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This work starts from the Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) equation to model diffusive
populations in fragmented regions characterized by patches with different environmental conditions. Using this
model, we found an expression for the general case of critical patch size, i.e. sizes below which the population
goes extinct in a system of two patches (life-beneficial regions) surrounded by sinks (life-detrimental regions).
This expression alone is an interesting result because it allows for the study of phenomena and interpretations
presented in this work, as well as other features not included in this study. From the analysis of this expression,
we extracted the analytical prediction that in a system formed by a patch and two semi-infinite sinks, if we
replace one semi-infinite sink with a patch plus another semi-infinite sink, more lethal than the original, the
added patch will only be beneficial to the original system if it is large enough to compensate for the added sink.
This interpretation arises from a case study done with a specific set of parameters, but will appear for other
values that meet the presented condition.
Keywords: Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP) equation, Minimum size of fragmented regions,
Relation between neighbor patches.

1. Introduction

Habitat fragmentation is a problem for the survival of
different species living in several environments, from
mammals scattered around the globe [1] to bacteria
in the laboratory [2, 3]. Concerns about the relation
between the fragment size and population density have
also been discussed in the literature [4], concluding
that larger and more intact areas are more beneficial
for species preservation [5]. However, small fragments
should not be overlooked, as they have a fundamental
contribution to biodiversity and species conservation [6],
sometimes preventing some of them from extinction [7].

Mathematical models developed decades ago [8, 9] and
their successors [10–13] have sought to provide insights
into finding the minimum size of a fragment that can
sustain a stable population within it, with experimen-
tal confirmation already documented [3]. Experimental
results serve as important guides for extending or refin-
ing models to accurately describe reality.

From the literature [12, 14, 15], in a system of two
communicating patches, both need a smaller size to
provide life inside them, compared with a single patch.
The decrease in the minimum size of each fragment
comes from the communication between them through
a region where the diffusion of the species in question
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is possible, but the region does not have resources to
support the population indefinitely. However, these stud-
ies only considered identical fragments, raising questions
about whether this behavior would remain the same for
asymmetric fragmentation.

In this sense, this work is a natural continuation of
previous studies [11, 14, 15]. The main focus of this
research is to determine whether the presence of a small
fragment for the species in question has any impact
on another nearby fragment. This other fragment is
connected by an unfavorable region for the species’ life,
but it allows the diffusion of individuals within the
population between the fragments. The study explores
whether the insertion of a very small fragment near an
existing fragment, that already meets the minimum size
to sustain a stable population, will increase, decrease, or
not affect the minimum size of the original fragment.

To answer this question, it is necessary to predict the
behavior of the patch size in a system of two totally
asymmetric patches. Mathematically, this implies to find
an analytic expression for the minimum size, as found in
the literature for particular cases [11, 12, 14, 15]. Here,
in this paper, the objective is to present the general case.

The paper is disposed as it follows: section 2 presents
the problem and discusses known techniques and results
that will be useful to obtain new results of this work
and their comparison with the literature. In section 3 a
brief mathematical discussion of the main steps to obtain
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an analytical prediction of the minimum patch sizes for
the general asymmetric case of homogeneous regions is
presented. Section 4 will address results as well as their
discussion. The concluding remarks close the paper.

2. Model

The Fisher-Kolmogorov-Petrovskii-Piskunov (FKPP)
equation has been used to model population dynamics
from microscopic entities as genes [8], bacteria [2, 3]
and other cells [16], to macroscopic ones, such as spruce
budworm [13], such that its application in the study of
diffusive populations is relevant.

In population dynamics, one feature is the existence of
a critical size Lc, below which a stable population cannot
exist within the fragment [8, 9, 13]. This critical size can
be understood as the minimum size for the preservation
of a species, or as the maximum size that guarantees the
extinction of this species, i.e. if the patch size L is smaller
than Lc, the species will be extinct from this patch.

The convenient form of the one-dimensional FKPP
equation found in the literature [2, 9, 13] as a mathe-
matical model for describing a diffusive population is:

∂u

∂t
= D

∂2u

∂x2 + a(x)u − bu2, (1)

where the variables related to population are: u = u(x, t)
the population density, a(x) the growth rate, b ≥ 0 the
saturation rate or intraspecific competition, and D the
dispersion coefficient. The x and t variables represent
space and time, respectively.

The a(x) profile is commonly used to represent space
fragmentation, because if a(x) < 0, in Eq. (1), the
population density u(x, t) goes to zero for large times
(t → ∞), which does not happen if a(x) > 0. However, if
a(x) is a composition of regions where a(x) positive and
regions where a(x) negative, it is possible a particular
solution that satisfies Eq. (1) in the considered domain.
A common interpretation is to assume as patches (or
habitat fragments), the regions where a(x) > 0, sur-
rounded by unsuitable regions, where a(x) < 0, this last
one will be labeled here as sinks, see Fig. (1).
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Figure 1: Representation of growth rate profiles used to describe
the general case of (a) a two patches system and (b) a single
patch.

Table 1: Definition of regions and their properties.

Short label Region label Space region
S1 sink 1 x < −L1
P1 patch 1 −L1 ≤ x ≤ 0
Ss sink s 0 < x < s
P2 patch 2 s ≤ x ≤ L2 + s
S2 sink 2 x > L2 + s

In the proposed model, the simplest possible fragmen-
tation is to merge homogeneous regions (where a(x) is
constant) favorable and unfavorable to life. For this type
of fragmentation, the general form of a two fragment
system is represented by Fig. (1a), which is composed of
two patches and three sinks, as described in Table 1.

In Fig. (1b), the general case of a single patch is
presented. Its critical size was recently described by
Pamplona da Silva [11] in explicit form:

Lsph =
√

D

ai

{
arctan

(√
hi

ai

)
+ arctan

(√
p

ai

)}
.

(2)
From Eq. (2) the critical size for a semi-isolated

fragment is easily obtained at the limit hi → ∞, i.e.,

Lspi =
√

D

ai

{
π

2 + arctan
(√

p

ai

)}
. (3)

Figure (1b) can be obtained from Fig. (1a) taking the
limit s → ∞. The variable hi is used to represent h1
and h2 and ai to represent a1 and a2, alluding now to
fragments 1 and 2, respectively.

3. Mathematical Analysis

To describe a time-varying population, it is necessary
a model with temporal dependence, in which the pop-
ulation cannot grow infinitely. In this sense, Eq. (1)
is minimally qualified to model a diffusive population
dynamics at any point (x, t) of spacetime. However, as
already discussed by Pamplona da Silva et al. [11, 14, 15]
and Kenkre and Kumar [12], following the ideas of
Ludwig et al. [13]. The focus of this study is on stable
solutions over time, that is, after the transient period.
Thus, the temporal evolution term (∂u/∂t) in Eq. (1)
can be suppressed. The intended results also focus on
a limit condition for the fragment size. This condition
corresponds to a size below which the fragment cannot
sustain a stable population within it. The quadratic
term can be neglected (when compared to the linear
term) since u tends to zero at the extinction-survival
transition, with u2 tending to zero faster. Therefore, for
the purposes of this study, it is possible to work only
with the linear stationary equation, namely:

D
∂2Φ
∂x2 + a(x)Φ = 0, (4)

where Φ = Φ(x) = u(x, t) for t → ∞.
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To determine the critical sizes L1 and L2 of fragments
1 and 2, respectively, Eq. (4) is discussed, region by
region, (see Table 1), enforcing the continuity of the
function and its derivative at the boundaries. Thus, the
functions, which are solutions of Eq. (4) in five regions,
are initially identified:

ΦS1(x) = Aek1x + A1e−k1x, (5)

ΦP1(x) = C sin (α2x) + D cos (α2x), (6)

ΦSs(x) = Gek3x + He−k3x, (7)

ΦP2(x) = E sin (α4x) + F cos (α4x), (8)

ΦS2(x) = B1ek5x + Be−k5x, (9)

where k2
1 = h1/D, α2

2 = a1/D, k2
3 = p/D, α2

4 = a2/D e
k2

V = h2/D.
From the boundary conditions ΦS1(−∞) = 0 and

ΦS2(∞) = 0, the constants A1 = 0 and B1 = 0 were
obtained respectively. With the functions (solutions of
Eq. (4) in their respective regions) given by Eq. (5),
Eq. (6), Eq. (7), Eq. (8) and Eq. (9), it is enforced
continuity at borders: x = −L1, x = 0, x = s and
x = L2 + s, respectively obtaining the expressions:

Ae−k1L1 = −C sin (α2L1) + D cos (α2L1), (10)

D = G + H, (11)

Gek3s + He−k3s = E sin (α4s) + F cos (α4s), (12)

E sin α4(L2 + s) + F cos α4(L2 + s) = Be−k5(L2+s),
(13)

as well as the continuity of the first derivative at the
same points provides:

k1Ae−k1L1 = α2C cos (α2L1) + α2D sin (α2L1), (14)

α2C = k3(G − H), (15)

k3Gek3s − k3He−k3s =
α4E cos (α4s) − α4F sin (α4s), (16)

α4E cos α4(L2 + s) − α4F sin α4(L2 + s) =
−k5Be−k5(L2+s).

(17)

To solve the algebraic system composed by Eq. (10)
to Eq. (17), in order to determine the constants, several
paths can be followed to eliminate redundant equations
and to obtain a linearly independent system. If it is
desired to get exactly and directly the same format
shown in this paper, just follow these steps: from Eq. (10)
and Eq. (14), obtain the relation C = R1D (see
Eq. (19), below) and replace it in linear combinations of
Eq. (11) and Eq. (15) resulting in one relation between
G and D and other between H and D. Similarly, with
Eq. (12), Eq. (13), Eq. (16) and Eq. (17) find a relation
between D and F and other between H and F . Finally
eliminate the constants G and H by obtaining a system

in the variables D and F , which in matrix form can be
expressed by:(m1R1 + m2)e−k3s −(α2R1 + k3)

(m3R2 + m4)ek3s α2R1 − k3

F

D

=

 0

0


(18)

where

R1 = k1 cos (α2L1) − α2 sin (α2L1)
α2 cos (α2L1) + k1 sin (α2L1) ,

R2 = k5 cos (α4(L2 + s)) − α4 sin (α4(L2 + s))
α4 cos (α4(L2 + s)) + k5 sin (α4(L2 + s)) ,

m1 = −[α4 cos (α4s) + k3 sin (α4s)],
m2 = k3 cos (α4s) + α4 sin (α4s),
m3 = α4 cos (α4s) − k3 sin (α4s),
m4 = k3 cos (α4s) + α4 sin (α4s).

(19)

The nontrivial solution for the system of Eq. (18)
generates the secular equation Eq. (20), which will be
presented in Section 4.

A non-trivial solution means that the total population
is finite. This solution provides the critical sizes of the
patches. The critical size is the smallest size at which
a fragment can sustain life within it. In this work, the
critical sizes are represented by Li, where the subindices
i identify the different patches. In a system of two
fragments, when the population of one is zero, the
population of the other must also be zero. Otherwise,
both populations could become non-null due to diffusion.

4. Results and Discussion

This work has a mathematical result, which is an
interesting outcome by itself, since it generalizes, in
the critical condition, the relation between the problem
parameters (L1, L2, a1, a2, h1, h2, D, p, and s). This
result arises from the secular equation associated with
the system of Eq. (18),

(m1R2 + m2)(α2R1 − k3)e−k3s+
(m3R2 + m4)(α2R1 + k3)ek3s = 0.

(20)

Equation (20) provides many possibilities of analysis,
including a particular one, which has been a subject
of interest in the literature [9, 11, 13] and is the
main phenomenological focus of this paper, namely, the
relation between fragment sizes (L1 and L2), in critical
condition. Specifically, how the presence of a patch
affects its neighbor critical size, as discussed below.

In particular, Fig. (2) illustrates a phenomenon that
arises from the approximation of two patches connected
to each other by a sink with life difficulty (p). To observe
this phenomenon, it is not necessary for the condition p
to have a value equal to the difficulties of the external
sides of the system (h1 and h2), as shown in Fig. (1a).
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Figure 2: Critical patch size for parameters a1 = 4.8, a2 = 2.5,
h1 = 1.7, h2 = 3.9, D = 1.1, p = 0.9 and s = 0.4.

Figure (2) shows, on the oblique continuous line, the
relation between L1 and L2 for the parameter set, a1 =
4.8, a2 = 2.5, h1 = 1.7, h2 = 3.9, D = 1.1, p = 0.9 and
s = 0.4. In this one, it is observed that, in the presence
of a very small patch 2, the fragment 1 has a critical
size (L1) larger than if it was alone (L1sph). Similarly,
fragment 2 has its critical size increased by the proximity
of a very small patch 1 (see regions L1 > L1sph and L2 >
L2sph). At first glance, this result is counterintuitive, as
the insertion of a second fragment, even if very small,
should not be able to hinder the original fragment.

In the literature [12, 14], the presence of a fragment
always benefited its neighbor, even if only to a small
extent. In other words, as we brought two patches closer
together, their critical size would become smaller or
equal to that of each patch when isolated. This assistance
could be so minimal that it might be negligible. It
was not expected to hinder its neighbor, as discussed
earlier. However, in the cited literature, the fragments
had symmetries or system configurations that always led
to this positive interaction between them.

This counterintuition can be clarified by noting that
in the example presented in Fig. (2), we had a system
1 (initially alone) that originally could sustain stable
life within it. This system had a patch of size L1 with
parameters h1 = 1.7, a1 = 4.8, and p = 0.9, where
p = 0.9 represented the condition of one of the sinks
(let’s assume it was on the right side), see Fig. (1). When
we replaced the sink on the right side of system 1 with
a system 2, which originally could not sustain stable
life within it, the dynamics changed. Although this new
system had a “patch 2" with size L2 (and parameters
p = 0.9 (on the left), a2 = 2.5, and h2 = 3.9), this system
2 began to act as a more lethal sink than the original
sink with condition p = 0.9 on the right of system 1.

5. Concluding Remarks

The main result of this work arises when, in a system
initially alone, formed by a patch and two semi-infinite
sinks, we replace one semi-infinite sink with a patch
plus another semi-infinite sink. In this new dynamic,
the critical size of the fragment in the original system
increases in the presence of the second fragment. This
result can be heuristically explained by observing that
the new semi-infinite sink is more lethal than the original
semi-infinite sink, so that adding a new fragment will be
sufficient to compensate for this new more lethal sink
only if the new patch is large enough.

The presented result was achievable solely through the
analytic expression, Eq. (20), for the general case of the
critical sizes for two patches with homogeneous condi-
tions inside and outside them, i.e. spatial heterogeneities
occur only abruptly and at the fragments borders. From
this expression, only one parameter was evaluated, and
there are still possibilities of this equation to contribute
for future works related to this subject.

As known in the literature [12, 14], the interaction
between two identical patches connected by a sink, as
long as it is not impenetrable (p < ∞), is always
beneficial to both, because they can be smaller than
when they are alone. However, in cases where a very
small patch separates one sink from another sink that is
more lethal than the first, what the system experiences is
this more lethal sink, not the small patch that separates
them.
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