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Position-dependent mass (PDM) systems have diverse applications in physics, attracting significant scientific
interest in the last decades. Classical PDM systems pose analytical challenges with their nonlinear equations of
motion, while the quantum case is complicated because the kinetic operator is non-Hermitian. To address these
challenges, this study explores Hamiltonian factorization and canonical transformations to investigate classical
and quantum PDM systems, applying it to a Mathews-Lakshmanan-type oscillator with m(x) = 1/[1 + (λx)2].
Classically, the phase space is examined, revealing increasingly pronounced deformities in the trajectories as
energy and λ values increase. In the quantum realm, the solution to the ambiguous ordering problem for the
PDM oscillator is presented, accompanied by an analysis of wave functions and probability densities. Further,
the tunneling probabilities are analyzed. As λ increases, findings indicate that the tunneling probabilities of the
PDM system decrease fast for higher excited states, offering novel insights into its behavior.
Keywords: Position-dependent mass, Mathews-Lakshmanan oscillator, Hamiltonian factorization, point canon-
ical transformations.

1. Introduction

Systems endowed with position-dependent mass have
attracted scientists’ attention in recent decades due to
a wide range of applications in fundamental areas of
physics. These systems can be studied from both clas-
sical and quantum perspectives. Systems with position-
dependent mass are present in the study of electronic
and optical properties of semiconductors [1–3], of graded
mixed semiconductors [4], and with abrupt heterostruc-
tures [5, 6], in quantum dots and wells [2, 7, 8], quantum
liquids [9] and within lattices and superlattices [10, 11].
They are also present in the research of the inversion
potential for the NH3 molecule through density func-
tional theory [12], in many-body systems [13], energy
spectrum and transition rate for atomic nuclei [14], mag-
netic monopoles [15], classical and quantum nonlinear
oscillators [16–19], and curved spaces [20]. Classically,
these systems can be described in the analysis of the
hydrodynamic impact of a rigid body against a liquid-
free surface [21] and in the dynamics of a falling chain
wrapped around a table [22], among others.

Traditionally, the solution methods for a system
with position-dependent mass (PDM) are not those
usually used for solving a constant mass system. In
the case of classical systems with PDM, Newton’s
Second Law must be extended to allow the analysis of
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the system’s dynamics [23]. However, the equations of
motion obtained from the Second Law are nonlinear,
making their analytical solution difficult.

Therefore, the unusual methods of Hamiltonian fac-
torization and canonical transformations can facilitate
finding the system’s solution. Furthermore, the appli-
cation of canonical transformations aims to relate the
system endowed with PDM to a system with constant
mass. Besides, Hamiltonian factorization allows the sep-
aration of a second-order differential equation into two
first-order differential equations [24].

Similarly, a quantum PDM system can be analyzed
through uncommon methods since the usual kinetic
operator T̂ for this system is non-Hermitian. Then, since
kinetic energy is required to be a physical observable, the
operator representing it must be Hermitian [1]. Thus,
to study the dynamics of these quantum systems, the
generalized kinetic operator, proposed in Ref. [1], can
be used in conjunction with the Hamiltonian factoriza-
tion method and canonical transformations. With these
tools, the dynamics of position-dependent mass systems
become workable in the quantum realm.

The harmonic oscillator model is of fundamental
importance in physics because many systems with
complicated analysis can be reduced or approximated
by this model, such as the vibration of atoms in
molecules [25]. An example of such model is the non-
linear Mathews-Lakshmanan oscillator [16], which can
be treated as a PDM system with m(x) = 1/[1 + κx2].
Mathews-Lakshmanan-type oscillators were previously

Copyright by Sociedade Brasileira de Física. Printed in Brazil.

www.scielo.br/rbef
https://orcid.org/0009-0007-9955-4044
https://orcid.org/0000-0002-7453-4924
mailto:gonzalez@unicentro.br


e20230172-2 Classical and quantum systems with position-dependent mass

studied as PDM systems by different methods in
Refs. [19, 24, 26–31].

This paper aims to investigate classical and quan-
tum PDM systems using Hamiltonian factorization
and canonical transformations, specifically applied to
a Mathews-Lakshmanan-type oscillator. Building upon
the work presented in Ref. [24], which employed these
methods on an oscillator with the same position-
dependent mass, our study seeks to provide a detailed
exposition of the Hamiltonian factorization and canoni-
cal transformations methods.

In the classical analysis, the phase space for a
Matthew-Lakshmanan-type oscillator was previously
studied in Ref. [24] for a given energy range. Our study
intends to extend those results by presenting the phase
space for higher energies and thoroughly interpreting the
graphical outcomes.

In the quantum case, Ref. [24] examined the proba-
bility density for the state ψ4 compared to the classical
presence. In contrast, this paper analyzes the probability
density for lower states considering the potential curve
for the system. Furthermore, this study undertook a
comprehensive analysis of the tunneling probabilities
for a few quantum states of the Mathews-Lakshmanan-
type oscillator, introducing a novel perspective on this
system’s tunneling behavior.

2. Theory of position-dependent mass
systems

2.1. Classical case

Consider a classical oscillator-type system with position-
dependent mass. The Hamiltonian function for this
system is given by

H(x, p) = p2

2m(x) + V (x) (1)

where m(x) is a position-dependent function.
The equation of motion for the system is obtained

from the Hamiltonian function and is a second-order
differential equation, which can be factored into two
first-order differential equations. This method is called
Hamiltonian factorization and aims to facilitate finding
the solution to the system [25].

The factorization is applied using the following ladder
functions [32]

A+(x, p) = −i p√
2m(x)

+W (x)

A−(x, p) = i
p√

2m(x)
+W (x)

where W (x) represents a position-dependent function to
be determined.

As in the classical case with constant mass, the ladder
functions A+ and A− satisfy the commutative property.

Then, the factorization method gives rise to a unique
Hamiltonian function given by

H = A+A− = A−A+ = p2

2m(x) +W 2(x) (2)

Comparing equations (1) and (2), it is possible to
conclude that the potential relates to the function W (x)
in a way such that V (x) = W 2(x).

Furthermore, the ladder functions have fundamental
relations via Poisson brackets, among them1 [32]

i{A−, A+} = i

(
∂A−

∂x

∂A+

∂p
− ∂A−

∂p

∂A+

∂x

)
= 2W ′(x)√

2m(x)
= 1 (3)

i{H,A+} = 2W ′(x)√
2m(x)

A+

i{H,A−} = 2W ′(x)√
2m(x)

A−

where W ′(x) refers to the derivative of W (x) with
respect to position x.

From equation (3), one has

W ′(x) =
√
m(x)

2 (4)

The differential equation (4) admits solutions of the
form

W (x) =
∫ √

m(x)
2 dx+ C

where C refers to the integration constant.
The constant C determines the origin of the potential

V (x). Usually, a spatial shift is performed such that
V (x = 0) = 0 and, consequently, C = 0. Therefore,
in this case

W (x) =
∫ √

m(x)
2 dx (5)

Since V (x) = W 2(x), then

V (x) = 1
2

[∫ √
m(x)dx

]2
(6)

and the Hamiltonian of the PDM oscillator can be
rewritten in a more general way as

H = p2

2m(x) + 1
2

[∫ √
m(x)dx

]2
(7)

Performing strategic canonical transformations
on equation (7) allows a connection between the

1 These fundamental relations are associated with a Heisenberg
algebra.
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Hamiltonian function of the system with PDM and
that of the harmonic oscillator with constant mass,
which has known solutions. Thus, the following point
canonical transformations are defined as [32]

X(x) =
∫ √

m(x)dx (8)

P (x, p) = Ẋ(x) = p√
m(x)

(9)

Applying the point canonical transformations, equa-
tions (8) and (9), into equation (7), it is possible to
obtain the general form of the Hamiltonian function for
constant mass systems, i.e.,

H̃ = P 2

2 + X2

2 = E (10)

where E represents the energy of the system. Because
ω = m0 = 1 was considered unitary, the trajectories in
the phase space are concentric circles and not the usual
ellipses.

From equation (10), it is possible to obtain the well-
known trajectories X(t) and P (t) for the oscillator with
constant mass as

X(t) =
√

2E cos (t+ ϕ) (11a)

P (t) = −
√

2E sin (t+ ϕ) (11b)

where ϕ represents the initial phase of the system.
Because the canonical transformations are invertible,

it is possible to relate the solutions of the harmonic
oscillator with constant mass to the original system with
PDM. Then, the trajectories x(t) and p(t) of the system
with position-dependent mass are [32]

x(t) = X−1[
√

2E cos (t+ ϕ)] (12a)

p(t) = −
√
m(x(t)) sin (t+ ϕ) (12b)

with
√

2E cos (t+ ϕ) representing the argument of the
inverse function X−1.

Therefore, point canonical transformations applied on
a system with position-dependent mass highlight the
proximity between the Hamiltonian with PDM and the
usual one for a constant mass system. Moreover, this
method allows a more straightforward way to find x(t)
and p(t) for a PDM system because obtaining them from
already-known trajectories is possible.

2.1.1. A classical Mathews-Lakshmanan-type
oscillator

Consider a Mathews-Lakshmanan-type oscillator with a
mass function m(x) of the form

m(x) = m0

1 + (λx)2 (13)

where m0 represents a positive constant value with mass
dimension and λ a parameter also positive and constant
with the inverse of length dimension.

The mass function m(x) chosen was not completely
arbitrary. As already seen, through canonical transfor-
mations, equations (8) and (9), it is possible to relate
the oscillator with constant mass to the one with PDM.
According to Ref. [24], for certain position-dependent
mass functions, the canonical transformation referring to
X(x) may not map its domain D(m(x)) onto the entire
real line. In this case, the mass function is not physically
acceptable for relating the oscillators since the position
of the particle X(x) does not take real values.

Notice that in the limit where λ → 0, one has
m(x) → m0, and there is a tendency to return to a
system with constant mass. Moreover, when x = 0, the
maximum value m0 is obtained for m(x). On the other
hand, when |x| → ∞, then m(x) → 0. Therefore, the
function defined by equation (13) is bounded and has a
real domain, i.e., it is physically acceptable.

The features above can be observed in Fig. 1(a), in
which the mass function m(x) was plotted considering
m0 = 1 unitary. From this plot, varying the parameter
λ, it is possible to observe that the function m(x) has
no singularities. Moreover, when λ → 0, the shape of
m(x) is smoothed, and m(x) → m0 = 1, as expected. In
addition, for x = 0, the curve approaches its maximum
value m(x) = m0 = 1, regardless of the λ value. These
conclusions obtained by the graphical results corrobo-
rate the mathematical interpretations of equation (13).

By inserting the mass function, equation (13), into
equation (6) for the potential of the oscillator with
position-dependent mass, one obtains

V (x) = m0

2λ2 [sinh−1 (λx)]2 (14)

Thus, equation (14) represents the generalized poten-
tial energy for the Mathews-Lakshmanan-type oscillator
defined in this section. The potential V (x) for the PDM
oscillator given by equation (14) was plotted in Fig. 1(b),
where V (x = 0) = 0, respecting the condition initially
imposed that C = 0 in equation (6).

It can also be noticed from Fig. 1(b) that when
λ → 0, the curve representing the potential approaches a
parabola, similar to the potential curve for the harmonic
oscillator with constant mass. In fact, taking the limit
of V (x) when λ → 0, one has

lim
λ→0

[m0

2λ2 [sinh−1 (λx)]2
]

= x2

2 (15)

and there is a tendency for the potential V (x) to
return to that one associated with the classical harmonic
oscillator system, i.e., described by a parabola.

The same result evidenced in equation (15) also
occurs for x → 0, i.e., values of x around the origin2.
Further, Fig. 1(c) indicates that for values of x close to

2 Another way to notice that is by using Taylor expansion around
x = 0, that is, considering small oscillations around the origin of
the system.

DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0172 Revista Brasileira de Ensino de Física, vol. 45, e20230172, 2023



e20230172-4 Classical and quantum systems with position-dependent mass

Figure 1: (a) Mass function m(x), with m0 = 1 unitary
for different values of λ. (b) Potential V (x) with m0 = 1
unitary for different values of λ. (c) Zoom of the plot (b)
for the region around x = 0. The parameter was taken as
λ = 0.03, 0.27, 0.51, 0.76, and 1.00 for the three plots.

zero, there is an overlap region for the plots of V (x),
regardless of λ values. These curves around x = 0 are
similar to parabolas. As the horizontal displacement
from x = 0 occurs and λ increases, the deformations
become more evident, and the potential curve departs
from the parabolic shape, as observed in Fig. 1(b).

Furthermore, it is important to observe in Fig. 1(b)
that when λ = 1, the system exhibits a larger classically
allowed region for movement in comparison to the
oscillator with λ = 0.03. This disparity arises because
the potential becomes less confining for higher values
of λ.

It is also possible to obtain the trajectories x(t) and
p(t) for the oscillator with m(x) through the point
canonical transformations represented in equations (8)
and (9), with the mass function given by equation (13),
in such a way that

X(x) =
√
m0

λ
[sinh−1 (λx)] (16a)

P (x, p) = p

√
1 + (λx)2

m0
(16b)

Then, the trajectory x(t) is obtained using equations
(12a) and (12b), such that

x(t) = 1
λ

sinh

√2Eλ2

m0
cos(t+ ϕ)

 (17)

Analogous, the trajectory p(t) is obtained by substi-
tuting the mass function (13) and equation (17) into
equation (12b). Then,

p(t) = −

√
1

1 + (λx)2 sin (t+ ϕ)

p(t) = −
√

2m0E

cosh
[√

2Eλ2

m0
cos (t+ ϕ)

] sin (t+ ϕ) (18)

Considering m0 = 1 unitary and phase shift ϕ = 0,
the trajectories x(t) and p(t) are given by

x(t) = 1
λ

sinh
[√

2Eλ2 cos (t)
]

(19)

p(t) = −
√

2E
cosh

[√
2Eλ2 cos (t)

] sin (t) (20)

Furthermore, the Hamiltonian function represented in
equation (7) becomes

H(x, p) = [1 + (λx)2]
2 p2

+ 1
2λ2 [sinh−1 (λx)]2 = E (21)

The trajectory x(t) represented in equation (19) for
the Mathews-Lakshmanan-type oscillator agrees with
the trajectory equation obtained in Ref. [19], where the
author used the same mass function m(x) as the one in
this paper. However, the author obtained the expression
for the trajectory x(t) by a different method from the
one used in this paper, solving directly the nonlinear
differential equation of motion for the system.

The trajectories x(t) and p(t) of the system with
position-dependent mass were compared to those for the
oscillator with constant mass in Figs. 2(a) and 2(b). In
both plots, the parameter λ was considered equal to one
for the differences in the behavior of the trajectories of
both oscillators be better evidenced.

It can be noticed in Fig. 2(a) that the trajectory x(t)
for the system with PDM has a higher amplitude, and
the position of the minima and maxima do not vary when
compared to the trajectory X(t) for the oscillator with
constant mass. In addition, Fig. 2(a) coincides with the
trajectories obtained in Fig. 1(b) of Ref. [19], where x(t)

Figure 2: (a) Trajectories x(t), equation (17), in yellow for
the oscillator with the mass function m(x) and X(t), equation
(11a), in red for the oscillator with constant mass.(b) Trajec-
tories p(t), equation (18), in blue for the oscillator with the
mass function m(x) and P (t), equation (11b), in black for the
oscillator with constant mass. (c) Zoom of the plot (b) for t
values between −2 and 2, showing the inflection points in purple
at t = 1.03, t = 0, and t = −1.03.
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was obtained directly by solving the nonlinear equation
of motion of the PDM system with the same m(x) used
in this paper.

Moreover, the trajectory p(t) for the PDM system
is represented in Fig. 2(b). Observe that p(t) has the
same amplitude and, also, the same minima and maxima
values compared to the trajectory P (t) for the oscillator
with constant mass.

Furthermore, the functions sine and cosine in terms
of time only have inflection points localized in t = 0. In
contrast, the hyperbolic cosine has no inflection points in
its domain. However, when these trigonometric functions
are combined in equation (18), there are more inflection
points in the trajectory p(t) besides at t = 0 (Fig. 2(c)).

The trajectories in phase space for the PDM oscillator,
considering the same energy range as Ref. [24], were
obtained using equation (21) and are represented in
Fig. 3. From Fig. 3(a), notice that when λ = 0.03, i.e.,
λ → 0, the trajectories tend to those of the oscillator
with constant mass, i.e., concentric circles.

Additionally, Fig. 3(b) shows the trajectories in phase
space for λ = 1 and for the same energy values as
in Fig. 3(a). Observe that when λ = 1, the trajecto-
ries’ deformations become evident, with the deformity
increasing as the energy value E increases. Besides, from
Fig. 3(b), it is noticeable that the particle’s velocity
only cancels out at the return points, regardless of the
λ parameter.

Furthermore, from Fig. 3(b), observe that as energy
values increase, the curves near the x-axis are more
abruptly curved, flattening the trajectory in this direc-
tion. As for critical low-energies in Fig. 3(b), for example,
E = 0.05, even though λ = 1, the trajectory approaches
the one for a constant mass oscillator. In addition, the
deformed trajectories in Fig. 3(b) resemble a diamond
plot with rounded vertices, being more evidenced for
E ≥ 0.30. Besides, the trajectories in phase space have
similar behavior to those obtained in Ref. [24] for the
same mass function used in this study.

Figure 3: (a) Phase space of the oscillator with function mass
m(x) with m0 = 1 and λ = 0.03 for different energy values.
(b) Phase space of the oscillator with PDM with function mass
m(x) with m0 = 1 and λ = 1.00 for different energy values. In
both plots, energy values were E = 0.05, 0.30, 0.55, 0.80, and
1.00.

Figure 4: (a) Phase space of the oscillator with function mass
m(x) with m0 = 1 and λ = 0.03 for different energy values.
(b) Phase space of the oscillator with PDM with function mass
m(x) with m0 = 1 and λ = 1.00 for different energy values. In
both plots, energy values were E = 1.0, 4.0, 7.0, and 10.0.

Moreover, Fig. 4 shows the trajectories in phase space
considering higher energies than those in Fig. 3. The
phase space with λ = 0.03 is represented in Fig. 4(a).
Even though the energy values are higher, the trajecto-
ries in this phase space in Fig. 4(a) remain like those for
the constant mass oscillator because λ → 0. Therefore,
the λ parameter has a greater impact on the phase space
deformation than the energy values.

In contrast, Fig. 4(b) shows the trajectories in phase
space for λ = 1 for higher energy values than those in
Fig. 3. In this case, it is noticeable that the trajectories
become highly deformed as E increases. Additionally,
one can observe that the x-axis range significantly and
rapidly expands as the energy values increase. However,
comparing Figs. 4(a) and 4(b), one can note that the
maximum values in the p-axis do not vary when λ value
change. This result also occurs for lower energies in
Fig. 3.

Besides, observe that the scales in Figs. 3(b) and 4(b)
are significantly different, then it is not possible to
properly interpret the shape of the curves in Fig. 4(b).
The trajectories in phase space in Fig. 4(b) have similar
behavior to those obtained by a different method than
ours in Fig. 1 of Ref. [33]. However, the authors did not
specify the energy range used to plot the trajectories,
which was done in this paper.

Hence, the differences between the behavior of the
Mathews-Lakshmanan-type oscillator and the constant
mass oscillator become more evident as energy and λ
values increase.

2.2. Quantum case

The Hamiltonian operator for a quantum system
endowed with position-dependent mass in the usual form
is3

Ĥ = T̂ + V̂ = p̂2

2m̂(x̂) + V̂ (x̂) (22)

3 As the mass is dependent on the position operator x̂, the mass
in this case also becomes an operator m̂(x̂).
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Since the mass is a function of the position operator,
then m̂(x̂) does not commute with p̂, and these quanti-
ties cannot be simultaneously measured. Therefore, the
kinetic energy of this system is not a physical observable.

Thus, the kinetic energy operator T̂ represented in
equation (22) is non-Hermitian. However, it is desired
that the kinetic energy be a measurable quantity. Conse-
quently, the operator T̂ representing this quantity must
be Hermitian.

In 1983, Roos [1] proposed a generalization of the
kinetic energy operator to make the Hamiltonian oper-
ator Ĥ Hermitian. In Roos generalization, the kinetic
energy is written as4 [1]

T̂ = 1
4[mαp̂mβ p̂mγ +mγ p̂mβ p̂mα]

Then, the generalized Hamiltonian operator is given
by

Ĥ = 1
4[mαp̂mβ p̂mγ +mγ p̂mβ p̂mα] + V̂ (x̂) (23)

with p̂ = −d/dx and the parameters α, β and γ satisfying
the constraint

α+ β + γ = −1 (24)

The time-independent Schrödinger equation for quan-
tum systems is

Ĥφ(x) = Eφ(x) (25)

with Ĥ = T̂ + V̂ .
Then, substituting equation (23) into equation (25),

the time-independent Schrödinger equation for the PDM
system is generalized as(

1
4 [mαp̂mβ p̂mγ +mγ p̂mβ p̂mα] + V (x) − E

)
× φ(x) = 0

Therefore, the kinetic energy operator becomes Her-
mitian when the parameters obey the constraint in
equation (24). However, the choice of the parameters
α, β, and γ is not unique [34, 35], i.e., different values of
parameters generate distinct and non-equivalent Hamil-
tonian operators to give rise to an ambiguous ordering
problem [36].

Literature contains several studies advocating the
choice of a specific set of parameters [4, 37–40]. Even
before the generalization of the Hamiltonian operator
Ĥ performed by Roos, papers were published proposing
a new form for the kinetic energy operator T̂ to study
systems with position-dependent mass [4, 37].

4 In this section, the mass operator m̂(x̂) will be represented simply
as m or m(x) to simplify the notation. However, the mass remains
an operator with spatial dependence on x̂.

After the Roos generalization, researchers found that
the previously proposed Hamiltonian operators repre-
sent a specific case of the generalized operator with a
given set of parameters α, β, and γ. In addition, other
sets of parameters were studied after the generalization
that had not been previously analyzed [38, 40].

In 1966, BenDaniel and Duke [37] proposed a modified
Hamiltonian to study systems with position-dependent
mass. The Hermitian operator suggested by these
authors is recovered in the Roos generalization by
considering α = γ = 0 and β = −1. In 1969, Gora
and Williams [4] proposed a Hamiltonian operator such
that, in the Roos generalization, α = −1 and β =
γ = 0 to study semiconductors with smoothly graded
composition, i.e., a system in which the effective mass is
position-dependent.

In 1983, Zhu and Kroemer [39] proposed a Hermitian
Hamiltonian where α = γ = −1/2 and β = 0
to study the wave functions with position-dependent
effective mass in an abrupt heterojunction between two
semiconductors. Furthermore, in 1993, Li and Kuhn [38]
analyzed the case where α = 0 and β = γ = −1/2
to study a heterojunction in which the mass function
varies smoothly with the position. Finally, in 2007,
Mustafa and Mazharimousavi [40] proposed a Hermitian
Hamiltonian operator with the parameters α = γ =
−1/4 and β = −1/2 in the generalization performed
by Roos.

There is an interesting discussion in the article written
by Morrow and Brownstein [6] in 1984, in which the
authors showed that α = γ. This equality is because of
the condition of continuity of ψ′(x, t)/m(x) in abrupt
heterojunctions between two crystals, i.e., when there is
a non-finite discontinuity in the effective mass of the
system [41]. Therefore, in this case, the Hamiltonian
operator becomes [6]

Ĥ = 1
2 [mα p̂ mβ p̂ mα] + V̂ (x̂) (26)

with the constraint

2α+ β = −1

In this study, although the analyzed system is not a
semiconductor with abrupt heterojunction, α = γ will
be used due to the physical viability of the condition.

To apply the Hamiltonian factorization method, the
operator represented in equation (26) will be used,
considering α = a, β = 2b, and p̂ = −d/dx to simplify
the notation. Then

Ĥ = −1
2m

a d

dx
m2b d

dx
ma + V̂ (x̂) (27)

with the constraint

a+ b = −1/2 (28)
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In addition, the following ladder operators are defined
[42]

Â−
a = 1√

2
mb d

dx
ma +Wa(x̂) (29)

Â+
a = − 1√

2
ma d

dx
mb +Wa(x̂) (30)

where Wa(x̂) is called “superpotential”.
Moreover, as the quantum harmonic oscillator with

constant mass, the operators Â+
a and Â−

a obey the
following commutation relation [42]

[Â−
a , Â

+
a ] = 1 (31)

Equation (31) shows that the ladder operators Â+
a and

Â−
a do not commute. This gives rise to two Hamiltonian

operators, Ĥ−
a and Ĥ+

a , such that [42]

Ĥ+
a = T̂+

a −
(
Wa√
2m

)′

− 4aWa

(
1√
2m

)′

+W 2
a (32)

= T̂+
a + V̂ +

a

and

Ĥ−
a = T̂−

a −
(
Wa√
2m

)′

− 4aWa

(
1√
2m

)′

+ 2W ′
a√

2m
+W 2

a

= T̂−
a + V̂ −

a (33)

where the kinetic energy operators T̂+
a and T̂−

a are given
by

T̂+
a = −1

2m
a d

dx
m2b d

dx
ma

T̂−
a = −1

2m
b d

dx
m2a d

dx
mb

and the potentials are

V̂ +
a = −

(
Wa√
2m

)′

− 4aWa

(
1√
2m

)′

+W 2
a (34)

V̂ −
a = −

(
Wa√
2m

)′

− 4aWa

(
1√
2m

)′

+ 2W ′
a√

2m
+W 2

a

(35)

The potential V̂ −
a represented by equation (35) differs

from that obtained in Ref. [24], where their potential has
an extra term5. However, the potential V̂ −

a equation (35)
agrees with the one obtained in Ref. [42]. The derivation
of the potential V̂ −

a in equation (35) is presented in the
Appendix of the Supplementary Material.

Expanding the commutation relation represented in
equation (31), one has

[Â−
a , Â

+
a ] = 1 ⇐⇒ Â−

a Â
+
a − Â+

a Â
−
a = 1

⇐⇒ Â−
a Â

+
a − 1

2 = Â+
a Â

−
a + 1

2 (36)

5 The potential used by the authors results in an approximation
for solving the ambiguous ordering problem.

with the Hamiltonian operator Ĥ characteristic of a
harmonic oscillator

Ĥ = Â−
a Â

+
a − 1

2 = Â+
a Â

−
a + 1

2
=⇒ Ĥ = Ĥ−

a − 1
2 = Ĥ+

a + 1
2 (37)

According to equation (37), the supersymmetric part-
ners Ĥ−

a and Ĥ+
a have the same spectrum, however, Ĥ−

a

has one less bound state than its partner Ĥ+
a [43].

Substituting the equations (32) and (33) into the
commutator relation, equation (36), one has that

T̂−
a + 2W ′

a√
2m

− 1 = T̂+
a (38)

In addition, equation (37) suggests that Ĥ must be
unique. Therefore, the following condition [42]

2W ′
a√

2m
− 1 = 0 =⇒ W ′

a =
√

2m
2 (39)

is imposed in equation (38).
The solution of the differential equation represented

in equation (39) is given by

Wa = 1√
2

∫ √
m(x) dx (40)

Since the potential terms in equation (38) were can-
celed out, then T̂+

a = T̂−
a , i.e.,

−1
2m

a d

dx
m2b d

dx
ma = −1

2m
b d

dx
m2a d

dx
mb (41)

and for equation (41) to be satisfied, it is necessary that
a = b.

In addition, using the constraint equation (28), it is
possible to infer that a = b = −1/4. In this case, since
α = γ = a and β = 2b, one has

α = γ = −1
4 ; β = −1

2 (42)

and the ambiguous ordering problem is solved for the
harmonic oscillator, as done in Ref. [42]

Thus, with a = −1/4 and equation (34), the potential
V̂ +

−1/4 become

V̂ +
−1/4 = −

W ′
−1/4√
2m

+W 2
−1/4 = W 2

−1/4 − 1
2 (43)

V̂ −
−1/4 =

W ′
−1/4√
2m

+W 2
−1/4 = W 2

−1/4 + 1
2 (44)

using equation (39) for both cases to infer that

W ′
−1/4√
2m

= 1
2

As evidenced by equations (43) and (44), the poten-
tials V̂ +

−1/4 and V̂ −
−1/4 are supersymmetric partners, as

proved in Ref. [42].
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Furthermore, it is possible to notice that the superpo-
tential represented in equation (40) has the same form as
the function W (x) in equation (5), obtained by factoring
the Hamiltonian of the classical oscillator with position-
dependent mass.

To analyze the existing relationship between the
superpotential W−1/4(x̂) and the potential V̂ (x̂), equa-
tion (37) and the previously obtained parameter
a = −1/4 are used. Thus

Ĥ = Ĥ+
−1/4 + 1

2
T̂+

−1/4 + V̂ (x̂) = T̂+
−1/4 + V̂ +

−1/4(x̂) + 1
2

V (x̂) = W 2
−1/4 − 1

2 + 1
2

V (x̂) = W 2
−1/4

with Ĥ given by equation (27) and Ĥ+
−1/4 given by

equation (32).
Therefore, the potential V (x) for the quantum oscil-

lator with PDM is given by

V̂ (x) = 1
2

[∫ √
m(x) dx

]2
(45)

which has the same form of the potential given by
equation (6) obtained for the classical case of a PDM
oscillator. Hence, with the parameter set of Mustafa and
Mazharimousavi [40] (equation (42)), a correspondence
between the classical and quantum position-dependent
mass oscillators could be established [42].

Furthermore, the Hamiltonian operator with the
parameter set of Mustafa and Mazharimousavi is
given by

Ĥ = 1
2

1
4
√
m

p̂
1√
m

p̂
1

4
√
m

+ V̂ (x̂) (46)

Then, using equation (46) and equation (45), one has

Ĥ = 1
2

1
4
√
m
p̂

1√
m
p̂

1
4
√
m

+ 1
2

[∫ √
m dx

]2
(47)

The kinetic energy operator for the quantum harmonic
oscillator with position-dependent mass represented in
the first term of equation (47) is now unique since the
Roos parameters were established for this system [42].

Moreover, with a = b = −1/4, the ladder operators,
equations (29) and (30), become

Â−
−1/4 = 1√

2

[
1

4
√
m

d

dx

1
4
√
m

+
∫ √

m dx

]
Â+

−1/4 = − 1√
2

[
1

4
√
m

d

dx

1
4
√
m

+
∫ √

m dx

]
and when m(x) → m0, the ladder operators return to
those usually used in solving the quantum harmonic
oscillator with constant mass.

Therefore, the Hamiltonian factorization method for
systems with position-dependent mass allows the finding
of the appropriate ladder operators to analyze the
dynamics of systems with PDM. Thus, this method
becomes a powerful mathematical tool to simplify solv-
ing these systems.

Due to the properties of the ladder operators Â+ and
Â−, the same relations for the case of the quantum
harmonic oscillator with constant mass are obtained,
that is

Â−
−1/4ψ0(x) = 0

Â−
−1/4ψn(x) =

√
nψn−1(x)

Â+
−1/4ψn(x) =

√
n+ 1ψn+1(x)

with the wave function given by

ψn(x) = 1√
n!

(Â+
−1/4)nψ0(x)

In addition, it is possible to relate the Hamiltonian
operator with position-dependent mass represented in
equation (47) to the operator Ĥ0

6 that describes the
oscillator with constant mass.

Initially, consider the eigenvalue equation for the
Hamiltonian operator Ĥ−1/4, given by[

1
2

1
4
√
m
p̂

1√
m
p̂

1
4
√
m

+ 1
2

(∫ √
m dx

)2
]
ψn

= Enψn (48)

with En = (n + 1/2), in which was taken ℏ = ω = 1.
Notice that because of the form of En, it is possible
to infer that the PDM oscillator is in the same class
as the harmonic oscillator with constant mass because
they have the same energy spectrum, although having
different potentials [44].

Now, using the following canonical point transforma-
tions [45]

X(x) =
∫ √

mdx (49)

ψn(x) = 4
√
mφn(X) (50)

in the eigenvalue equation (48), and considering

dφn

dx
= dφn

dX

dX

dx
=

√
m

dφn

dX
d

dx

(
dφn

dX

)
=

√
m

d2φn

dX2

equation (48) becomes

−1
2
d2φn

dX2 + 1
2X

2φn = Enφn (51)

6 The Hamiltonian operator for a system with constant mass is
Ĥ0 = p̂2

2m0
+ V̂ (x̂), where m0 represents the constant mass and

V̂ (x̂) the potential operator.
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Equation (51) is similar to the eigenvalue equation for
the quantum harmonic oscillator with constant mass.
In fact, the wave functions φn(x) for equation (51) is
the same as that of the harmonic oscillator with constant
mass [46], i.e.

φn(X) = 1√√
π2nn!

exp
(

−X2

2

)
Hn(X)

where Hn(x) represents the Hermite polynomials.
Returning to the solution for the position-dependent

harmonic oscillator using the inverse canonical transfor-
mation of equations (49) and (50), one has that

ψn(x) = 1√√
π2nn!

4
√
m(x)

× exp
(

−
(
∫ √

m(x)dx)2

2

)

× Hn

(∫ √
m(x)dx

)
(52)

Therefore, equation (52) represents the eigenfunc-
tions of the quantum harmonic oscillator with position-
dependent mass. Notice that the Hermite polynomial
now has a position dependence as well.

2.2.1. A quantum Mathews-Lakshmanan-type
oscillator

As an application to the theory developed in the previous
section, consider a Mathews-Lakshmanan-type oscillator
with a mass operator defined as

m̂(x) = m0

1 + (λx̂)2 (53)

with m0 = 1 unitary.
Firstly, it is noticeable from equation (45) that the

potential energy for this system will have the same shape
as the potential of the classical Mathews-Lakshmanan-
type oscillator, represented in equation (14), showing a
similarity between both systems.

Besides, from the canonical transformation in equa-
tion (49), one has

X(x) = 1
λ

sinh−1(λx)

and, thus, it is possible to obtain the eigenfunctions from
equation (52), given by

ψn(x) = 1√√
π2nn!

4

√
1

1 + (λx)2

× exp
(

− (sinh−1(λx))2

2λ2

)
× Hn

(
sinh−1(λx)

λ

)
(54)

In addition, the Hamiltonian operator for the oscil-
lator with function mass defined in equation (53) is
given by

Ĥ = − 1
2

4
√

1 + (λx)2 d

dx

√
1 + (λx)2

× d

dx
4
√

1 + (λx)2 +
[

1
2λ2 (sinh−1(λx))2

]
From equation (54), the first three eigenfunctions for

our Mathews-Lakshmanan-type oscillator are

ψ0(x) = 1√√
π

4

√
1

1 + (λx)2

× exp
(

− (sinh−1(λx))2

2λ2

)
(55)

ψ1(x) = 1√
2
√
π

4

√
1

1 + (λx)2

× exp
(

− (sinh−1(λx))2

2λ2

)
×
(

2 sinh−1(λx)
λ

)
(56)

ψ2(x) = 1√
2
√
π

4

√
1

1 + (λx)2

× exp
(

− (sinh−1(λx))2

2λ2

)
×
[(

2(sinh−1(λx))2

λ2

)
− 1
]

(57)

ψ3(x) = 1√
3
√
π

4

√
1

1 + (λx)2

× exp
(

− (sinh−1(λx))2

2λ2

)
×

[
2
(

sinhλx
λ

)3
− 3

(
sinh−1(λx)

λ

)]
(58)

With equations (55)–(58), it is possible to plot the
wave functions and probability distributions for the
Mathews-Lakshmanan-type oscillator, represented in
Figs. 5 and 6, respectively.

The plots for the wave functions for the PDM system
with m(x) represented in Fig. 5 agree with the ones
obtained for the same quantum system in Ref. [24].
However, in our study, the wave functions for the
PDM system were plotted with those for the constant
mass oscillator to enable a further investigation of the
similarities and differences between both oscillators.

From Fig. 5, it is noticeable that the wave functions
for the oscillator with position-dependent mass preserve
symmetry about the y-axis. Analogous to the case of
the quantum harmonic oscillator with constant mass,
this symmetry is due to the Hermite polynomials Hn(x)
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Figure 5: Wave functions (a) ψ0(x) and φ0(x), (b) ψ1(x)
and φ1(x), (c) ψ2(x) and φ2(x), (d) ψ3(x) and φ3(x) with
m0 = λ = 1. The wave functions ψn(x) describe the
harmonic oscillator with m(x) (in purple), and φn(x) describe
the harmonic oscillator with constant mass (in black).

Figure 6: Probability densities (a) |ψ0(x)|2 and |φ0(x)|2,
(b) |ψ1(x)|2 and |φ1(x)|2, (c) |ψ2(x)|2 and |φ2(x)|2,
(d) |ψ3(x)|2 and |φ3(x)|2 with m0 = λ = 1. The probability
densities |ψn(x)|2 are related to the harmonic oscillator with
m(x) (in purple) and |φn(x)|2 with the harmonic oscillator with
constant mass (in black).

having definite parity, with H2n even and H2n+1 odd.
Therefore, the wave functions ψ2n remain to have even
parity, and ψ2n+1 preserves its odd parity.

From equation (54), one can observe that when λ →
0, the wave functions tend to those for the oscillator
with constant mass. This result also occurs for x values
close to zero. Notice in Fig. 5 that around x = 0 values,
there is an overlap region of the curves representing the
oscillator with constant mass and the one with PDM.
The superposition regions indicate that both oscillators
have similar behavior around the origin, even though
λ = 1.

The probability densities for the constant mass and
the PDM oscillators were plotted in Fig. 6. It is notice-
able that for the Mathews-Lakshmanan-type oscillator,
the distribution seems to be more spread out in contrast
to the probability density for the oscillator with constant
mass. Then, from Fig. 6, one could infer that the PDM
system is more spatially dispersed, i.e., has a less defined
position. However, it is crucial to consider that the PDM
system has a different potential shape than that of the
constant mass oscillator.

Figure 7: Potential (equation (45)) and probability densities of
|ψ0(x)|2 (lower level), |ψ1(x)|2, |ψ2(x)|2, and |ψ3(x)|2 (higher
level) for (a) λ = 0.03 and (b) λ = 1. The probability densities
|ψn(x)|2 were dislocated regarding the y-axis in a factor of 1/2,
the incremental of each energy level.

The probability densities were plotted with the poten-
tial curve in Fig. 7. The potential for the system with λ =
1 represented in Fig. 7(a) is less confining compared to
the oscillator with λ = 0.03 in Fig. 1(b), which resemble
a parabola. Then, this indicates that the oscillator
with λ = 1 has a larger classically allowed region of
movement, as seen in Fig. 7(b) (notice the difference
between the x-axis ranges in Figs. 7(a) and 7(b)).

Additionally, Fig. 7(a) shows that when λ = 0.03,
i.e., λ → 0, the potential and probability densities
approach those for the oscillator with constant mass. In
this case, the particle has higher probability densities at
the extremities of the classically allowed region delimited
by the potential, as expected.

Contrary to what Fig. 6 might indicate, Fig. 7(b)
suggests that the particle is more likely to be detected
around the system’s origin and not at the extremities
of the classically allowed region. This conclusion is not
trivial to be inferred only by analyzing Fig. 6 because the
probability densities are not shown with the potential
curve in Fig. 1(b).

Further, as well-known, there is a close relation
between the probability density of the system and the
tunneling probability through the potential barrier. For
the oscillator with λ → 0, Fig. 7(a) indicates that the
tunneling probability decreases slowly for higher excited
states, as for the oscillator with constant mass.

In contrast, for the system with λ = 1, Fig. 7(b) shows
that for the state corresponding to n = 0, the system
has an equally high probability of tunneling compared
to the same state in Fig. 7(a). This closeness of tunneling
probabilities comes from the similarity between the
probability density curves in Fig. 6(a). However, one
can observe in Fig. 7(b) that for the quantum state
n = 1, the tunneling probability decreases significantly
in contrast with the same quantum state in Fig. 7(a).

Yet, the tunneling probability decays more noticeably
and even faster for higher excited states (n = 2 and 3).
For instance, notice the difference in the quantum state
corresponding to n = 3 between the Figs. 7(a) and 7(b).
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Therefore, the PDM system with a lower λ value is more
likely to tunnel through the potential barrier in this
quantum state.

3. Conclusions

This study enhanced the comprehension of classical and
quantum systems with position-dependent mass. The
analytical challenges of nonlinear equations of motion
and non-Hermitian operators were addressed through
Hamiltonian factorization and canonical transforma-
tions methods for both systems. The theory was applied
on a Mathews-Lakshmanan-type oscillator with m(x) =
1/[1 + (λx)2].

Classically, the trajectories in phase space for a
Mathews-Lakshmanan-type oscillator were investigated.
As the energy and λ values increased, more evident
were the trajectories’ deformities, and higher was the
tendency of those to flatter in the x-direction. This
analysis provided an understanding of the system’s
dynamics and highlighted the significant impact of the
λ value in this PDM oscillator.

In the quantum realm, the generalized kinetic energy
operator proposed by Von Roos was employed to address
the kinetic operator being non-Hermitian, and the solu-
tion to the ambiguous ordering problem for the PDM
oscillator was presented. Moreover, the wave functions
and probability densities were analyzed for a few states
of the Mathews-Lakshmanan-type oscillator. Further,
this study also investigated the tunneling probabilities
for this PDM oscillator. As the λ value increased, the
tunneling probability decreased, being more evident for
higher excited states. This result offers novel insights
into the behavior of the Mathews-Lakshmanan-type
oscillator.

Thus, this study contributed to the broader under-
standing of PDM systems and their dynamics, with
implications for various fields of physics where position-
dependent mass plays a crucial role.
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