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Photoelastic materials and Photoelasticity have been very effective in the study of the effects of stress and
strain in materials such as iron, steel, concrete, etc. However, mainly because of human interaction, systematic
errors are introduced during the measurement process, which directly affects the final result. When using small
photoelastic samples, these types of errors can escalate due to the increased difficulty of handling. Intending to
minimize systematic errors in the process of data collection, this work presents the use of an automatic loading
device, developed by us, to apply mechanical stresses in small photoelastic samples. The device created has shown
great effectiveness in photoelastic applications that uses a transmission polariscope, but it can also be used in other
photoelastic techniques, such as reflection photoelasticity, as well as in other areas of optics such as Holography
and Speckle. An important benefit is the ease and speed of handling that can improve the organization and quality
of the activities in labs of optics.
Keywords: Photoelasticity, Photoelastic materials, Mechanical elasticity, Polarization.

1. Introduction

Photoelastic materials and Photoelasticity are alterna-
tives in the study of material properties such as elasticity
modulus and Poisson’s coefficient1,2. Photoelastic materi-
als are widely used in industry for indirect determination
of properties of materials such as iron, steel, concrete
etc.3,4, or in the dentistry for the study of maxillary
stresses distributions due to chewing forces5,6.

This huge interest in photoelasticity comes from the
transparency and high flexibility the photoelastic materi-
als show, which allows the observation of the phenomenon
of temporary double refraction by polarization, or bire-
fringence, first described by Erasmus Batholinus in the
19th century7,8 and associated with the state of stress
and deformation of the material by David Brewster9.
Photoelasticity is a subarea of optics that studies the
internal effects caused by external forces on samples of
photoelastic materials using polarized light10,11.

However, it was only in the 1950s that Photoelasticity
assumed an important role in science and technology12,13,14.
In the 1970s, digital processing was incorporated into
Photoelasticity, which allowed a better interpretation of
the results. In the 1980s, optical instruments, called polar-
iscopes, composed of combinations of polarizers and wave
plates were incorporated into photoelasticity, making it
modern and closer to how it is known today15.
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The use of conventional photoelasticity techniques re-
quires excessive human interaction, causing systematic

errors in data collection. Another difficulty presented
by these techniques is evidenced by the inadequacy for
samples with small dimensions, in common load devices.

This paper presents an automatic loading device to
assist in the collection of data for small photoelastic
samples, under the action of external forces, reducing
human interaction and, consequently, minimizing sys-
tematic errors, contributing to more reliable final results.
This loading device, created by us, was used in a trans-
mission polariscope, in which green light (filtered from
a white light source) incides into the small photoelastic
sample, a rectangular sheet of epoxy resin. By the use
of errors theory16,17 the collected data were analyzed
using a computer program and the modulus of elasticity
and Poisson’s coefficient were determined. This loading
device can also be used in other subareas of Optics, such
as Holography and Speckle.

2. Theory

Birefringence is the phenomenon of double refraction by
polarization, intrinsic in certain crystalline anisotropic
materials, such as calcite (CaCO3), and temporary in
isotropic materials under stress, such as epoxy resins. In
these materials, the incident radiation is divided into
two wavefronts, with polarization states perpendicular
to each other10,11.
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Figure 1 shows a cut of calcite revealing the effect of
intrinsic birefringence.

Figure 2 shows a parallelepiped of epoxy resin with and
without external stress showing the effect of temporary
birefringence.

In 1816 researcher Sir David Brewster showed that
generally transparent isotropic materials can become
anisotropic, when strained, and thus display characteris-
tics of birefringent materials9. When light goes through
these materials, colored fringes (isochromatic) and black
ones (isoclinic) can be observed with the aid of polarizers.
These fringes present dynamic behavior and shift as the
stresses are applied in the material, as shown in Figure
2. The branch of optics that relates the observed fringes
to the stresses and deformations that occur within tem-
porarily birefringent materials, also called photoelastic
materials, is Photoelasticity10,11.

Optical information obtained by Photoelasticity is re-
lated to the differences between the internal stresses
considered in the longitudinal, σl, and transversal, σt,
directions, by the Optical Stress Law19,

nl − nt = C (σl − σt) , (1)

C=C (λ) is the photoelastic dispersion coefficient, which
is dependent on wavelength, λ of the light; (nl − nt) is
the difference between refractive indices considered in
the longitudinal, nl, and transversal, nt, directions.

In photoelasticity, the refractive index values are not
obtained directly and thus existing methods produce
results of stress differences by indirect processes15.

Figure 1: Dot on a white sheet of paper (left); the effect of bire-
fringence caused by the calcite (right). (photos from reference18,
authorized by the author)

Figure 2: Parallelepiped of epoxy resin without any load (left);
and under external tensions (right). (photos from reference18,
authorized by the author)

One alternative to determining the optical properties
of the photoelastic materials, presented in this paper,
involves capturing information directly from the images
of the static fringes associated with each external force
applied at the photoelastic sample, and store in digital
format. These forces generate longitudinal and transverse
stresses within the material, by the theory of the plane
state of stresses20. For data processing, the model used
is shown in Figure 3.

By Robert Hooke’s law2

σ = E · ε, (2)

where E is the modulus of elasticity of the material and
ε is the linear deformation in the longitudinal direction.
ε is related to the original length of the linear material,
such that

ε = ` − ` (0)
` (0) = ∆`

` (0) , (3)

where ∆` represents the variation in length ` and ` (0)
represents the original length of the material. As there is
deformation in the transversal direction to the application
of the force, by the theory of the plane state of stresses20,
the relationship between the longitudinal and transversal
deformation is a constant, in the elastic regime, such that

εlongitudinal = −ν · εtransversal = −ν · σ

E
, (4)

where ν is the Poisson’s coefficient of the material. The
sign (−) adjusts the expression, since generally positive
stresses produce negative deformations, and vice versa.

To determine the modulus of elasticity and the Pois-
son’s coefficient, the external stresses applied to the pho-
toelastic sample and the respective deformations, both
longitudinal and transverse, were used. The mean defor-
mations can be calculated from values obtained by lines
of pixels along a chosen direction of the static fringes im-
age, outlined in Figure 4, caused by the stresses applied
to the photoelastic sample.

Each pixel line, shown in Figure 4, is associated with a
relative intensity, IR, according to the diagram in Figure
5.

Figure 3: Theoretical model for a photoelastic sample. (scheme
modified from the reference18, authorized by the author)
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Figure 4: Line of pixels to determine the longitudinal mean
deformation (left side diagram); line of pixels to determine the
transversal mean deformation (right side diagram)

Figure 5: Representation of the IR curve versus ordered pixels

The i-th relative intensity is determined from the equa-
tion,

IRi
= Imax − Ii

Imax
, (5)

where Ii represents the i-th intensity, for the i-th pixel,
with i = 1, 2, ... n. Imax represents the maximum inten-
sity of the selected pixel line.

As illustrated in Figure 5, taking the pixels values of
consecutive valleys, or peaks, of intensity and subtracting
them, we obtain the difference between the pixel positions,
< ∆pt >, for a specific fringe created by a tension t. The
application of each load is repeated a-number of times,
therefore, the mean width, < ∆dt >, of a fringe for one
specific value of tension is determined by the equation,

< ∆dt >= 1
n

n∑
a=1

∆pta
, (6)

To determine the mean strain, < ε >, of each image, the
following equation is used,

< ε >= < ∆dt >

dreference
, (7)

where dreference is the value of < ∆dt > for the highest
load applied in the sample. Equation (7) is an approxima-
tion that can be derived assuming that the deformation
field of a bar, placed horizontally and supported at its

two ends, under tension is similar to the fringe pattern
produced when we apply tension to a photoelastic sam-
ple. Thus, just as the deformation of the bar can be
calculated by the difference in lengths, equation (3), the
deformations in the photoelastic material can be calcu-
lated in terms of the differences of pixels values. This
approximation is derived in detail in the work of Da Silva
(2017).

To determine the elasticity modulus, E, of the photoe-
lastic sample, Hooke’s Law represented in Equation (2)
is used, such that

< σj >= E· < ε >j (8)

where < σ >j is the j-th external mean stress and < ε >j

is the j-th mean strain, on the photoelastic sample, with
j = 1, 2, ... m. From Equation (8), a graph similar to the
schema in Figure 6 can be obtained.

By Equation (8) and chart scheme of Figure 6,

E = tg (γ) (9)

To determine the Poisson’s coefficient, ν, of the photoe-
lastic sample, the module of the Equation (4) is used,
such that

< εlongitudinal >j= ν· < εtransversal >j (10)

where < εlongitudinal>j
is the j-th mean longitudinal strain

and < εtransversal >j is the j-th mean transversal strain.
From Equation (10), a graph similar to the schema in
Figure 7 can be obtained.

By Equation (10) and chart scheme of Figure 7,

ν = tg (γ) (11)

In both graphs, the best fits and tg (γ) were obtained by
the Least Square Method16,17.

3. Methodology

A rectangular sheet of epoxy resin, produced by a poly-
merization process, was used as a photoelastic sample.
This resin offers excellent adhesion to a large number of

Figure 6: Graph with experimental values and best fit by mini-
mum squares method16,17 to σexternal versus ε
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materials and exhibits optical fringes when subjected to
external stresses. Details on the making of the photoe-
lastic sample are described in Da Silva et al.21.

Figure 8 presents the photograph of the photoelastic
sample used for the experiment.

The automatic loading device in Figure 9 has two
different ways of applying stress to small photoelastic
samples: sequential and continuous. In sequential mode,
the stepper motor applies predetermined stress values on
the photoelastic sample.

Figure 7: Graph with experimental values and best fit by mini-
mum squares method16,17 to εlongitudinal versus εtransversal

Figure 8: photoelastic sample of dimensions 0.485 x 3.176 x
3.014 (10−2 m) (thickness x width x height)

Figure 9: load device to perform the compressions of the sample
(1 – stepper motor Nema 17; 2 – compression tip; 3 – photoelastic
sample; 4 – load cell; 5 - electronic circuit)

With each new load addition, the mechanism is stopped
for a certain period of time so that the photographic
capture of the image can be performed. In continuous
mode, the loads exerted on the sample vary constantly
and uniformly, with increments in the order of tenths of
a second, and the images are captured in video form.

Figure 10 shows a photograph of the polariscope con-
figuration used to collect data with the automatic loading
device attached to the configuration.

The wavefront, produced by a white light source, (1),
is altered by the neutral density filter and lens, (2),
becoming approximately flat at the sample due to the
small thickness, if compared with its height and width.
Then, a color filter, (3), allows the passage of light, within
a certain range of wavelengths, so that only fringes of
the same color are observed. Then, two linear polarizers,
(4) and (6), with orthogonal polarization states prevent,
a priori, the passage of light.

Under the force provided by the device, the polar-
ization state of the light changes as it passes through
the sample (A), allowing the digital camera to observe
the isochromatic fringes produced. With the addition
of two quarter-wave plates, (5), before and after the
sample, the optical configuration becomes that of a cir-
cular polariscope and, therefore, the isoclinic fringes are
eliminated22. Allowing a purer image of the isochromatic
fringes. The images are captured by the digital cam-
era and stored in digital files for future analysis by the
computer system.

The proposed method used computational analysis
associated with error theory16,17 treatment. In this work
the continuous mode of the automatic device was selected,
so the images were stored in video digital files. A number
of frames, Q, out of the total frames, P, produced by the
video were chosen from the consecutive compressions on
the photoelastic sample. G groups, each containing Q/G
image frames, were separated for the data processing.

The following topics explain how the mechanical elas-
ticity modulus and the Poisson’s coefficient were deter-
mined.

a) Determination of the mechanical elasticity
modulus

For each group G of images, the computer system:

Figure 10: The load device for small photoelastic samples in
the polariscope by transmission configuration
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Figure 11: Photo of the fringes with the rectangular selection
and line of pixels chosen in a frame

1. Selected the region for study, the same in all images,
as shown in Figure 11. Selecting the line right in
the center of the sample ensures that σlongitudinal
»σtransversal, according to the model shown in
Figure 3.

2. The selected images were converted to the gray
pattern with N bits, M shades of gray;

3. With the line of selected pixels, according to the
scheme of Figure 11, graphs of relative intensity, IR,
versus ordered pixels were constructed, as shown
in the scheme of Figure 5. The IR values were
calculated by Equation (5), where the IMax was the
maximum pixel intensity in the selected line;

4. In each IR x pixels graph, distances ∆pta were
determined and, with this, the mean distances <
∆dt > were calculated by Equation (6), as well as
their respective uncertainty by the error theory16,17

process.
5. From the computation of the Q/G frames of each

group, the mean longitudinal strains, < ε >, were
determined by Equation (7), with their respective
uncertainties.

6. The mean external stresses, in each frame group,
were determined by the mean relation between
the force modules, carried out by the loading de-
vice, and the area of operation of the compression
pointer. Each frame is associated with a mean com-
pression force determined by the stepper motor of
the loading device;

7. The relationship between the mean external stresses
versus mean longitudinal strains was represented
in a graph of experimental values, properly trans-
ferred to the dependent parameter, in this case the
mean stress, according to the scheme of Figure 6;

8. A linear regression generated the best fit for the
experimental points and, with that, the elasticity
module of the photoelastic sample was obtained,
with its respective uncertainty.

b) Determination of the Poisson’s coefficient
For each group G of images, the computer system:

1. Selected the region for study, the same in all im-
ages, as shown in Figure 12. Selecting a region
near the top of the sample ensures σtransversal
»σlongitudinal, according to the model shown in
Figure 3.

Figure 12: Photo of the fringes with the rectangular selection
and line of pixels chosen in a frame

2. To determine the mean transversal strains, proce-
dures like those presented in sub-topics (ii) to (v)
of item a) were performed;

3. The relationship between the mean longitudinal
strains (calculated in item a) versus mean transver-
sal strains were represented in a graph of experimen-
tal values with the uncertainties, properly trans-
ferred to the dependent parameter, in this case the
mean longitudinal strain, according to the scheme
of Figure 7;

4. A linear regression generated the best fit for the
experimental points and, with that, the Poisson’s
coefficient of the photoelastic sample was obtained.

4. Results

A digital caliper, with an uncertainty of 0.01 mm, was
used to determine the width, height, and thickness of
the photoelastic sample used in this work. To justify
the statistical process of gaussian distribution, used to
obtain the final results, through error theory16,17, all
dimensions were measured 10 times. Table 1 shows the
obtained dimensions.

The video obtained by the digital camera produced
P = 4096 frames, of which were selected Q = 4080,
divided into G = 12 groups of Q/G = 340 frames. The
images were converted to the standard containing 256
gray shades, 8 bits.

The graphs in Figure 13 show the relationships be-
tween the external mean stresses versus longitudinal
mean strains and transverse mean strains versus longitu-
dinal mean strains, respectively, for the sample in Figure
8.

One can notice that in both graphs the experimental
values are distributed around the adjusted line, showing
that the system is credible and, therefore, with good
quality of adjustment, by the method of least squares.
Adjustments were made with the functions f (x) = ax and
f (x) = ax + b. The results proved to be more reliable
with the function f (x) = ax, due to the proximity to the

Table 1: Geometric parameters of the test photoelastic sample
10−2 m

width 3.176 ±0.009
height 3.014 ±0.007
thickness (4.85 ±0.06)10−1
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Figure 13: Graphs of external mean stresses versus longitudinal
mean strains and transversal mean strain versus longitudinal
mean strain for the sample in Figure 8

Table 2: Modulus of elasticity and Poisson’s coefficient
<E>(MPa) 29.02 ±0.34
<ν>(10−1) 3.68 ±0.11

Table 3: Modulus of elasticity and Poisson’s coeficiente from
the work of Da Silva (2017)

I II
<E>(MPa) 27.9 ±0.7 33.1 ±0.1
<ν>(10−1) 3.876 ±0.068 3.891 ±0.073

generalized Hooke’s law, σextern = E · εtransversal, by
Thomas Young2,20, and, εlongitudinal = ν · εtransversal,
by Siméon Poisson2,20.

The results obtained for the mean modulus of elasticity,
<E>, and mean Poisson’s coefficient, <ν >, according
to equations (9) and (11), are shown in Table 2.

Table 3 presents the values of Modulus of elasticity
and Poisson’s coefficient obtained in the literature18 for
a photoelastic sample, similar to the one used in this
work.

Although the values, between this work and those
found in the literature, have been generated by different
methods and techniques, they present the same order of
magnitude. With different coefficients and uncertainties,

as expected. Comparing the values of Table 2 with the
ones shown in Table 3, the relative differences between
the modulus of elasticity are, approximately, 3.92% for
the value I and 12.46% for the value II. For the Poisson’s
coefficients, the relative differences are, approximately,
5.14% and 5.51% for the values I and II, respectively.

5. Conclusions and Perspectives

The values obtained agree, in order of magnitude, with
results found in the literature for photoelastic samples,
even for different dimensions and concentrations of the
sample used. The automatic loading device fitted very
well at the application, that involved the photoelastic
configuration, as can be observed in Figure 10 and proved
to be stable during the measurement process, facilitat-
ing the work of efficient data collection. A small sample
adapts easily to the device, which allows for easy re-
moval and placement, resulting in time savings in data
collection.

The greater amount of data generated by the auto-
matic device, about 40 times greater than the collection
with the usual mechanical devices made in our previous
works, produced results with greater accuracy. The lesser
human interaction decreased some systematic errors dur-
ing measurements and reduced processing times during
analysis.

The presented method demonstrated great efficiency
in the quality and reliability of the results, allowing
values comparable to those of the literature, thanks to
the computational system produced.

A possible improvement in the device can be obtained
by more rigorous machining to facilitate producing con-
trols of movements through computational means. An-
other possible improvement in the method can be carried
out by creating a data control system through a rela-
tional database, which will allow a better organization
of the processing, allowing faster production of the final
result. Other optical techniques, such as Photoelasticity
by reflection, Speckle by transmission and reflection, and
Holography by transmission and reflection, can be tested
with the device produced.
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