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A machine can make three-dimensional figures that can float on different types of liquids, using for each figure
always the same quantity of mass. The machine had already made spheres when the engineers intended to design
other figures that reached the same depth below the surface. They tested with cubes and realized that regardless
of the liquid on which figures floated, spheres always reached a greater depth than cubes. Could their problem be
solved using cones?
Keywords: Archimedes’ principle, Problem-Based Learning.

1. Introduction

In elementary Fluid Mechanics, Archimedes’ principle [1]
is used for determining the equilibrium position of a
floating body on a liquid. However, in Physics textbooks,
it seems that Fluid Statics leads to simple problems
when the geometry of the floating bodies is simple as
well. The problem stated in the abstract appear to fall
in the latter category, but as we will see later on, this
is not the case. Despite the fact the statement of the
problem is quite straightforward and easy to understand,
it combines actually many topics, which at first glance
are not evident. Moreover, the problem unfolds in dif-
ferent stages, so that is very suitable for Problem-Based
Learning at undergraduate level [2]. Something that may
puzzle students at the beginning is that no numeric data
is available in the problem. Therefore, students are force
to carry out the problem symbolically from the beginning
to the end, which is a very good exercise for choosing an
adequate nomenclature for the surprisingly large number
of variables involved.

This paper is organized as follows. Section 2 is devoted
to prove the assertion given in the problem about that
spheres reach a greater depth than cubes. We will see
that this problem is fortunately solved by using and aha!
mathematical idea [3]. Section 3 develops the solution
for a cone in terms of its half-aperture α as a function
of the relative density ρr of the material of the cone
with respect to the liquid on which floats. The final
solution α (ρr) is a combination of the Physics involved
in the problem with some mathematical developments
used to neglect spurious solutions. Surprisingly, α (ρr)
is a manifold solution, since we have two, one, or none
solutions, depending on the range of ρr. In Section 4
a simple practice to be carried out by the students is
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proposed in order to verify the theoretical approach given
above. Finally, we collect the conclusions in Section 5.

2. Negative proof for the cube

In order to solve the problem, two assertions have to be
considered: the figures float and each one contains the
same mass of material.

Consider first that the figures float. If ρ denotes the
density of the liquid, ρ′ the density of the material of the
figures, V̂ the volume of the figure dipped into the liquid
and V the volume of the figure, then, according to the
Archimedes’ principle, the buoyant force counteracts the
weight of the figure, thus

V̂ = ρrV, (1)

where ρr = ρ′/ρ denotes the relative density of the figures
with respect to the liquid. In the case of a cube of side
a, consider V� the total volume of it and V̂� the dipped
volume, thereby

V� = a3, (2)
V̂� = a2ĥ�, (3)

where, according to Fig. 1, ĥ� is the depth of the cube
under the surface of the liquid. Applying (1) to (2) and
(3), we obtain

ĥ� = ρra. (4)

We can perform the same calculation for a sphere of
radius RO (see Fig. 1), taking into account the formula
of a spherical cap [4] of radius RO and depth ĥO, hence

VO = 4
3πR

3
O,

V̂O = 1
3π ĥ

2
O

(
3RO − ĥO

)
.
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Figure 1: Nomenclature of floating figures.

Therefore, applying again (1) to (2) and (3), we arrive
at

ĥ3
O − 3ROĥ

2
O + 4ρrR3

O = 0. (5)

Now, recall that all figures are made with the same
quantity of mass, thus their volumes are also equal, V� =
VO, so that

a3 = 4
3πR

3
O → a = βRO, (6)

where, for simplicity, we have defined the following nu-
meric constant,

β = 3

√
4π
3 ≈ 1.612. (7)

Dividing (5) by ĥ3
� and setting the dimensionless quan-

tity

ξ = ĥO

ĥ�
, (8)

we arrive at

ξ3 − 3ξ2RO

ĥ�
+ 4ρr

(
RO

ĥ�

)3
= 0. (9)

To simplify (9), notice that from (4) and (6), we have

ĥ� = ρrβRO → RO

ĥ�
= 1
ρrβ

,

thus
ξ3 − 3ξ2

ρrβ
+ 4
ρ2
rβ

3 = 0. (10)

According to the statement of the problem, the solu-
tions of the cubic equation (10) must be greater than
one, i.e. ξ > 1, in order to obtain ĥO > ĥ�. Here we have
two problems:

1. The general solution of a cubic equation is quite
cumbersome.

2. We must prove that ξ > 1 for every possible value
of ρr.

In order to surmount both difficulties, rewrite (7) as a
quadratic equation for ρr, taking into account (6),

ξρ2
r −

3
β
ρr + 3

πξ2 = 0. (11)

Notice that, in order to obtain a real value for ρr in
(11), the discriminant must be greater than zero, thus

9
β2 −

12
πξ

> 0 → ξ >
4β2

3π ≈ 1.214 > 1, (12)

as we wanted to prove.

3. The cone solution

3.1. The basic solution

One the one hand, following the nomenclature given in
Fig. 1, the volume of a cone and the part of it which is
submerged is

VO = π

3R
2
OhO, (13)

V̂O = π

3 R̂
2
OĥO. (14)

Notice that cones, unlike cubes and spheres, have two
degrees of freedom in its shape, namely RO and hO. Also,
the geometry of cones provides the following equations:

tanα = RO
hO

= R̂O

ĥO
. (15)

Therefore, according to (13), (14) and Archimedes’
principle (1), we arrive at(

R̂O
RO

)3

= ρr. (16)

On the other hand, the equality of volumes between
spheres and cones, VO = VO, yields(

RO
RO

)3
= 1

4 tanα, (17)

which, taking into account (16), can be rewritten as(
RO

R̂O

)3
= 1

4ρr tanα. (18)

Notice also that according to (15) and (18), we have(
RO

ĥO

)3
=
(
RO/R̂O

ĥO/R̂O

)3

= tan2 α

4ρr
. (19)

Since we want the cone reaching the same depth under
the liquid as the sphere, set the following dimensionless
quantity equal to unity,

η = ĥO

ĥO
= 1.

Therefore, dividing (5) by ĥO and taking into account
(19), we arrive at

η3 − 3
(

tan2 α

4ρr

)1/3

η2 + tan2 α = 0.
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Taking into account that η = 1, and solving for ρr, we
get

ρr (α) = 27 tan2 α

4
(
1 + tan2 α

)3 . (20)

It is easy to prove that for the allowed angles of α in
a cone, i.e. 0 < α < π/2,

0 < ρr (α) < 1, (21)

since

ρ′r (α) = 27
4 cos3 α sinα (3 cos 2α− 1) ,

hence there are two minima at αmin = 0, π/2 and a max-
imum at αmax = cos−1 (1/3) /2, for which ρr (αmin) = 0,
and ρr (αmax) = 1. Physically speaking, since the cone
floats, the relative density ρr must also be bounded as
given in (21). Thereby, given ρr, we can design in princi-
ple the requested cone solving for α in (20). Fortunately,
ρr (α) can be inverted as follows. First, perform the
change of variables z = tan2 α = sec2 α− 1 and rewrite
(20) as

4ρr
27 = z

(1 + z)3 =
(

1
1 + z

)2
−
(

1
1 + z

)3
,

thus
u3 − u2 + 4ρr

27 = 0,

where u = 1/ (1 + z) = cos2 α. Recall now that a cubic
equation [5]

u3 + a u2 + b u+ c = 0,

admits three real solutions (trigonometric solution), n =
0,±1,

un = −a3 + 2
√
P cos

2πn+ cos−1
(
Q/ 3
√
P
)

3

 ,

P = a2 − 3b
9 , Q = ab

6 −
c

2 −
a3

27 ,

when P > 0, and the discriminant D = P 3 −Q2 > 0. In
our case, we have P = 1/9 > 0 and Q = (1− 2ρr) /27,
thus, according to (21), D = 4ρr (1− ρr) /729 > 0, and

un = 1
3 −

2
3 cos

(
2πn+ cos−1 (2ρr − 1)

3

)
. (22)

Undoing the changes of variables, we arrive at

αn = cos−1 (
√
un) . (23)

Mathematically speaking, for each ρr we have three
possible angles αn corresponding to n = 0,±1. How-
ever, are all αn physically allowable? To answer this
question, note that from (21) it follows that 0 <
cos−1 (2ρr − 1) < π, thus, taking n = 0, we have 1/2 <

cos
( 1

3 cos−1 (2ρr − 1)
)
< 1. Therefore, −1/3 < u0 < 0,

and α0 yields a complex number, being (22) reduced to

α± (ρr) =

cos−1

(√
1
3 −

2
3 cos

(
cos−1 (2ρr − 1)± 2π

3

))
. (24)

Nonetheless, are always the α± solutions still physically
admissible? Not always. So far, we did not take into
account the stability of the cone floating on the liquid.
If the vertical position depicted in Fig. 1 for the cone is
not stable, then the depth of the cone under the liquid
will not be actually ĥO, but smaller.

3.2. Stability of the cone

The stability theory of floating bodies [6] asserts that if
the centre of gravity of the body G is below the meta-
center M (i.e. the metacentric height GM > 0), then
the floating body is stable, as shown in Fig. 2. In the
case of floating figures with axial symmetry, the following
criterion assures the stability∣∣GM ∣∣ > ∣∣GB∣∣ , (25)

where B is the centre of buoyancy.

3.2.1. Centre of gravity and buoyancy

According to the coordinate system XY Z shown in Fig.
3, the location of the centre of gravity G is on the Z-axis,
due to the symmetry of the figure. Thereby, according
to [7],

zG = 1
MO

∫
VO

z dm, (26)

where the mass of the cone is given by

MO = ρ′VO. (27)
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Figure 2: Metacentric height GM for stable and unstable buoy-
ancy.
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Figure 3: Centre of gravity G and centre of buoyancy B in a
floating cone.

In order to calculate the volume integral given in (26),
divide the volume of the cone as shown in Fig. 4, thus

dm = ρ′dVO = ρ′π
R2
O

h2
O
z2dz. (28)

Substitute now (28) in (26), knowing that ρ′ = const.,
and take into account (13) and (27), to obtain

zG = π
ρ′R2
O

MOh2
O

∫ hO

0
z3 dz = 3

4hO. (29)

α

r

R∇  

h∇  

z

Z

dz

X

Y

Figure 4: Integration parameters for the calculation of the centre
of gravity and buoyancy.

The centre of buoyancy will be located at the centre of
gravity of the volume of liquid displaced by the cone, V̂O.
Since V̂O is also cone-shaped, but of height ĥO, similar
to (29) the centre of buoyancy will be located at

zB = 3
4 ĥO. (30)

According to (29) and (30), and knowing that the cone
floats over the liquid, i.e. hO > ĥO, we have

∣∣GB∣∣ = |zG − zB | =
3
4

(
hO − ĥO

)
. (31)

3.2.2. Metacentric height

When a symmetric body is tilted through a small angle
around its symmetry axis at waterline level (see the MN
line in Fig. 5), then the metacentric height is given by [6]

∣∣GM ∣∣ = 1
V̂O

∫
A

x2dA. (32)

where A is the waterline area. To calculate the surface
integral given in (32), we can perform a polar change of
coordinates, thus∫

A

x2dA =
∫ 2π

0
cos2 ϑ dϑ

∫ R̂O

0
%3 d% = π

4 R̂
4
O. (33)

Substituting (33) and (14) in (32), we arrive at

∣∣GM ∣∣ = 3
4
R̂2
O

ĥO
. (34)
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Figure 5: Stability of a floating cone tilted around the MN line.
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3.2.3. Stable solutions

Therefore, inserting the results (31) and (34) in the sta-
bility criterion given in (25), we have

R̂2
O

hO
> hO − ĥO. (35)

Setting now χ as the following dimensionless quantity,

χ = ĥO
hO
, (36)

and taking into account (15), we can rewrite (35) as

tan2 α χ2 + χ− 1 > 0. (37)

However, note that, from (15) and (16), we have

χ3 = ρr, (38)

hence, substituting (38) in (37) and solving for α, we
have

α > αs (ρr) = tan−1
(√

ρ
−2/3
r − ρ−1/3

r

)
, (39)

where we have defined a limiting function αs (ρr) for the
stability of the cone.

Fig. 6 shows the plots for α± (ρr) and αs (ρr). Note
that, according to (39), the solution is unstable under
the graph of αs (ρr). Numerically, we can compute easily
the crossing points ρ±r between α± (ρr) and αs (ρr) re-
spectively, taking as initial bracketing (21) [8], obtaining

ρ−r ≈ 1.745× 10−3,

ρ+
r ≈ 6.806× 10−1.

Therefore, the stable solutions for designing the float-
ing cone are

α (ρr) =
{
α− (ρr) , ρ−r < ρr < ρ+

r

α± (ρr) , ρ+
r < ρr < 1 (40)

It is remarkable that the solution is unique in the
region ρ−r < ρr < ρ+

r . Outside this region, there is a
small region (0 < ρr < ρ−r ) wherein there is no solution,
and surprisingly a region (ρ+

r < ρr < 1) wherein two
solutions are found.

4. Experimental practice

As aforementioned in the Introduction, here we present
a practice to be carried out by the students in the lab-
oratory in order to design floating figures and thereby
verify the theoretical predictions described above. We
propose to use wax as the material for the figures and
water as the liquid since both substances are cheap and
easy to manage. The aim of the practice is to design a
sphere and a cone of the same volume that reach the
same depth under the surface.

Figure 6: Allowable angles α for a stable floating cone.

First, we propose to the students to measure the den-
sity of the wax and the water they are going to use, and
to obtain from these measurements the relative density.
Here we provide an example.

ρ′ = 930 kg m−3,

ρ = 988 kg m−3,

thus the relative density is

ρr = ρ′

ρ
= 0.932. (41)

It is advisable to measure the density of the wax, once
it is melted, because it might change significantly.

Second, for designing a sphere of a given radius, for
instance

RO = 2.0× 10−2 m,

we can provide the students with different sizes of spheri-
cal molds. (Spherical molds made of plastic can be found
in commercial packs for certain type of toys.) It is im-
portant to advise the students that they probably need
to wait some hours to cool down the melted wax in the
mold, depending on the size of the figure.

Third, we ask the students for computing the half-
aperture of the cone, inserting (41) in (40),

α (ρr) =
{

0.725 rad
0.509 rad

Notice that the selection of water and wax as working
materials have led to a double solution in α (ρr), so that
we can ask the students for designing the two cones and
verify if both of them reach the same depth under water
as the sphere. In order to design a cone with a given half-
aperture, we can use the fact that the planar development
of the cone is a circular sector.

Therefore, according Fig. 7, we need to know the gen-
eratrix length of the cone g∇ and the angle γ. Since
`∇ = g∇γ = 2πR∇ and sinα = R∇/g∇, it follows that

γ = 2π sinα =
{

4.17 rad
3.06 rad
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Figure 7: Stability of a floating cone tilted around the MN line.

Also, from (17) we have

R∇ = (4 tanα)1/3
RO,

hence, taking into account again that sinα = R∇/g∇,
we arrive at

g∇ = 2RO (csc 2α cscα)1/3 =
{

4.60× 10−2 m
5.36× 10−2 m

Given g∇ and γ is easy to make a mold with cardboard
and refill it with melted wax.

Finally, we have to put our figures on the water of a
glass container and see what happens. From my personal
experience in the laboratory with the students, I can
say that it is not easy for them to get enough accuracy
in the cone and the sphere design to observe with the
naked eye the same depth under the water. Nevertheless,
this practice, as a final result of the previous theoretical
work, has been very successful in terms of Problem-Based
Learning.

5. Conclusions

Considering floating figures of the same material and
mass, it has been shown that spheres always reach a
greater depth beneath the surface than cubes, regardless
the relative density of the material with respect to the
liquid on which both float. The proof rests on an aha!
idea, which consists in rewriting the cubic equation (10)
as a quadratic one (11), and then using the discriminant
of the latter.

The solution for the half-aperture of a cone reaching
the same depth below the surface than a sphere has
been also studied. The half-aperture has been given as a
function of the relative density. To reach this solution,
the analytical inversion of (20) turned out to be essential
in order to discard complex spurious solutions, as well
as unstable solutions. Eqns. (24) and (40) collect the
allowable half-aperture angles for cones. Surprisingly,
there is a region for which two solutions are possible.

Finally, we have proposed a practice to be carried out
by students of undergraduate level in order to verify
the theoretical predictions given above. We provide the

guideline of the practice, which is quite easy and cheap
to implement in the laboratory.
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