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This work investigates whether there are harmonic sets which are universally prioritized when fitting the
chromatic just scale with equal-tempered tunings. We design a method to find which temperaments properly
and non-ambiguously fit a set of pure intervals and show that: (a) Within range N ∈ [9, 54], temperaments
with 12, 19, 22, 24, 31, 34, 41 and 53 divisions are suitable for adjusting the twelve-tone chromatic just scale – in
particular, 53 divisions provide the most accurate fit, (b) For M -element subsets of the chromatic universe with
M ∈ [3, 7], these solutions are always more faithfully reproduced when the target set is a major scale rather than
a minor one, and (c) Sequences of notes uniformly distributed over the octave are disadvantageous references
for finding suitable temperaments numerically. The latter observation suggests a mathematical background for
understanding the preference for non-uniform scales in world music revealed by recent studies in ethnomusicology.
Keywords: Music theory, equal-temperament, harmony, pure intervals.

Este trabalho investiga se existem conjuntos harmônicos que são universalmente priorizados ao se ajustar a
escala cromática pura com uma afinação igualmente temperada. Nós criamos um método para encontrar quais
temperamentos ajustam de forma não-ambígua um conjunto de intervalos puros e mostramos que: (a) No intervalo
N ∈ [9, 54] temperamentos com 12, 19, 22, 24, 31, 41 e 53 divisões são os adequados para ajustar a escala cromática
pura de 12 notas – em particular, 53 divisões proporcionam o ajuste mais preciso, (b) Para subconjuntos com
M ∈ [3, 7] notas, essas soluções são sempre mais fielmente reproduzidas por escalas maiores, em comparação com
as menores, e (c) Sequências de notas uniformemente distribuídas pela oitava são referências desvantajosas para
a busca numérica de bons temperamentos. A última observação sugere um contexto matemático para entender a
preferência por escalas não-uniformes na música mundial revelada por estudos recentes em etnomusicologia.
Palavras-chave: Teoria musical, temperamento igual, harmonia, intervalos puros.

1. Introduction

An intimate connection between physics and music
underlies a statement of beauty in combining sound
waves into harmonies. The fact that these cannot be
perfectly adjusted in a frequency structured scheme is a
curious and intriguing feature of nature, mixing wave
properties, our sound perceptions, and consequently
the way we make art. Investigations into universal
features of music were popularized with the increasing
statistical data on ethnomusicology, revealing patterns
across different cultures [1, 2]. For example, non-uniform
scales, harmonic sequences built with different step sizes
between notes, are recurrent and have been shown to
provide cognitive benefits for learning and memorizing
melodies – a possible explanation for their prevalence
throughout history [3, 4].

The choice of a tuning system, or temperament,
reflects requirements of the pieces and instruments to
be played alongside physics and psychoacoustic obser-
vations [5–9]. It is a known fact that the most pleasing
*Correspondence email address: lucasfelipe.bmo@gmail.com

harmonies for the human ear are combinations of notes
with frequency ratios that can be written as small integer
fractions, which are called pure intervals, a natural
result of systems like air columns and vibrating strings
[10–12]. One important example is the octave, defined
by two notes with a ratio of 2/1 between its frequencies.
Other intervals within this range can be used to build
harmony, like the fifth (3/2) and the major third (5/4).
Many tuning systems were designed in antiquity and the
medieval period in order to produce such intervals, which
referred to beauty on the philosophical background
of the time, but none of them was able to be key
independent – as music of that period used primarily
the C major key these discrepancies were little noticed
[13, 14].

Alternatively, equal temperament can reasonably
adjust pure intervals while allowing for pieces to be
played in any key [15, 16]. Over this setting, the only
pure interval is the octave whereas intermediate notes
are determined by frequencies in a geometric progression
[17, 18]. In particular, the 12-tone equal temperament
(or 12-TET), for which the octave is divided into
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12 intervals, became the mainstay of Western music.
This arrangement is very criticized for not reproducing
pure harmonies well enough, given that some musicians
claim to hear annoying beatings in some chords [19].
Evidently, only very good ears will actually hear the
difference. Nevertheless, the search for feasible alter-
natives received special attention in subsequent years
[20–22, 24]. According to the numerical approach in
Ref. [23], temperaments with 19 and 29 divisions would
also provide good approximations; indeed, the use of
19-TET was brilliantly advocated by Joel Mandelbaum
in his P.h.D. thesis [24]. However, other N -TETs are
highlighted in literature for providing remarkable fits of
pure intervals like the 24-TET [25, 26], the 31-TET [27]
and even the 53-TET [28, 29]. An universal measure for
comparing temperaments performances does not seem
to be uniquely accepted in literature, each reported
strategy is commonly advocated for benefiting specific
groups of notes; then some preferences (like for the fifth
interval) leads to a temperament choice. Here we address
the following question: Are there universal harmonic sets
which are prioritized when setting an N -TET? What
subsets of the chromatic universe are more strategic
references for identifying which tuning systems are
good?

In this work, we design a method to find which temper-
aments properly and non-ambiguously fit a set of pure
intervals within an error tolerance which is chosen to be
the comma (an important partition of the semi-tone) and
show that: (a) By addressing the twelve-tone chromatic
just scale as target set, we find within range N ∈ [9, 54]
that temperaments with 12, 19, 22, 24, 31, 34, 41 and 53
divisions are suitable, which is confirmed by literature
[25–30] – in particular, 53-TET is shown to provide
the most accurate fit, (b) For M -element subsets of
the chromatic universe with M ∈ [3, 7], these solutions
are always more faithfully reproduced when the target
set is a major scale rather than a minor one, and (c)
Sequences of notes uniformly distributed over the octave,
like the whole-tone scale, are the most disadvantageous
reference sets for setting proper equal temperaments.
The latter observation suggests a mathematical back-
ground for understanding the universal preference for
non-uniform harmonic sets throughout music cultures,
as revealed by statistical data in recent ethnomusicology
studies [1–4].

This paper is organized as follows: In Sec. 2 we
overview required concepts of music theory, in Sec. 3
we present the method and our numerical results, and
in Sec. 4 we conclude this paper.

2. An Overview of Music Theory

The concept of harmonicity is derived from wave physics.
The strong consonance between a fundamental fre-
quency, say f0, and its integer multiples, nf0 where

Table 1: Pure intervals alongside their 12-TET counterpart
frequency ratios [11].

Just Difference
Label intonation 12-TET (Hz)

Unison C 1 1 0
Minor Second C#/D♭ 16/15 21/12 −4.66
Major Second D 9/8 22/12 +0.66
Minor Third D#/E♭ 6/5 23/12 +2.82
Major Third E 5/4 24/12 −2.60
Fourth F 4/3 25/12 −0.39
Diminished Fifth F#/G♭ 45/32 26/12 −2.08
Major Fifth G 3/2 27/12 +0.44
Minor Sixth G#/A♭ 8/5 28/12 +3.30
Major Sixth A 5/3 29/12 −3.96
Minor Seventh A#/B♭ 9/5 210/12 +4.76
Major Seventh B 15/8 211/12 −3.34
Perfect octave C 2 2 0

n ∈ N, is the resource for building harmonic combina-
tions in music, these are called just intonation intervals.
These properties were observed throughout history with
the use of vibrating strings and air columns, promoting
the development of musical instruments.

The simplest harmonic combination, called perfect
octave, is produced when the higher frequency is the
double of the lower one. For that interval, the higher
note label is identical to the tonic; for example, the C
note present on the fourth octave of the piano, or C4, has
a frequency which is the double of the C3 note. The next
integer combination is a pair of pitches with frequency
ratio 3/1, which because of the cyclic octave property
can be found closest to the tonic by proportion 3/2. If
the tonic is C, the interval 3/2 is labelled as G (see
Tab. 1). The harmonic combination of these two notes
is called perfect fifth, and it was the mainstay of music
on antiquity and the building block of the Pythagorean
tuning [6]. Another important interval is the major third,
which is built with frequency ratio 5/4. In Fig. 1 we show
pictorial representations of each of the aforementioned
intervals as standing waves on a string. Other fractions
between integers can be built in order to produce pure
intervals: In Tab. 1 we show a list of twelve such intervals
which is called twelve-tone chromatic just scale, or just
intonation scale [11]. The step between two neighboring
frequencies is called semi-tone while two steps yields a
tone.

Addressing the tonic note as C, the major third is
labelled as E and then {C, E, G} is called C major
chord. It has a kind of twin: If the middle note is lowered
in pitch to the frequency ratio 6/5, the combination
{C, E♭, G}1 is called C minor chord. The major and
minor thirds are the nearest consonances from the tonic
and the middle elements for constructing the simplest

1 The label ♭ is read flat, representing the preceding semi-tone
interval. For the subsequent semi-tone interval it is used symbol
#, which is read as sharp.
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Figure 1: Representation of harmonics as vibrations on a string in terms of either distance or time.

3-element chords, also called triads. The notion of har-
monicity in music can be extended to larger sets of notes
which present some characteristic harmonic behavior.
We discuss such special sets in the next subsection.

2.1. Harmonic scales

Subsets of the chromatic universe may be chosen to
favor appealing combinations of notes, these are called
harmonic scales. These special sets have interesting
mathematical properties [31, 32] and are used by musi-
cians as a basis for composition and improvisation.
The most used harmonic scales in Western music are
5-element sets, so called pentatonics, and 7-element sets,
so called heptatonics. The simplest examples of such
scales, the major and minor, are represented in Fig. 2
as inscribed M -side polygons in a dodecagon where each
vertex represents a just interval. For having 12 markings,
this type of representation is often called clock diagram
[4, 32, 33], or Krenek diagram because of its appearance
in [34]. We may also address major and minor sets of
different sizes: In Tab. 2 it is shown the tetratonic2

(4 notes per octave) and hexatonic (6 notes per octave)
versions of the major and minor scales – note that these
are simply subsets of the corresponding heptatonics.
Although triads are not considered scales, they may have
major/minor harmonic behavior, so for the purposes of
this work we have them included in Tab. 2.

Figure 2: Krenek diagrams for major and minor pentatonic
(5 notes per octave) and heptatonic (7 notes per octave) scales.
The addressed heptatonic minor scale is also known as natural
minor scale.

2 Tetratonics are not much used in modern music and are
commonly associated with prehistoric times [3].

Table 2: Major, minor and uniform sets of sizes 3, 4 and 6.
The uniform hexatonic is also called whole-tone scale.
Size 3 4 6
Major C, E, G C, E, G, A C, D, E, F, G, A
Minor C, E♭, G C, E♭, G, B♭ C, D, E♭, F,G, B♭
Uniform C, E, G# C, E♭, G♭, A C, D, E, G♭, A♭, B♭

Harmonic scales are usually described by the size of
the steps taken between subsequent notes. For example,
the major heptatonic scale is built by the following
sequence of steps: tone, tone, semi-tone, tone, tone,
tone, semi-tone. Evidence shows that most scales devel-
oped around the world are built with different step
sizes, being non-uniform [2], as it is the case of the
aforementioned major and minor scales. Uniform, or
equal-step, scales are rare across music cultures. Evi-
dently, the chromatic scale is a uniform set built only
by semi-tone steps, but because it contains all intervals
it is seen as non-harmonic. Within the twelve-tone
chromatic universe, one can build uniform subsets of 3, 4
and 6 elements by varying the step size (see Tab. 2).
Commonly used in jazz improvisation, the most famous
example of such group of scales is the uniform hexatonic,
so called whole-tone scale for being built only by tone
steps3.

2.2. Tuning systems

2.2.1. Just intonation

For building musical instruments, it is important to
set tuning systems – particular ways of discretizing the
sound range of interest. The just intonation scale was
designed to have as many pure intervals as possible [5].
Example in Tab. 1 is constructed from ratios between
powers of prime numbers 2, 3 and 5, an arrangement
called 5-limit just intonation [11]. More ratios can be
constructed for building appealing combinations, which
is not an easy task4.

This type of configuration has a big shortcoming: it
strongly depends on the key in which a piece is going to
be played. For example, the notes E and G#/A♭ should
make a major third interval, however the frequency ratio

3 One of the most famous applications of this scale was made by
the french composer Claude Debussy [35].
4 Also, more prime numbers can be addressed. One usual extension
is the 7-limit just intonation [11].

DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0270 Revista Brasileira de Ensino de Física, vol. 45, e20230270, 2023



e20230270-4 Harmony as an underlying ingredient in the numerical search for suitable equal temperaments

between those two notes in the C tuning is 32/25, which
is only close to 5/4, but yields an audible difference.
The most famous discrepancy was noted by Pythagoras:
If one goes around twelve fifth intervals for finding
the same note only seven octaves higher, the difference
between the ratios (3/2)12 and (2/1)7 yields an interval
that is approximately a quarter of semitone higher
than pure, which was called Pythagorean comma [5]. So
making all octaves pure guarantees that all fifths cannot
be [16], which is a direct consequence of the impossibility
of finding equal powers of different prime numbers [36].

2.2.2. Equal temperament

The desire of having pieces played in different keys
alongside musical developments over the centuries, like
the invention of the piano, ended up selecting equal tem-
perament as the widely used fit. This fancy arrangement
is structured as a geometric progression of frequencies
constrained to reproduce the perfect octave’s ratio 2/1
[6]. Formally, a general N -TET is a sequence of frequen-
cies FN = {FN

k }N
k=0 described by:

FN
k = N

√
2kf0, k = 0, 1, . . . , N, (1)

where f0 is a reference frequency. The conventional tem-
perament is made of 12 intervals, for which neighboring
frequencies are related by the factor 12

√
2 (see Tab. 1). It

circumvents the Pythagorean comma by fixing all fifth
intervals at frequency ratio 27/12, being slightly lower
than pure ones.

Aiming for better adjustments of other intervals (like
the major and minor sevenths, for instance), alternative
TETs like the 19-TET [24] were seriously proposed. In
Fig. 3 we see a comparison between a 12-TET and
a possible 19-TET piano octave [37]. For building 19
divisions, we split each of the 5 semi-tones represented
by the black keys of a twelve-tone piano octave into
two distinct intervals: So pairs C#/D♭ and G#/A♭ are

Figure 3: Piano octaves of 12-TET and 19-TET. In colors we
show the corresponding representations of the C major (left)
and minor (right) chords.

mapped into different notes (represented by black and
gray keys in Fig. 3). In addition, a semi-tone interval
is added between pairs E/F and B/C, totaling 19
divisions.

From a practical point of view, the 24-TET is the most
direct extension of 12-TET: Each interval is splitted
into two distinct notes – for that, it is also called
quarter-tones scale [25, 26]. Another worth-mentioning
temperament for the benefit of our discussion is the
53-TET. There are records of a theoretical interest
in this arrangement since ancient China – the music
theorist Jing Fang (78–37 BCE) calculated the proximity
between a sequence of 53 pure fifths and 31 octaves,
(3/2)53 ≈ 231 [28] – for that, 53-TET is seen as a
microtonal extension of the Pythagorean tuning5 [8]. For
other temperaments, see Refs. [13, 27, 30].

TETs may produce just intonation intervals only
approximately and the number of partitions N must be
chosen to favor such adjustments. Note that the number
of intermediate notes between target intervals increases
with N . This feature allows for greater harmonic explo-
ration in music and for different sensations of tone.

3. Finding N-TETs Using M-element
Sets of Pure Intervals

3.1. Method

In this section, we built a method for finding which N -
TETs, letting N be other than 12, suitably fit a given
M -element subset of the chromatic just scale. Firstly,
we set the error we are willing to take by addressing
specific partitions of the semi-tone which are called
commas. For example, in 12-TET each semi-tone has
4.5 commas, yielding a total of 54 such partitions per
octave [15]. N -TETs have different densities of commas
per interval, µ = µ(N), while maintaining the total
number of such partitions within the octave. We choose
to use the minimum of those partitions as a measure of
frequency resolution6:

∆f(µ) =
(

2
1

Nµ − 1
)

f0, (2)

which is slightly lower than the Pythagorean comma
[14]. Throughout this paper, without loss of generality,
f0 is chosen to be the frequency of the C4 which is
approximately 261.63 Hz, so ∆f(µ) ≈ 3.38 Hz. Note
in Tab. 1 that some frequency differences between the
12-TET and just intonation are higher than (2) yielding
out-of-tune notes, but it stands as a good fit in average.

5 In late seventeenth-century, William Holder (1616–1698) also
observed how well this temperament would reproduce major thirds
[29].
6 Note that this measure depends on the reference octave, fixed
by the frequency f0 [38]. For sufficiently lower frequency ranges
it is used ∆f ≈ 3 Hz, which stands as a lower bound called just
noticeable difference [39].
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We now design a measure for quantifying the average
performance of an N -TET in producing a certain target
set of pure intervals. Consider an ordered set of frequen-
cies corresponding to just intervals PM = {PM

k }M
k=0 with

M ≤ 12, where PM
k+1 > PM

k ∀ k. Using definitions (1)
and (2) we address the following quantity:

βM (N) = 1
∆f

√√√√∑M

k=0

min
ℓ≤N

(
FN

ℓ − PM
k

)2

M
. (3)

Then if βM (N) < 1 frequency deviations are less than
∆f in average, indicating that the corresponding N -
TET properly fits the target set, whereas the (N − M)
extra intervals are labelled as intermediate notes. Note
that if

∣∣|FN
ℓ+1 − PM

k | − |FN
ℓ − PM

k |
∣∣ < ∆f for a certain

ℓ ∈ [0, N ], an evident ambiguity would take place
when labelling which frequency corresponds to the target
interval and a potentially useful intermediate note would
be lost. Therefore, we sum the two differences in (3) as
a measure of a non-desirable ambiguity.

For being an unique set, the chromatic just scale will
be denoted by P12. With the intent of testing different
target sets PM with M < 12 we use subscripts as useful
labels: Major and minor scales will be denoted by PM

major
and PM

minor respectively, whereas uniform scales will be
denoted by PM

unif . The corresponding parameter (3) of
each addressed set will carry the same label (like βM

major
and so on).

The test whether βM (N) < 1 or βM (N) > 1 is read
as it is a good fit or it is not a good fit respectively. For
comparing within range N ∈ [Nmin, Nmax] the average
similarity between the results when addressing P12 and
PM as target sets, we design the following quantity:

F
(
PM

)
= 1 −

∑
k

∣∣Θ(βM (k) − 1) − Θ(β12(k) − 1)
∣∣

Nmax − Nmin
,

(4)
where k ∈ [Nmin, Nmax] and Θ is the Heaviside function.
Equation (4) then computes the coincidences between
βM (N) < 1 and β12(N) < 1, and returns a value
between 0 and 1. Evidently, F

(
P12)

= 1. For that,
we call Eq. (4) fidelity. It allows us to compare which
target sets most faithfully reproduce the results of the
chromatic just scale.

3.2. Numerical results

We start by addressing the simplest divisions of the
chromatic universe, which constitute the chromatic just
scale P12, built only by semi-tone steps, and the whole-
tone scale P6

unif , built only by tone steps (see Tab. 2).
The corresponding values of parameter (3) are shown
in Fig. 4(a) within range N ∈ [9, 54]. By addressing
the chromatic just scale as target set we find TETs
with 12, 19, 22, 24, 31, 34, 41 and 53 intervals as suitable

Figure 4: (a) Plots of Eq. (3) within range N ∈ [9, 54] when
addressing as target sets the chromatic just scale, built only by
semi-tone steps, and the whole-tone scale, built only by tone
steps, yielding β12 and β6

unif respectively. (b) Krenek diagram
of the whole-tone scale.

Figure 5: Comparisons between values of (3) for the chromatic
scale (gray triangles) and: (a) the major pentatonic (purple
circles), (b) the minor pentatonic (orange circles), (c) the major
heptatonic (blue circles) and (d) the natural minor heptatonic
(red circles).

and non-ambiguous7. As for the parameter β6
unif , corre-

sponding to the uniform hexatonic (see Fig. 4(b)), the
correct identifications of the proper N -TETs are not
reproduced. This means that some configurations can
reasonably adjust the whole-tone intervals, like the 18-
TET for example, while making other intervals audibly
out-of-tune.

In Figs. 5(a) and 5(b) (Figs. 5(c) and 5(d)) we
plot parameter (3) for major and minor pentatonic
(heptatonic) scales, respectively (see Fig. 2). Note that,
when compared with the results achieved by addressing
the chromatic just scale, major scales present more
faithful answers about suitable N -TETs than the minor
counterparts; the similarity increases with the scales

7 Although it is a known fact that 29 is the lowest number of equal
divisions that produces a better fifth than the 12-TET [18, 23], it
does not turn into a good fit by our numerical search because
of ambiguities created by neighboring equal-tempered frequencies
around certain target pure intervals.
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sizes as expected. Note that the 53-TET is the most
accurate fit for all addressed subsets of the chromatic
universe.

We computed fidelities (4) within range Nmin = 9 and
Nmax = 54 by taking major, minor and uniform scales
of different sizes as targets (see Fig. 2 and Tab. 2). The
corresponding plot in Fig. 6 shows the difference between
the convergences for each harmonic set: Major scales
provide more faithful answers about proper N -TETs
than minor and uniform ones of corresponding sizes,
the latter being the most disadvantageous reference set.
For example, the fidelities achieved when addressing the
major pentatonic (M = 5) and the minor heptatonic
(M = 7) as targets are comparable, both standing
above the fidelity achieved when addressing the whole-
tone scale (M = 6). Note in Fig. 6 that as we increase
the scales sizes, thus addressing more information about
pure intervals, we get more faithful identifications of the
proper N -TETs for fitting the chromatic just scale with
exception of the uniform case: The decreasing fidelity
from M = 3 to M = 4 is legitimate because the uniform
triad is not a subset of the uniform tetratonic.

Moreover, two observations suggest that the major
and minor thirds are the most relevant ingredients for
the convergence: (a) The main difference between major
and minor scales of any size is the third interval, indicat-
ing that the extra major/minor sevenths are not crucial
for the convergence, and (b) The uniform tetratonic,
which produces the lower fidelity in Fig. 6, is the only
uniform set which contains the minor third instead of the
major one (see Tab. 2). The reason for a major thirds
preference when setting a suitable equal-temperament, if
not just a mathematical issue involving prime numbers,
is quite mysterious but it seems to dialog with the
fact that lower integer fractions correspond to the most
appealing harmonies: The major and minor thirds are
the nearest consonances from the tonic, moreover the
5/4 ratio is made of lower integers than the 6/5 ratio.

The observation that strategic harmonic subsets of
the chromatic universe can store sufficient information
for setting proper equal-temperaments for the whole
chromatic just scale indicates that extensions of the
5-limit just intonation to more than twelve tones, which
exhibits notable difficulty in the construction of more

Figure 6: Comparison between fidelities for Nmin = 9 and
Nmax = 54 when taking major, minor and uniform scales as
target sets.

and more fractions between powers of prime numbers,
may not be necessary. Our results suggest that suitable
fits for major scales are preferable in advance. Evidently,
the average faithfulness will depend on the range of
interest: Note in Fig. 5(a) that if we wish to look for
suitable N -TETs within range N ∈ [9, 42] then the set
of pure intervals corresponding to a major pentatonic
would be sufficient for finding the proper solutions, i.e.
F

(
P5

major
)

= 1.

4. Conclusion

This work investigated whether there are harmonic
sets which are universally prioritized when setting a
suitable tuning system through an equal-tempered con-
figuration. We designed a measure for finding which
N -TETs properly and non-ambiguously fit a target
set of pure intervals and investigated the role played
by harmony in the convergence. By addressing the
twelve-tone chromatic just scale as target set, we find
within range N ∈ [9, 54] that temperaments with
12, 19, 22, 24, 31, 34, 41 and 53 divisions are suitable fits,
all confirmed by literature [25–30] – for that, we believe
that our method is a proper candidate for an universal
measure of suitability of equal-tempered systems. On the
other hand, by using M -element subsets of the chromatic
universe with M ∈ [3, 7], these solutions are always
more faithfully reproduced when the target set is a
major scale rather than a minor one. In addition, we
find that uniform scales are the most disadvantageous
reference sets for finding proper N -TETs numerically,
suggesting that the very design of an equal-tempered
configuration universally prioritizes the tuning of non-
uniform harmonic scales over uniform ones. This feature
suggests a mathematical background for understanding
the universal preference for non-uniform sequences of
notes in world music revealed by recent studies in
ethnomusicology [1, 2, 4].
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