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Strongly coupled overdamped pendulums
(Pêndulos superamortecidos fortemente acoplados)
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It is shown, by a first-order perturbation expansion, that the dimensionality of the dynamical equations
for the angular variables of two strongly coupled identical overdamped pendulums can be reduced from two to
one. The resulting dynamical equation is seen to be similar to the one of a single pendulum with an additional
fictitious torque characterized by a second harmonic contribution.
Keywords: non-linear ordinary differential equations, coupled pendulums.

Mostra-se através de uma expansão de perturbação de primeira ordem que a dimensionalidade das equações
dinâmicas das variáveis angulares de dois idênticos e fortemente acoplados pêndulos superamortecidos podem
ser reduzida para apenas uma. A equação dinâmica resultante é similar àquela de um pêndulo simples com um
torque fict́ıcio adicional caracterizado por uma contribuição de segundo harmônico.
Palavras-chave: equações diferenciais não-lineares; pêndulos acoplados.

1. Introduction

The angular variables φ1 and φ2 of two equal pendu-
lums are shown in Fig. 1. The dynamics of this system
is described by two coupled second-order non-linear dif-
ferential equations in φ1 and φ2. The order of these
equations can be reduced to one in the case of over-
damped pendulums having small masses and moving
in a viscous environment. Therefore, overdamped iden-
tical strongly coupled pendulums can be described by a
single differential equation for the average angular po-
sition φ = φ1+φ2

2 of the two pendulums with respect to
a common reference axis.

Indeed, one can solve for the difference between the
two angular positions ψ = φ1−φ2

2 in terms of φ by means
of a first order perturbation analysis, so that, upon sub-
stitution of this solution in the time evolution equation
for φ, one can obtain an effective one-dimensional model
for the whole system. Analytic solution of this system
provides an approximated solution to the system dy-
namics.

The paper is organized as follows. In the next
section, the equations for the two coupled pendulums
are briefly derived and the perturbation solutions are
found. In the third section the effective potential en-
ergy for the system is found in terms of the average
angular position φ and the time average of the angu-
lar frequency is found in terms of a constant externally

applied torque. Finally, in the last section, conclusions
are drawn and a brief discussion on the analogy of this
system with a symmetric d. c. SQUID [1] is made.

2. Dynamical equations and perturba-
tive expansion

Consider the mechanical system shown in Fig. 1, con-
sisting of two identical pendulums of mass m and length
l, coupled by a massless rod with torsional spring con-
stant kT and freely rotating about the axis a − a. If a
torque MA is applied on the system, the angular devi-
ations of the pendulums from their vertical equilibrium
positions are indicated as φ1 and φ2, respectively. The
mechanical system is immersed in a fluid with damp-
ing constant b, so that the dynamical equations for the
angular variables φ1 and φ2 can be written as follows

MA−b
dφ1

dt
−mgl sin φ1−kT (φ1 − φ2) = ml2

d2φ1

dt2
, (1)

− b
dφ2

dt
−mgl sin φ2 + kT (φ1 − φ2) = ml2

d2φ2

dt2
, (2)

where we have assumed that the rigid rods, connect-
ing the point mass of the pendulums and the rotating
shaft, are massless. We now introduce the normalized
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time τ = mgl
b t, so the system of equations (1a-b) be-

comes

m2gl3

b2

d2φ1

dτ2
+

dφ1

dτ
+sinφ1+

kT

mgl
(φ1 − φ2) =

MA

mgl
, (3)

m2gl3

b2

d2φ2

dτ2
+

dφ2

dτ
+ sin φ2 − kT

mgl
(φ1 − φ2) = 0. (4)
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l
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Figure 1 - Two identical pendulums of mass m and length
l, coupled by a massless rod with torsional spring constant
kT and freely rotating about the axis a − a. A torque MA

is applied on the system. The angular deviations of the
pendulums from their vertical equilibrium positions are in-
dicated as φ1 and φ2, respectively. The mechanical system
is immersed in a fluid with damping constant b.

In the overdamped case, we may set m2gl3

b2 << 1, so
that the above set of equations simplify to the following

dφ1

dτ
+ sin φ1 +

kT

mgl
(φ1 − φ2) =

MA

mgl
, (5)

dφ2

dτ
+ sin φ2 − kT

mgl
(φ1 − φ2) = 0. (6)

Let us now introduce the adimensional parame-
ters β = mgl

kT
and mA = MA

kT
, and the new variables

φ = φ1+φ2
2 and ψ = φ1−φ2

2 . By algebraic manipulation
we can thus rewrite Eqs. (3a-b) in the following final
form

dφ

dτ
+ sin φ cosψ =

mA

2β
, (7)

dψ

dτ
+ cosφ sin ψ +

2ψ

β
=

mA

2β
. (8)

The above set of equations is not just rewritten in a
different form, where the coupling has now represented
by trigonometric functions rather than by linear func-
tions as in Eqs. (3a-b). For small values of β, indeed,

we can try to solve Eq. (8) by means of a first-order
perturbation analysis with respect to the same parame-
ter β [2]. Assuming β small, we thus set

ψ (τ) =
mA

4
+ βψ1 (τ) + O

(
β2

)
. (9)

Substituting Eq. (9) into Eq. (8), we obtain

ψ1 (τ) = −1
2

cosφ sin
(mA

4

)
. (10)

By having now solved for ψ (τ) in terms of φ (τ) to
first order in the parameter β, we substitute the expres-
sion ψ (τ) = mA

4 − β
2 sin

(
mA

4

)
cos φ into Eq. (7) to get,

consistently with the first order approximation in β

dφ

dτ
+ cos

(mA

4

)
sin φ +

β

4
sin2

(
mA

4

)
sin 2φ =

mA

2β
. (11)

The above equation, together with Eqs. (4)
and (9), represents a reduced model for the prob-
lem of two coupled overdamped identical pendulums.
We notice that the dynamics is similar to that of
a single pendulum, to which a fictitious normal-
ized moment β

4 sin2
(

mA

4

)
sin 2φ is added. The term

β
4 sin2

(
mA

4

)
sin 2φ and the cosine term which appears

as a factor of sin φ, are reminiscent of the interaction
between the two pendulums. Notice also that, once
Eq. (11) is solved for φ (τ), one can recover the time
evolution of ψ (τ) from Eqs. (9) and (10).

3. Effective potential

In the present section we shall derive an expression
for the effective potential for the system in normalized
units. We start by writing the dynamic equations for
the variables φ1 and φ2 (Eqs. (3a-b)) as follows

dφ1

dτ
= −∂Ueff (φ1, φ2)

∂φ1
, (12)

dφ2

dτ
= −∂Ueff (φ1, φ2)

∂φ2
. (13)

So that, by Eqs. (3a-b) we obtain the effective po-
tential in terms of the variables φ1 and φ2

Ueff (φ1, φ2) = 2− cosφ1 − cos φ2+

(φ1 − φ2)
2

2β
− mA

β
φ1. (14)

In order to obtain the effective potential in terms
of the only variable φ, we proceed as follows. We first
write the dynamical equations in terms of φ and ψ by
means of a change of variables, so that

dφ

dτ
= −1

2

(
∂Ueff

∂φ1
+

∂Ueff

∂φ2

)
= −1

2
∂Ueff

∂φ
, (15)
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dψ

dτ
= −1

2

(
∂Ueff

∂φ1
− ∂Ueff

∂φ2

)
= −1

2
∂Ueff

∂ψ
, (16)

where the potential is now expressed in terms of the
variables φ and ψ, so that

Ueff (φ, ψ) = 2− 2 cos φ cosψ +
2ψ2

β
−

mA

β
(φ + ψ) . (17)

In order to readily obtain the reduced potential
Ured (φ), we can either substitute the approximated
solution for ψ, taking care of keeping only first order
terms in β, or, integrating Eq. (15), taking into ac-
count Eq. (11), we can immediately write

Ured (φ) = 2− 2 cos
(mA

4

)
cos φ−

β

4
sin2

(mA

4

)
cos 2φ− mA

β
φ, (18)

which is a washboard-like potential and the constant 2
is arbitrarily chosen. A plot of the reduced potential is
given in Fig. 2 for mA = 0 (dotted line), mA = 0.075
(dashed line) and mA = 0.15 (full line). Notice that the
constant normalized forcing torque not only tilts the
initially periodic potential, which presents infinite de-
generate equilibrium states, but also deforms the shape
of the curve. In this way, we see that the system, ini-
tially in its equilibrium position φ = 0 at mA = 0,
suffers an angular shift for nonzero values of the ap-
plied torque. Up to a given maximum torque, however,
the solution to the problem is static. When this max-
imum value of the constant externally applied torque
is overcome, the solution to Eq. (11) becomes time-
dependent. The maximum values of the normalized
applied torque can be calculated from Eq. (11), by
setting dφ

dτ = 0, realizing that mmax
A must be of order

β. Therefore, by a first order solution in β of the sta-
tionary portion of Eq. (11), we find φmax = π

2 and
mmax

A ≈ 2β. Plots of the time evolution of the angu-
lar variable φ and its derivative, found by numerically
integrating Eq. (11), are shown in Figs. 3a and 3b,
respectively, for β = 0.1 and mA = 0.3 > mmax

A ≈ 0.2.
Plots of the time evolution of the angular variable ψ
and its derivative, found by evaluating Eq. (9), on the
other hand, are shown in Figs. 4a and 4b, respectively,
for β = 0.1 and mA = 0.3 > mmax

A ≈ 0.2.
We would now like to calculate the time-averaged

value 〈ω〉 of the angular frequency ω = dφ
dτ as a function

of a constant normalized applied torque mA. We have
already noticed that 〈ω〉 = 0 for −2β 6 mA 6 2β. For
mA > mmax

A , we solve the differential equation (11) and
then set

U
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Figure 2 - Effective reduced potential Ured as a function of
the average angular position φ for β = 0.1 and for mA = 0
(dotted line), mA = 0.075 (dashed line)and mA = 0.15(full
line).
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Figure 3 - Time evolution of the angular variable φ (a) and

its derivative with respect to time dφ
dτ

(b), for β = 0.1 and
mA = 0.3.

〈ω〉 =
mA

2β
− cos

(mA

4

)
〈sin φ〉−

β

4
sin2

(mA

4

)
〈sin 2φ〉 . (19)

In this way, we obtain the 〈ω〉 vs. mA curves rep-
resented in Fig. 5 for three values of the parameter
β (β = 0.05, 0.1, 0.2). We notice that the solution
mmax

A ≈ 2β is well detectable in these curves.
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Figure 4 - Time evolution of the angular variable ψ (a) and

its derivative with respect to time dψ
dτ

(b), for β = 0.1 and
mA = 0.3.

<
>

w

10

8

6

4

2

0

mA

0 0.2 0.4 0.6 0.8 1

Figure 5 - Time average 〈ω〉 of the derivative ω = dφ
dτ

as
a function of the normalized applied torque mA for three
values of the parameter β (from top to bottom:β = 0.05,
β = 0.1and β = 0.2).

4. Conclusion

We have shown, by a first order perturbation expan-
sion with respect to the parameter β = mgl

kT
, that the

dimensionality of the dynamical equations for two over-
damped identical pendulums of mass m and length l,
coupled by a massless rod with torsional spring con-
stant kT , can be reduced from two to one. Owing to

this reduction, the resulting dynamical equation is writ-
ten in terms of the average angular variable φ = φ1+φ2

2
and appears to be the same as that of a single pen-
dulum with an additional second harmonic sine term.
The reduced potential of this mechanical system is seen
to be a washboard-like potential, like the one found for
a single Josephson junction [1]. The two systems, the
mechanical one and the one containing Josephson junc-
tions, however, differ in what follows. The mechanical
system is forced by an externally applied torque, and
this forcing quantity appears as the argument of the
cosine and of the sine terms, which are the pre-factors
of the sin φ and sin 2φ terms in the dynamical equation,
respectively. In the Josephson junction case, this role
is played by an externally applied normalized magnetic
flux Ψex, which appears as a second forcing term be-
sides the bias current iB . In this way, in the case of a d.
c. SQUID, where the two Josephson junctions are cou-
pled by an interaction having analogous expression as
in the case of the two pendulums studied, the resulting
effective dynamical equation is written as follows [3]

dφ

dτ
+ cos (πΨex) sin φ+

πβ sin2 (πΨex) sin (2φ) =
iB
2

. (20)

Clearly, the role played by the externally applied
torque in Eq. (11) is here played, only partially, by the
bias current appearing as a forcing quantity in the right
hand side of Eq. (20). The magnetic field, on the other
hand, plays a complementary role, being the only forc-
ing term present in the left hand side of Eq. (20). A
last difference can be noticed in the absence of the per-
turbation parameter β in the denominator of the right
hand side forcing term in Eq. (20), as opposed to the
presence of this parameter in the homologous position
in Eq. (11).
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