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Can Lorentz transformations be determined by the null
Michelson-Morley result?

Podem as transformações de Lorentz ser determinadas pelo resultado nulo de Michelson-Morley?
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The so-called principle of relativity is able to fix a general coordinate transformation which differs
from the standard Lorentzian form only by an unknown speed which cannot in principle be identified
with the light speed. Based on a reanalysis of the Michelson-Morley experiment using this extended
transformation we show that such unknown speed is analytically determined regardless of the Maxwell
equations and conceptual issues related to synchronization procedures, time and causality definitions.
Such a result demonstrates in a pedagogical manner that the constancy of the speed of light does not
need to be assumed as a basic postulate of the special relativity theory since it can be directly deduced
from an optical experiment in combination with the principle of relativity. The approach presented
here provides a simple and insightful derivation of the Lorentz transformations appropriated for an
introductory special relativity theory course.
Keywords: Michelson-Morley experiment, Lorentz transformations, principle of relativity

O chamado prinćıpio da relatividade é capaz de determinar uma transformação geral de coordenadas
que difere da forma lorentziana padrão por um velocidade desconhecida que não pode, em prinćıpio,
ser identificada com a velocidade da luz. Com base em uma nova análise do experimento de Michelson-
Morley, usando esta transformação estendida, mostramos que tal velocidade invariante é determinada
anaĺıticamente, sem qualquer referência às equações de Maxwell e questões conceituais relacionadas a
procedimentos de sincronização, definição de tempo e causalidade. Tal resultado demonstra de uma
maneira pedagógica que a constância da velocidade da luz não precisa ser suposta como um postulado
básico da teoria da relatividade especial, uma vez que ela pode ser deduzida diretamente a partir de um
experimento óptico em combinação com o prinćıpio da relatividade. O método apresentado aqui resulta
numa dedução das transformações de Lorentz que é simples e elucidativa, apropriada para um curso
introdutório sobre teoria da relatividade especial.
Palavras-chave: Experimento de Michelson-Morley, transformações de Lorentz, prinćıpio da relatividade

1. Introduction

In the standard lore of special relativity theory
(SRT), the pillars of the theory rest on two postu-
lates originally introduced by Einstein [1], namely:
(i) the principle of relativity, and (ii) the principle
that states that the speed of light is independent
of the velocity of the source (see ref. [2] for an
explanation of why this is not the same as “the
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constancy of the speed of light”). These two pos-
tulates were explicitly used by him for obtaining
the so-called Lorentz transformations. Nevertheless,
since the first decade after Einstein’s seminal pa-
per [1], many authors have tried to show that the
second postulate is not necessary. The first attempt
was made by Ignatowski [3] in 1910. He replaced
the second Einstein postulate by the assumption
of isotropy and homogeneity of space, which im-
plies linearity of the transformation equations and
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the reciprocity of the coordinates transformation -
which means that two inertial observers must agree
with the numerical value of their relative velocities.
In 1911, Frank and Rothe [4] derived the Lorentz
transformations by assuming that they form a ho-
mogeneous linear group, the validity of reciprocity
principle and the dependency of the length contrac-
tion only on the relative velocity. In 1921, Pars [5]
derived the Lorentz transformation, assuming ho-
mogeneity of space-time, isotropy of space and the
reciprocity principle. In fact, it was shown by Berzi
and Gorini [6] that the principle of relativity and
spatial isotropy imply reciprocity. Levy-Leblond [7]
has shown that the additional hypotheses of group
law and causality are necessary. We refer to [6,8–10]
for discussions of the necessary hypotheses, and also
to Miller [11], for a complete historical account of Ig-
natovski’s work. Pedagogical derivations of Lorentz
transformations without the second postulate can
be found, for example, in [7, 12–27]. An additional
list of references regarding derivations of this kind
is given by Sonego and Pin [28].

All these derivations arrive at formulas for the
Lorentz transformations containing an unknown and
invariant (constant) limiting speed. However, its
identification with the speed of light usually requires
the invariance of electrodynamics [29] or some dy-
namical effect [30]. The main reason for so many
derivations is that some authors have different opin-
ions about what are the most fundamental assump-
tions, while others present derivations that look
pedagogically simpler (see the work of Llosa [31] for
a comprehensive review).

One modern relevance of this result lies in the fact
that to study the consequences of Lorentz symmetry
breaking one has to abandon or modify the principle
of relativity [32–34]. Also, when taking in account
theories for varying speed of light, it is important to
know the origin of the terms containing the speed
of light in the equations [35].

In this work, we show how the identification of
this constant speed with the speed of light could
have been made in the early years of the theory
of special relativity, by applying the derived gen-
eral transformations to the null results obtained in
the Michelson-Morley experiment [36]. To obtain
the usual Lorentz transformations, we replace the
second postulate by a careful interpretation of the
empirical (null) result of that optical experiment.
The approach discussed here not only establishes

the speed of light as the limiting speed to be used
at Lorentz transformations but also shows explicitly
that the hypothesis of the existence of a luminifer-
ous aether does not interfere with the result since
it becomes irrelevant as a consequence of the null
Michelson-Morley experiment.

2. Lorentz transformations without the
second postulate

Let us now suppose that Cartesian coordinates
(t, x, y, z) and (t′, x′, y′, z′) are associated to the iner-
tial frames S and S′. The frame S′ moves with speed
V with respect to S, along the positive direction of
x and x′. We also assume that when t = t′ = 0 all
spatial axes coincide.

We choose the work of Levy-Leblond [7] for its
elegance and generality1. Assuming validity of the
principle of relativity plus the hypotheses of ho-
mogeneity of space-time, the linearity of inertial
transformations, isotropy of space and the group
law, he derived a set of coordinate transformations
between two inertial frames slightly more general
than that proposed by Lorentz and Einstein.

Using the standard configuration coordinates of
the inertial frames S and S′ described above, the
general transformation set is given by:

x′ = Γ(σ)(x− V t), (1)
y′ = y, (2)
z′ = z, (3)

t′ = Γ(σ)
(
t− V x

σ2

)
, (4)

where
Γ(σ) = 1√

1− V 2/σ2 , (5)

and σ is an invariant (unknown) universal constant
with dimensions of speed (0 ≤ σ ≤ ∞). From now
on the above set will be termed σ-Lorentz transfor-
mations since the limiting invariant speed σ does
not need to be identified with the light speed. As
one may show based on the above set, the associated
direct (and inverse) σ-addition velocity law is given

1Llosa [31] presents a similar derivation that does not require
the counting of parameters of the transformation group.
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by:

v′x = vx − V
1− vxV/σ2 , vx = v′x + V

1 + v′xV/σ
2 , (6)

v′y = vy

√
1− V 2/σ2

1− vxV/σ2 , vy =
v′y
√

1− V 2/σ2

1 + v′xV/σ
2 , (7)

v′z = vz

√
1− V 2/σ2

1− vxV/σ2 , vz = v′z
√

1− V 2/σ2

1 + vxV/σ2 , (8)

where v′x, v′y, v′z and vx, vy, vz are the Cartesian com-
ponents of the velocities in the inertial frames S′
and S, respectively. Clearly, all the above formulas
have the non-relativistic Galilean results as a limit
when V/σ → 0.

It is also worth mentioning that the above trans-
formations are a particular case of the more gen-
eral set assumed by Robertson [37], from which he
concluded that the three second-order optical exper-
iments taken together, namely: Michelson-Morley
[36] (1887), Kennedy-Thorndike [38] (1932), and
Ives-Stilwell [39, 40] (1938, 1941) are sufficient to
single out the Lorentz transformations.

In contrast, we have found that a suitable analysis
of any of the cited optical experiments is enough
to obtain the relativistic result, that is, σ = c. For
the sake of pedagogical simplicity, in what follows
we choose the Michelson-Morley experiment, which
will be reanalyzed based on the transformation set
given by equations (1-4) plus the above σ-addition
velocity law. We notice that in most textbooks the
Michelson-Morley experiment is analyzed only in
the context of prerelativistic physics.

3. Michelson-Morley experiment and the
limiting invariant speed

The Michelson-Morley experiment consists of an
optical interferometer assembled on a platform that
can horizontally be rotated. A simplified diagram is
shown in Figure 1.

We suppose that a beam of light coming from a
source L reaches a semi-transparent mirror H, which
divides the original beam into two other beams
that propagate along the orthogonal arms 1 and
2. On the extremity of each arm, the beams are
reflected by mirrors M1 and M2, returning to the
semi-transparent mirror H. A fringe shift associated
with the interference (caused by the difference in
the optical path) is registered at the detector D.
The experiment aims to observe the dependence
of the fringe shift with the spatial orientation of

Figure 1: Diagram of the Michelson-Morley experiment.

the apparatus. A non-null result would indicate an
anisotropy of the speed of light in the frame of the
apparatus [10].

Let us suppose that the whole interferometer is
at rest in the lab frame S′ which is moving with
speed V relative to an inertial (aether) frame S
where, by hypothesis, the speed of light c is isotropic
but not necessarily equal to σ. We assume that
light moves in S′ with velocity c′, whose magnitude
is not necessarily isotropic, and is related to c by
the σ-Lorentz velocity transformation law given by
equations (6-8).

We suppose that the apparatus is configured in
such a way that the arm 1 is aligned to this constant
relative speed V during the experiment. Our task
now is to calculate the travel time difference between
the beams along both arms in S′. We assume that
the arm 1 of the interferometer is directed along the
x axis and the arm 2 is directed along the y axis so
that cz(1) = cz(2) = 0. Further, as one may check,
the components cx(1), cy(1) and cx(2), cy(2) of the
light velocity along the arms 1 and 2 as seen in the
aether frame S are given by:

cx(1) = c, cy(1) = 0, cx(2) = V, (9)

cy(2) = c

√
1− V 2

c2 . (10)

Now, by using the σ-relativistic velocity transforma-
tions given by equations (6-7), it is readily checked
that the components of the light velocity in each
arm calculated in the frame S′ are:

c′x(1)± = c∓ V
1∓ cV/σ2 , c′y(1) = 0, (11)

and

c′x(2) = 0 , c′y(2) = c
√

1− V 2/c2√
1− V 2/σ2 , (12)
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where c′x(1)± are the speed of the beam in the posi-
tive and negative x axis direction, respectively.

Let us denote by L′1 and L′2, the lengths of the
optical paths 1 and 2, respectively, as measured in
the lab frame S′. From equation (11) we find that
the time T ′1 for the beam 1 to make a round trip
along L′1 is

T ′1 = L′1
c′x(1)+ + L′1

c′x(1)− (13)

=L′1

(
1− cV/σ2

c− V
+ 1 + cV/σ2

c+ V

)
(14)

=2L′1
c

(
1− V 2/σ2

1− V 2/c2

)
= 2L′1

c
ε2, (15)

where

ε :=
√

1− V 2/σ2

1− V 2/c2 . (16)

By using equation (12) we also find that the time
T ′2 for the beam 2 to make a round trip along L′2 is

T ′2 = 2L′2
c′y(2) = 2L′2

c

√
1− V 2/σ2√
1− V 2/c2 = 2L′2

c
ε. (17)

The interference pattern, between the light beam
coming out of the two optical paths is determined
by the time delay

∆T ′ = T ′1 − T ′2 = 2ε
c

(εL′1 − L′2). (18)

When the interferometer is rotated clockwise by
90◦, the roles of arms 1 and 2 are interchanged and
the times to a round trip are modified to:

T ′1 = 2L′1
c
ε, T ′2 = 2L′2

c
ε2, (19)

while the corresponding time delay reads:

∆T ′ = T ′1 − T ′2 = 2ε
c

(L′1 − εL′2). (20)

Due to the rotation of the apparatus, there is a
net difference in the time delays associated to each
angular configuration:

∆T ′ = ∆T ′ −∆T ′ = 2(L′1 + L′2)
c

ε (ε− 1). (21)

The expected fringe shift after rotation of the
apparatus can be written as the ratio:

∆N ≡ ∆T ′

P ′
, (22)

where P ′ is the period of the wave arriving at the
detector (lab frame S′).

In the original experiment, using multiple reflec-
tions, the total length of the arms (L′1 + L′2) was
effectively increased to eleven meters, and, as such,
some fringe displacement would have been observed.
However, if such displacement existed, it would have
to be less than 0.01 of a fringe. A modern statistical
analysis of the 1887 Michelson-Morley experiment
shows that no fringe shift was observed within the
accuracy limit of the apparatus, i.e., ∆N = 0 [41].

For an arbitrary relative speed V < σ (see equa-
tion (5)), we can conclude from equation (21) that
the unique solution of equation (22) for ∆N = 0
(consistent with the null result) is ε = 1, i.e., σ = c.
Thus, the set of transformations given by equations
(1-5) reduces to the standard Lorentz form. Natu-
rally, since the invariant speed σ (which is a con-
sequence of the space-time isotropy) can now be
identified with the light speed in the aether frame,
this result also suggests the non-existence of an
aether medium itself because of the inferred invari-
ance of the light waves speed. Also, from equations
(11) and (12) one may also check that the null result
now also implies the isotropy of the light speed in
S′, that is, c′x(1)± = c′y(2) = c.

We remark that the Michelson-Morley experiment
measures only the isotropy of the two-way speed of
light. Therefore, its result does not depend on the
synchronization procedure [42].

4. Conclusions

Standard derivations of the generalized Lorentz
transformations given by equations (1-5) show that
the unique free-parameter to be determined is an
invariant (and unknown) maximum speed, σ. In this
paper we have shown that a non-Galilean analysis
of the null Michelson-Morley experiment provides
the identification σ = c thereby fixing the standard
Lorentz transformation. Historically, this remark-
able result could have been obtained before the
Lorentz and Einstein derivations. However, at that
time, the concepts in physics were so permeated
by Newtonian ideas that any attempt to adopt the
homogeneity and isotropy of the space-time as a
fundamental principle and study its consequences
would appear too bizarre. These speculations should
be taken with extreme caution, however, since many
dangers haunt those who venture to use plain mod-
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ern knowledge to analyze the genesis of scientific
theories [43].

The step from the generalized Lorentz transfor-
mations to the usual ones presented here has a
methodological and also a clear pedagogical advan-
tage for undergraduate teaching. In particular, it
does not require from fresh undergraduate students
a previous knowledge of Maxwell’s equations. More
puzzling kinematic concepts, like the relativity of
simultaneity and synchronization procedures [44–46]
can be postponed for a second study of the Lorentz
transformations.

Another interesting pedagogical aspect of our com-
plete derivation without the second postulate is that
the existence of the luminiferous aether was explic-
itly assumed from the very beginning, but its pos-
sible effects on the light propagation work only to
provide the expected identification of the invariant
undetermined speed, namely: σ ≡ c.
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