shown in [21].

Figure 9: Horizontal vector acceleration and its projections of
the simple pendulum observed from the rotating frame when
k = 1/3 (black curve), and the back-and-forth motion in the
inertial frame (red line).

a flower or star shape, contingent upon the initial
motion conditions [20], as well as [21] in which we can
depict these trajectories using the rotating frame with an
angular velocity nine times lower than the pendulum’s
angular frequency, as illustrated in Figure 8.

Finally, considering the discussion in the previous
section 3 regarding two-dimensional kinematics based
on polar coordinates, we derived the expression for the
acceleration experienced by an object observed from a
rotating reference frame (20). In the particular cases
when we observing the oscillatory motion of a simple
pendulum from a rotating reference frame with an
angular velocity equal to one-third of the pendulum’s
angular frequency, as shown in Figure 9, it becomes
evident that the pendulum experiences a fictitious accel-
eration perpendicular to the direction of its oscillation.
This component is directly associated with the Coriolis
acceleration, a consequence of the rotating reference
frame, resulting in relative deviations in the pendulum’s
trajectory. This type of description could help us under-
stand the origin of the fictitious forces experienced by
an object observed from a non-inertial reference frame.
For a better visualization of the pendulum’s acceleration
observed by the rotating frame, we recommend to watch
the videos by clicking here [22].

5. Considerations

Through the exposition of the motion of the simple
pendulum in a rotating reference frame, modeled by

a matrix transformation of rotation in this study, we
were able to replicate scenarios similar to the Foucault
pendulum and the Bravais pendulum. It is essential to
highlight that the primary aim of this description is to
facilitate the comprehension of the relative deviation
in pendulum motion within a rotating reference frame
for individuals approaching this subject for the first
time, particularly those interested in the renowned
experiments conducted by Léon Foucault and Augustine
Bravais.

Consequently, there is no necessity to involve oneself
in the intricate task of solving equations of motion
for non-inertial reference frames or grappling with the
appearance of fictitious forces on the object. Rather, the
emphasis lies in understanding the origin of the fictitious
acceleration contribution, which governs the trajectory
observed by the pendulum within the rotating frame.
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