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In this paper we show how the IBM superconducting chips can be a powerful tool for teaching foundations of
quantum mechanics for undergraduate students (for graduates as well, in some cases). To this end, we briefly
discuss about the main elements of the IBM Quantum Experience platform necessary to understand this paper,
i.e., how to implement operations and single-qubit measurements. We experimentally study the dynamics of single
spin systems interacting with static and time-dependent magnetic fields. First, we study the resonant behavior
of a single spin coupled to a time-dependent rotating magnetic field. To end, we study the Larmor precession
phenomenon. In both cases we show the theoretical and real experimental implementation. This article could be
useful in introductory courses on quantum mechanics and nuclear magnetic resonance foundations, for example.
Keywords: superconducting chips, quantum mechanics, single spin systems, Larmor precession, nuclear magnetic
resonance.

1. Introduction

In traditional courses of quantum mechanics where we
introduce the notion of single-spin dynamics, some inter-
esting results are discussed in a theoretical way, without
any experimental implementation or verification. On the
other hand, simulating quantum physics is an interest-
ing task that we can explore in the IBM Team’s quan-
tum plataform, namely, the IBM Quantum Experience
(IBM-QE) [1]. From such platform we have access to
a five-qubit system [2] in which we can manipulate it
from unitary operations (unitary operators) and measure-
ments. This platform has been used to experimentally
confirm some theoretical results on quantum information
and computation [3–7] as well as to implement high tech-
nology quantum protocols like teleportation [8,9], among
others [10–15].

Methods to circumvent experimental limitations of
teaching quantum physics have been considered in litera-
ture through simulations [16–18], experimental proposal
in quantum optics [19], nuclear magnetic systems [20] and
classical implementation of quantum computers [21]. By
using a different approach, in this paper we discuss how
useful the IBM-QE can be in a physics teaching scenario,
where we develop a didactic strategy to deal with the
problem of experimentally present foundations of single-
spin dynamics in presence of a magnetic field, including
time-dependent fields. To this end, we first present the
relevant elements that we need to know before starting
the simulation of the examples we will present here. We
discuss about the unitary operators that we will use in
our simulations and how we can implement measure-
*Correspondence email address: ac_santos@id.uff.br.

ments in IBM-QE. By the way, we adopt an approach
which allows us to introduce how measurement of some
physical quantities are performed in a Nuclear Magnetic
Resonance (NMR) experimental setup [22]. Then, we dis-
cuss about the first interesting phenomena of single-spin
dynamics, namely spin resonance phenomena, associ-
ated with a spin- 1

2 particle in presence of a strong static
field along z-direction and a rotating magnetic field. We
discuss how the resonance phenomenon emerges from a
suitable choice of the rotating magnetic field frequency
and how it allows us to promote transitions between
“spin up” and “spin down” states of the system, even
when such rotating field is weakly interacting with the
system [22,23]. To conclude, we study the Larmor spin
precession behavior.

2. The IBM Quantum Experience

The five-qubit IBM quantum chip is composed by five
superconducting transmon qubits operating at a temper-
ature scale around 15 mK [24–26]. A superconducting
transmon qubit is composed of two coupled Josephson
junctions, with Josephson energy EJ and capacitance
CJ [27], and shunted by an additional external capaci-
tance CE, as shown in Fig. 1a. As sketched in Fig. 1b,
this system presents a quantized energy levels structure
En, where two of these energy levels (the two lowest-
energy levels) are used as an artificial qubit for quantum
computation, since quantum coherence is observed in
such systems [28]. Because the Josephson junctions are
superconducting devices, the system is composed by a
large number of Cooper pairs (a pair of electrons), where
the collective effect of these pairs allows us to use a su-
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(a) (b)

Figure 1: (1a) Sketch of the superconducting circuit that con-
stitutes a transmon superconducting qubit, where we have two
Josephson junctions with Josephson energy EJ and capacitive
energy EC, connected to a external capacitance CE. (1b) The
representation (out of scale) of the energy levels of the system,
where we highlight the energy levels used as the physical qubit.

perconducting qubit as “artificial atom”. In particular,
we can use it as a two-level system. For this reason, this
system is not a genuine two-level quantum system, like
spin-1/2 particle in presence of a magnetic field or the
polarization states of light. However, the characteristics
and dynamics of superconducting qubits allows us to
simulate such systems. For more relevant details about
the superconducting transmon qubits, we recommend
the Refs [25,26,28].

In particular, we can perform simulations and real
experimental realizations from two different quantum
chips, known as the IBM Q 5 Tenerife (ibmqx4) and
IBM Q 5 Yorktown (ibmqx2) quantum chips. Particularly,
throughout this article we implement the experiments
on IBM Q 5 Yorktown quantum chip, due to the good
decoherence time scale of its qubits [1]. In this section
we discuss on some important elements of the IBM-QE
to be considered in this paper, but more information
about IBM-QE quantum chips can be obtained from a
number of papers in literature [8], as well as from the
own IBM-QE team beginners guide [29].

2.1. IBM-QE single-qubit operations

Single qubit operations are unitary transformations on
two level systems which, in a realistic physical scenario,
arise as result of a dynamics provided by Schrödinger
equation

i~|ψ̇(t)〉 = H(t)|ψ(t)〉 , (1)

for some time dependent (or time independent) Hamil-
tonian H(t). In particular, single-qubit operations can
be obtained from different quantum evolutions, as in
spin dynamics [20, 30] or in a quantum particle in a
double-well [31], for example. In this paper, the rele-
vant single-qubit operations implementable by the IBM

five-qubit chip are

U1(λ) =
[
1 0
0 eiλ

]
, U2(λ, φ) =

[
1√
2 − eiλ

√
2

eiφ
√

2
ei(λ+φ)

√
2

]
,
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[
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θ
2
)

−eiλ sin
(

θ
2
)

eiφ sin
(

θ
2
)

ei(λ+φ) cos
(

θ
2
)]

, (2)

where λ, φ and θ are free real parameters that can be
adjusted in accordance with the gate to be implemented.
It is possible to see that the gates U1(λ) and U2(λ, φ) can
be obtained from gate U3(θ, φ, λ), but under experimental
viewpoint the gates U1(λ) and U2(λ, φ) can be more
efficient than its counterpart obtained from U3(θ, φ, λ).
In fact, each gate can be characterized from its run-time
(time associated with real pulse sequence on transmon
qubits), where the run-time for U1(λ) can be neglected,
U2(λ, φ) is a gate with duration of 1 unit of gate time and
U3(θ, φ, λ) has run-time of 2 units of gate time. Therefore,
it is most convenient to use the gates U1(λ) and U2(λ, φ)
whenever possible.

2.2. Measuring physical quantities in a
single-spin system

The measurement process in physics depends on the
system under consideration [20,30,32–34]. Here, we are
interested in studying a single-spin- 1

2 system driven by
magnetic fields which act on it. Thus, since the system
can be found in two different orthogonal states |↑〉 and |↓〉
associated with different values of the spin component,
these states work as a computational basis in a Nuclear
Magnetic Resonance based quantum computer [20, 30].
In particular, the IBM-QE allows us to implement mea-
surements in computational basis |0〉 ≡ |↑〉 and |1〉 ≡ |↓〉,
i.e., given a quantum state |ψ〉 = a|↑〉+b|↓〉, the measure-
ment outcome provides values for |a|2 and |b|2. Thus, the
physical quantities which we can measure in IBM-QE
are constrained to a set of measurements that can be
obtained from parameters |a|2 and |b|2. For example, if
we want to measure the expected value of the spin along
z direction, we have

Mz = 〈ψ|Sz|ψ〉 = ~
2

(
|a|2 − |b|2

)
, (3)

where Sx, Sy and Sz are the spin operators defined as

Sx = ~
2

[
0 1
1 0

]
, Sy = ~

2

[
0 −i
i 0

]
,

and Sz = ~
2

[
1 0
0 −1

]
. (4)

Thus, it is possible to compute Mz. In addition, if
we want to compute the expected value of spin along x
direction, we need to compute Mx = 〈ψ|Sx|ψ〉. It can
be done if we define the operator

H = 1√
2

[
1 1
1 −1

]
, (5)
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where one uses the relation Sx = HSzH to write

Mx = 〈ψ|HSzH|ψ〉 = 〈ψx|Sz|ψx〉 , (6)

with |ψx〉 = H|ψ〉. In quantum computation, the operator
H is a Hadamard gate and it can be implemented on
IBM-QE. In conclusion, it means we can measure Mx

if we implement a Hadamard gate on the state |ψ〉 and
then we measure the output state in computational basis.
In a similar way, the measurement of the quantity My =
〈ψ|Sy|ψ〉 can be done by defining the rotation operator

Rx(ξ) =
[

cos(ξ/2) −i sin(ξ/2)
−i sin(ξ/2) cos(ξ/2)

]
, (7)

that represents a rotation of an angle ξ around X-
direction [23]. Thus, if we implement the operation with
ξ = −π/2 we get

Rx(−π/2) = 1√
2

[
1 i
i 1

]
, (8)

so that we can show that Sy = Rx(−π/2)SzR
†
x(−π/2),

then

My = 〈ψ|Sy|ψ〉 = 〈ψ|Rx(−π/2)SzR
†
x(−π/2)|ψ〉

= 〈ψy|Sz|ψy〉 , (9)

with |ψy〉 = R†
x(−π/2)|ψ〉. Thus, we can measure any

spin component along the directions x, y and z. In ad-
dition, we can perform measurement of any physical
quantity O which can be written as O = Rr̂(φ)SzR

†
r̂(φ),

where Rr̂(φ) denotes a rotation of an angle φ around
direction r̂, from equation

O = 〈ψ|O|ψ〉 = 〈ψ|Rr̂(φ)SzR
†
r̂(φ)|ψ〉 . (10)

3. Single-spin dynamics on IBM
Quantum Experience

The spin is an internal degree of freedom of the electron
that can be manipulated through external magnetic fields.
In particular, for a spin- 1

2 particle we have two distinct
states |↑〉 and |↓〉. These two states satisfy the eigenvalue
equation

Sz|↑〉 = ~
2 |↑〉 and Sz|↓〉 = −~

2 |↓〉 , (11)

in which ~ is the reduced Planck’s constant and Sn =
(~/2)σn, where σn (n = {x, y, z}) denotes the Pauli ma-
trices for a two-level system given by (with i =

√
−1)

σx =
[
0 1
1 0

]
, σy =

[
0 −i
i 0

]
and σz =

[
1 0
0 −1

]
, (12)

so that the matrix form for the basis |↑〉 and |↓〉 reads as
|↑〉 = [ 1 0 ]t and |↓〉 = [ 0 1 ]t, with superscript “t”
denoting the transpose of a matrix.

3.1. Simulating Nuclear Magnetic Resonance
phenomenon

Let us consider the coupling dynamics of a single spin- 1
2

with a rotating magnetic field ~B(t) given by

~B(t) = ~B0 + ~Brf(t) , (13)

where ~B0 = B0ẑ is the field component along the Z-
direction and ~Brf(t) is a time-dependent transverse mag-
netic fields, given by

~Brf(t) = Brf [cos(ωt)x̂+ sin(ωt)ŷ] , (14)

where ω is the rotating frequency of the transverse mag-
netic field, also known as Radio-Frequency (rf) field.
Therefore, the Hamiltonian of the system is written as

H (t) = ~ω0

2 σz + ~ωrf

2 [cos (ωt)σx + sin (ωt)σy] , (15)

where ω0 is the Larmor frequency and ωrf is the coupling
intensity between the spin and the rf-field. The solution
of the Schrödinger equation for the system is known and
given by (See Appendix A)

|ψ (t)〉 = exp
[
−iω2 tσz

]
exp

[
− i

~
H̃t

]
|ψ (0)〉 , (16)

where

H̃ = ~
ω0 − ω

2 σz + ~
ωrf

2 σx . (17)

In matrix form, we write each evolution operator as

U0(t) = exp
[
−iω2 tσz

]
= e− iωt

2

[
1 0
0 eiωt

]
, (18)

Uxz(t) = exp
[
− i

~
H̃t

]
=[

cos
( Ωt

2
)

+ i∆
Ω sin

( Ωt
2

)
iωrf

Ω sin
( Ωt

2
)

iωrf
Ω sin

( Ωt
2

)
cos

( Ωt
2

)
− i∆

Ω sin
( Ωt

2
)]

,

(19)

where ∆ = ω0 − ω is a detuning between the rf-field and
the Larmor frequencies, and Ω2 = ∆2 +ω2

rf is the effective
Rabi frequency, which takes into account the effects due
to the detuning [35]. It is worth to mention that the
term e− iωt

2 in U0(t) represents a global phase and can
be neglected, as we will do from now on. In particular,
here we will simulate the resonance phenomenon, where
a small rf-field (|ωrf| � |ω0|) can be used to flip the spin
state when the rf-field oscillation frequency is close to ω0
(|∆| → 0). Under this configuration, the operator Uxz(t)
becomes

U ress
xz (t) =

[
cos

(
ωrft

2
)

i sin
(

ωrft
2

)
i sin

(
ωrft

2
)

cos
(

ωrft
2

) ]
, (20)

and the system will evolve as

|ψress(t)〉 = U0(t)U ress
xz (t)|ψ (0)〉 . (21)
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In case where the initial state is given by |ψ (0)〉 = |↑〉,
we compute the time-dependence of the Z-spin compo-
nent and we find

Mz(t) = 〈ψ(t)|Sz|ψ(t)〉 = ~
2 cos(ωrft) . (22)

Notice that the parameter ω does not develop any role
in the above quantity. We choose this particular state
because the standard input state in IBM quantum chip
is the computational state |0〉, namely the spin-up state
|↑〉.

To simulate the spin dynamics of the Eq. (21) we need
to map the evolution operators U0(t) and U ress

xz (t) into
the available parameters in IBM-QE. We mean, from
the Eqs. (2) we need to identify the operator U0(t) as
U1(λ1) and the operator Uress(t) as U3(θ, φ, λ) for a par-
ticular choice of the parameters λ, φ and θ. A first point
to be highlighted is that λ, φ and θ are dimensionless
parameters, so we need to get a correspondence between
the dimensionless parameters of U0(t) and U ress

xz (t) with
the parameters associated to the operators U1(λ1) and
U3(θ, φ, λ), respectively. In our case, it is possible to
see that U1(ωt) = U0(t) and U3(ωrft

2 , π
2 ,

3π
2 ) = Uress(t).

In conclusion, Uress(t) would be simulated through the
sequence

U sim
ress(t) = U1(ωt)U3

(
ωrft

2 ,
π

2 ,
3π
2

)
, (23)

The quantum circuit that executes this task is shown
in Fig. 2. In Fig. 2a we present the theoretical and ex-
perimental data of the spin dynamics for the case where
ω = ω0 (resonance situation). To this end, we encode
our spin (to be driven by Hamiltonian in Eq. (15)) as
the qubit q[2] shown in Fig. 2b. The experimental chip
condition is shown in table 1, as provided by IBM team
before we start the experimental procedure. In Table 1,
we present the frequency ν of the energy gap between
states |↓〉 and |↑〉 of the two-level system used in experi-
ment, namely, ν = (∆E/~), where ∆E is the difference
of energy between excited state and fundamental one.
In addition, it is shown the relevant quantities T1 and
T2 associated with the natural undesired (decoherence)
effects acting on the system (for more details about them,
see Sec. B1 fo the Appendix B). Moreover, we present
the gate and readout errors in the table. These undesired
effects are different from the decoherence ones, in particu-
lar the gate error arises from the imprecise control of the

(a)

(b)

Figure 2: (2a) Theoretical (line) and experimental data (dots)
of the single spin measurement at resonance (as multiple of
~/2). In our experiment we set N = Nmax = 8192 shots. (2b)
Circuit implemented on IBM Q 5 Yorktown chip (ibmqx2), where
we highlight the qubit used in experiment (continuum blue
line) while the rest of the qubit were disregarded during the
experiment (dashed light red lines). The magenta box represents
a measurement in computational basis.

pulses used to manipulate the qubit, while readout error
takes into account systematic errors and experimental
limitations of the evaluation process to measure the spin
components of the qubit. A brief discussion on gate and
readout errors is considered in Sec.2 of the Appendix B.

After implementing the unitary operations (which sim-
ulate the dynamics), we measure the Z-spin component
in order to see some spin flip in the system (as expected
in resonance situation). Up to a small experimental error,
the experimental results show a good compatibility with
the theoretical expected values. The error bar is com-
puted from relation [36] ∆p = π

√
p0(1 − p0)/N , where

N is the number of experimental shots and p0 = |〈↑ |ψ〉|2.
It is important to justify here the choice of the qubit q[2]
as our working system. As discussed in Appendix B, the

Table 1: Physical parameters obtained from last calibration before the experimental implementation shown in Fig.2. For this
experiment, the calibration date is 2019-05-24 08:04:12 AM. See Appendix B for more details about the physical meaning of each
quantity in this table.

Parameters q[0] q[1] q[2] q[3] q[4]
Frequency (GHz) 5.29 5.24 5.03 5.3 5.08

T1 (µs) 53.40 62.10 65.50 60.90 49.50
T2 (µs) 42.20 54.40 57.20 28.90 59.90

Gate error (10−3) 3.35 1.55 4.64 3.44 5.84
Readout error (10−2) 4.80 24.20 1.70 1.70 32.00
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scale T1 and T2 times shown in Table 1 are related with
the timelife of the coherence in system, so the quantum
gates should be implemented during a computation run
time Tcomp � T1 and Tcomp � T2. Typically, the time
required to implement each gate is of the order of 10 ns,
so the circuits used in this manuscript are implemented
within a computation run time of the order of few tens
of nanoseconds [37,38]. Consequently, in our particular
experiment we do not need to worry with the decohering
effects acting on the system. On the other hand, the gate
and readout errors are important for our discussion. In
order to minimize these errors in our experiment, we used
the physical qubit q[2] because it has the best (smallest)
gate and readout errors. Eventually, one obtains a differ-
ent result if one chooses another option. In particular,
if we choose the physical qubit q[4], it is not expected
a good compatibility of our results with the theoretical
expected values.

3.2. Spin precession

Now, as a second application, we discuss the experimental
simulation of the Larmor precession phenomenon. Let us
consider the system at the initial state

|ψ0〉 = cos
(
θ

2

)
|↑〉 + sin

(
θ

2

)
|↓〉 , (24)

where θ ∈ [0, π]. If the system is driven by a time-
independent magnetic field along z-direction, i.e., ~B0 =
B0ẑ, the associated Hamiltonian is read as

H0 = ~ω0

2 σz , (25)

the evolved state of the system will be given by (up to a
global phase)

|ψ(t)〉 = Ũ0(t)|ψ0〉 = cos
(
θ

2

)
|↑〉 + eiωt sin

(
θ

2

)
|↓〉 ,

(26)

where Ũ0(t) = e− i
~ H0t = diag[ 1 eiω0t ] is the evolution

operator. Now, by computing the behavior of the physical
quantities defined in Eqs. (3), (6) and (9), we get

Mz = ~
2 cos(θ) , Mx(t) = ~

2 sin(θ) cos(ω0t) ,

My(t) = ~
2 sin(θ) sin(ω0t) . (27)

In order to see the precession behavior, if we define
the spin vector ~Mxy in xy-plane as

~Mxy = Mxx̂+ My ŷ , (28)

so that we use the Eqs. (27) and we get

~Mxy = ~
2 sin(θ) [cos(ω0t)x̂+ sin(ω0t)ŷ] , (29)

The geometrical representation of ~Mxy is a spinning
vector around z-axis (in the xy-plane) and its norm is
|| ~Mxy|| = ~| sin(θ)|/2. Therefore, when we define the
spin vector ~M = Mz ẑ + ~Mxy we get

~M(t) = ~
2 cos(θ)ẑ + ~

2 sin(θ) [cos(ω0t)x̂+ sin(ω0t)ŷ] ,
(30)

since Mz = ~ cos(θ)/2. The geometrical representation
of ~M(t) is shown in Fig. 3a. For this reason, we call such
dynamics Larmor spin precession or spin precession.

To simulate such dynamics, we need to prepare the
initial input state |ψ0〉, then we implement the evolution
as provided by the evolution operator Ũ0(t). Then, we
measure the spin component along directions x, y and z.
Thus, the circuit which simulates the spin precession is
shown in Fig. 3 and we can build it following three steps:

(1) The initial state: As mentioned, the IBM-QE has
a natural input state given by |0〉 = |↑〉, so any
algorithm input state should be achieved from it.
In particular, the initial state |ψ0〉 can be obtained
from |↑〉 through the unitary operation

Uinp =
[
cos

(
θ
2
)

− sin
(

θ
2
)

sin
(

θ
2
)

cos
(

θ
2
) ]

. (31)

The above unitary operator is obtained from the
gate U3(θ, φ, λ) in Eq. (2) if we set λ = 0 φ = 0.
Thus, we have Uinp = U3(θ, 0, 0).

(2) The evolution: As previously discussed, the evolu-
tion as provided by operator Ũ0(t) can be achieved
through the U1(λ) gate (up to a global phase) when-
ever we set λ = ω0t.

(a) (b)

Figure 3: 3a Sketch of a single-spin inside a static magnetic
field along Z-direction, where the precession behavior is high-
lighted. (3b) Circuit used for each dynamics and measurement
implemented on IBM Q 5 Yorktown chip (ibmqx2), where we
highlight the qubit used in experiment (continuum blue line)
while the rest of the qubits are disregarded during the experiment
(dashed light red lines). The magenta box represents a measure-
ment in computational basis and provides us the probabilities
{px,y,z

0 , px,y,z
1 }.
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(3) The measurement: The last circuit step is the mea-
surement. To measure the z-spin component we do
not need to implement rotations, since the natural
measurement basis of the IBM-EQ is the compu-
tational basis (“spin-up ” and “spin-down” basis
in our case). The spin measurement along x and y
direction are obtained as discussed in Sec. 2.2, so
we need to implement a Hadamard (H) gate and
Rx = R†

x(−π/2) gate to measure in x and y basis,
respectively.

The experiment of the precession spin was implemented
with same qubit as in previous experiment, but with new
physical parameters as shown in Table 2. In experiment
we have two dimensionless parameters to be adjusted,
namely the parameter θ associated with initial state
and the quantity ω0t due to the time-dependence of the
operator Ũ0(t). Thus, we choose two values of θ and
we experimentally study the behavior of the physical
quantities defined in Eq. (27) as function of ω0t. Since
we need to start the protocol with the same state for each
measurement, we set the same parameter θ in gate U3 for
each circuit of the Fig. 3b, while we vary the parameter
λ of the gate U1 used to encode the dimensionless value
of ω0t. Given a same initial for all experiments, each
circuits in figures provides us the probabilities values
px,y,z

0 and px,y,z
1 , then we obtain a set of experimental

values of the quantities Mexp
x,y,z(ω0t) from equation

Mexp
x,y,z(ω0t) = ~

2 [px,y,z
0 (ω0t) − px,y,z

1 (ω0t)] . (32)

Therefore, it allows us to compare the experimental
result with theoretical values given in Eq. (27) and the
results are shown in Fig. 4. Again, we compute the er-
ror bar for each circuit from relation [36] ∆px,y,z =
π

√
px,y,z

0 (1 − px,y,z
0 )/N . Thus, we can see the good agree-

ment between theoretical predictions and experimental
data.

4. Conclusion

Here we have presented a didactic proposal which can
be used to present a more consistent study on quan-
tum single-spin dynamics, where we discussed how to
remotely implement its experimental realization in a
superconducting quantum processor. To this end, we en-
courage the use of the IBM-QE platform as a resource

(a)

(b)

Figure 4: Spin measurement M (in multiple of ~/2) along the
direction x (dashed black curves), y (dashed red dot curves) and
z (continuum blue curves) as function of ω0t for the choices
(4a) θ = π/4 and (4b) θ = π/2. In our experiment we set
N = Nmax = 8192 shots and we implement the circuit on IBM
Q 5 Yorktown chip (ibmqx2). Points denote the experimental
data obtained from IBM-QE platform.

for teaching quantum mechanics from an experimental
approach, in completeness with the theoretical one. Here
we have shown the required elements (quantum gates
and measurement) to study single-spin dynamics from
IBM-QE systems. As a demonstration of how useful the
IBM-QE platform can be, we discuss about two partic-
ular and interesting dynamics of single-spin system. As
a first example, we have discussed about the resonance
phenomena in systems composed of nuclear spins, with
high applicability in nuclear magnetic resonance based
quantum technologies. To conclude, we have studied the

Table 2: Physical parameters obtained from last calibration before the experimental implementation shown in Fig.4. For this
experiment, the last calibration date is 2019-05-29 08:07:25 AM. See Appendix B for more details about the physical meaning of
each quantity in this table.

Parameters q[0] q[1] q[2] q[3] q[4]
Frequency (GHz) 5.29 5.24 5.03 5.3 5.08

T1 (µs) 21.90 51.10 70.10 60.30 50.40
T2 (µs) 26.50 42.10 62.20 27.10 51.20

Gate error (10−3) 9.28 1.46 4.21 3.95 3.44
Readout error (10−2) 9.50 26.10 1.60 3.70 37.90
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Larmor precession phenomena. Both applications could
be experimentally verified. It is worth to highlight that
both experiments were implemented in a relatively short
time, for our case, in average, it took between 3 and 10
minutes for getting the experimental data file for each
execution (each point of the graph).

The single-qubit dynamics studied in this paper can
be implementable through different physical systems. For
example, by using the photon polarization, a number
of half-wave plate and quarter-wave plate can be used
to simulate the dynamics. In this system, the readout
process can be done through state tomography of the
photon polarization. However, because this system needs
a laboratory with high technology electronic devices,
such laboratories are not accessible for a large number
of universities. A second possibility of physical system,
which can implement the experiment discussed here can
be, is a NMR experimental setup. However, these system
are orders of magnitude more expensive than optical
ones. Therefore, the IBM-QE project is a possibility of
experimental realizations on quantum information and
computation for a number of universities around the
world.
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