
Revista Brasileira de Ensino de Física, vol. 46, e20240255 (2024) Articles
www.scielo.br/rbef cb

DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0255 Licença Creative Commons

Attraction between like-poles of two magnets mediated by
a soft ferromagnetic material

Tarcísio N. Teles1 , Thiago V.P. de Araújo1, Yan Levin*2

1Universidade Federal de Ciências da Saúde de Porto Alegre, Laboratório de Física, 90050-170, Porto Alegre, RS, Brasil.
2Universidade Federal do Rio Grande do Sul, Instituto de Física, 91501-970, Porto Alegre, RS, Brasil.

Received on July 14, 2024. Revised on July 23, 2024. Accepted on July 28, 2024.

We present an engaging educational demonstration designed to captivate students’ attention. The experiment
reveals an intriguing phenomenon – a surprising attraction between two magnets with identical poles facing
each other when a steel metal sphere is inserted between them. Our exploration focuses on both qualitative and
quantitative aspects of this magnetic interaction. Specifically, we examine the interaction between two neodymium
cylindrical magnets with the like poles facing each other. The experimental setup we introduce allows for the
precise measurements of the magnetic force between the magnets. To gain a quantitative understanding of our
measurements, we employ electromagnetic theory. This theoretical framework allows us to determine the magnetic
energy within the system and to easily calculate the force between the magnets.
Keywords: Magnets,␣Green␣function,␣magnetic␣field.

1. Introduction

The phenomenon of magnetism has fascinated humans
for centuries. It all began with the discovery of mag-
netite, a natural magnetic iron ore (FeO-Fe2O3), and
the lodestone, a naturally magnetic rock that behaves
like a compass. The Greeks were the first to study these
intriguing materials, and their influence on the study
of magnetism persisted for nearly 23 centuries after
the initial discovery around 800 B.C. [1–3]. One of the
earliest insights into magnetic induction was provided
by the Roman poet Lucretius Carus. He eloquently
described this phenomenon, but lacked a comprehensive
explanation for it, as the concept of magnetic poles was
yet to be discovered [4].

The birthplace and date of the first magnetic inven-
tion, the compass, remain a matter of historical debate.
Some argue that it was developed in China between
2637 B.C. and 1100 A.D., while others suggest that
it arrived in China in the thirteenth century A.D.,
possibly with Italian or Arab origins [5]. Regardless of
its origins, the compass had reached Western Europe by
the 12th century A.D., bringing with it immense utility
and fascination. Albert Einstein himself recalled the
profound impact the compass had on him as a child [6].

Presently, easy access to powerful magnets is owed
largely to the advancements such as documented in
the references [7, 8]. The availability of cost-effective
neodymium-based commercial magnets, capable of gen-
erating substantial magnetic fields, allows us to use these
in physics courses to easily demonstrate the fundamental
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principles of electricity and magnetism. Some years ago,
we published in a simple quantitative model of elec-
tromagnetic breaking [9]. This has become a standard
demonstration in advanced physics courses – when a
strong neodymium magnet falls through a copper pipe,
it appears as if it is moving through a dense viscous
fluid. The demonstration is a remarkable introduction to
Lenz’s and Faraday’s laws of electromagnetic theory, and
never fails to capture the attention of students and pro-
fessors alike. Surprisingly, one can perform an analytical
calculation to predict the velocity of a falling magnet,
which is in excellent agreement with the experimental
measurement and is sufficiently simple to be presented in
an undergraduate Electricity and Magnetism course [9].
For graduate students, one can also explore the dynamics
of a magnet falling through an ideal superconducting
pipe [10].

In the present paper, we address a different demon-
stration of electromagnetic theory, which is equally
designed to capture student’s attention and introduce
them to a very important concept of image charges.
Consider two magnets: clearly they attract when oppo-
site poles face each other, and repel otherwise. Now,
suppose that in the later configuration (like-poles facing
each other), a steel metal sphere is inserted between
the two magnets. Will the interaction remain repulsive?
The answer is: “It depends!” on the distance between
the magnets and on sphere’s radius.

This is schematically demonstrated in Figure 1, where
the arrows show the direction of the force felt by
the upper magnet. To quantitatively measure the force
between the magnets, a precision scale can be used, as
depicted in Figure 2 below. The bottom magnet is placed
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Figure 1: The illustration represents the theoretical framework
of the experiment, displaying a magnet attached to the metal
sphere on the left, with a second magnet approaching from infin-
ity. Upon the closer approach of the second magnet, repulsion
manifests between the two magnets, gradually transitioning to
attraction at shorter distances.

Figure 2: The figure depicts the experimental setup, capturing
the shift from repulsion to attraction. In the left panel, the
baseline condition shows no second magnet, setting a zero tare
on the balance. As the second magnet approaches, the balance
records an increase due to a repulsive force (central panel).
At closer distances, the force transitions into attraction, indi-
cated by a negative scale reading (right panel). It’s important to
note that the balance readings represent authentic experimental
data, while the scaled pen with the magnet at its lower extremity
serves as a ruler to measure distance, see also Fig. 3.

on top of the scale, with a metal sphere stuck to it. In
order to more easily manipulate the second magnet, we
placed it into one end of a plastic tube on which we
have printed a millimeter scale. In practice we used the
plastic cover of a ball-point pen, into which the magnet
fits perfectly, see Fig. 3. The repulsive force is indicated
by a positive reading on the scale and attractive force by
a negative reading on the scale. We can clearly see the
change in the sign on the digital display, as the upper
magnet approaches the metal sphere.

Due to its simplicity, this experiment is suitable even
for a high school course. The unexpected behavior
can be particularly intriguing, prompting students to
question why the magnets repel at large separations and
suddenly begin to attract at short distances. This coun-
terintuitive aspect of the experiment not only sparks
critical thinking, but also has the potential to inspire

Figure 3: A schematic representation of the experiment. A tube
with a millimeter scale (plastic cover of ball-point pen), with
magnet at the lower end, is employed to measure the distance
zR between the magnet and the sphere. The bottom magnet is
firmly attached to the scale using a double-sided tape.

younger students to pursue physics and science more
passionately.

2. Theory

To quantitatively comprehend the physics behind the
curious experimental observations, we use Maxwell’s
equations. Since the studied phenomenon does not
involve dynamics, we can focus solely on the magneto-
static equations:

∇⃗ · B⃗ = 0, (1)
∇⃗ × H⃗ = 0⃗. (2)

Here, H⃗ denotes the magnetic field and B⃗ represents
the magnetic induction, which encompasses the effects of
magnetic field and the response of the medium through
its magnetization M⃗ ,

B⃗ = µ0(H⃗ + M⃗), (3)

where µ0 is the magnetic permeability of the free space.
When a linear and isotropic medium is exposed to

magnetic field of intensity H⃗, it develops a magnetization
M⃗ in such a way that the magnetic induction is given by

B⃗ = µH⃗, (4)

where µ is the magnetic permeability of the medium [2].
The relationship between B⃗ and H⃗ is known as the
constitutive equation and can be very non-trivial, espe-
cially for ferromagnetic materials, for which µ can
itself depends on the magnetic field. In such cases, the
material exhibits hysteresis [1]. In the present case, the
variation of magnetic field is sufficiently small that we
can assume a linear relation between B⃗ and H⃗.

Magnetostatic problems are typically less intuitive
than their electrostatic counterparts, mainly due to
the absence of isolated magnetic monopoles. In the
experiment proposed here, we consider a cylindrical
magnet of height d and radius rm. The effective magnetic
volumetric charge density is given by ρm(r⃗) = −∇⃗ · M⃗

and the magnetic surface charge density is σm = n̂ · M⃗ ,
where n̂ is the unit vector perpendicular to the surface, in

Revista Brasileira de Ensino de Física, vol. 46, e20240255, 2024 DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0255



Teles et al. e20240255-3

the outward direction [11]. If the magnet is a uniformly
magnetized cylinder – with magnetization along the
principal axis – the bulk (magnetic) charge density is
zero, so that it can be modeled by two oppositely charged
disks of (magnetic) surface charge density σm = ±M ,
separated by distance d. The magnetic induction outside
the magnet is, therefore, identical to that of two charged
disks. We can make a further simplification and replace
the charged discs by two point (magnetic) charges Q =
±πr2

mM separated by the distance d [9].
Equation 2 allows us to define a scalar magnetic

potential ϕm such that:

H⃗ = −∇⃗ϕm, (5)

and by substituting this into eq. 3 and using eq. 1, the
potential ϕm is found to satisfy the Poisson equation:

∇⃗2ϕm = −ρm, (6)

which for a given boundary conditions has a unique
solution.

To derive the boundary conditions for ϕm, we need to
first examine the boundary conditions for both B⃗ and
H⃗ [11]. Applying the divergence theorem to a pillbox at
the interface S between the inner and outer regions and
Stokes’ theorem to the circuit C, as shown in Fig. 4, we
deduce that:

(B⃗out − B⃗in) · n̂ = 0, (7)

and

(H⃗out − H⃗in) × n̂ = 0. (8)

Here, “in” refers to the inside, and “out” refers to
the outside of the sphere. Assuming the material is

Figure 4: Boundary conditions for the fields H⃗ and B⃗ at the
interface between the two media. A cylindrical pillbox and a
closed circuit, together with the divergence and Stokes theorem,
can be used to derive the boundary conditions on B⃗ and H⃗
fields, respectively [12]. µ is the magnetic permeability of the
medium (sphere), while the magnetic permeability of the air is
approximated as µ0.

Figure 5: The behavior of the magnetic field H⃗ between media
with different magnetic permeabilities. In the illustrated case,
µ ≫ µ0, resulting in H⃗ being nearly perpendicular to the
surface.

linear and isotropic, we can formulate these boundary
conditions in terms of H⃗ as follows:

H⃗in · n̂ =
(

µ0

µ

)
H⃗out · n̂, (9)

H⃗in × n̂ = H⃗out × n̂. (10)

It is evident that when µ ≫ µ0, the normal component
of H⃗out is much larger than that of H⃗in, as illustrated
in Fig. 5. Therefore, in the limit µ/µ0 → ∞, the
magnetic field H⃗out just outside such material will be
perpendicular to its surface, irrespective of the direction
of H⃗in, except in a special case where H⃗in is exactly
parallel to the interface.

We observe that in the limit µ ≫ µ0, the boundary
condition for H⃗ is analogous to that of electric field
at the surface of a conductor – the electric field lines
are perpendicular to the surface of the conductor. The
magnetic permeability of materials like iron and steel,
relative to air, typically ranges in the interval µ/µ0 =
[103, 105] [3, 19]. Such high permeabilities enable us
to model a magnet near a soft ferromagnetic sphere
similarly to an electric dipole near a conducting sphere.
Consequently, we can use the methods developed for
electrostatics to solve magnetostatics problems for mate-
rials with high permeability – for such materials the
surface is equipotential, with magnetic field lines normal
to it.

Before addressing the problem of two magnets near
a sphere, let us consider the case of a single monopole
located at position r⃗′ in front of a ferromagnetic sphere
of radius a. The potential generated at the position r⃗ is
determined by the solution of Poisson equation 6 with
the boundary conditions given by equations 9 and 10:

∇⃗2G(r⃗, r⃗′) = −δ(r⃗ − r⃗′), (11)

where Green function G(r⃗, r⃗′) expresses the potential
generated at position r⃗ by a point charge located at r⃗′.
The function G(r⃗, r⃗′) can then be used to calculate
the potential [12] produced by an arbitrary charge
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distribution ρm(r⃗) near a metal sphere:

ϕm(r⃗) =
∫

V

G(r⃗, r⃗′)ρm(r⃗′) dV ′. (12)

In the case of a single unit charge in front of a
conducting sphere, the Poisson equation 11 was solved
by William Thompson (Lord Kelvin) in 1848. Kelvin’s
original solution used the inversion mapping that he
developed, which is equivalent to introducing a fictitious
charge of strength −a/r′ positioned inside the sphere
at the “inversion point” located at (a/r′)2r⃗′, causing
the potential to vanish over the sphere’s surface. To
ensure that the sphere remains charge neutral, with its
surface equipotential, an additional counter-charge of
value +a/r′ must be placed at the center of the sphere.
Subsequently, this method has become known as the
“image charge method” (ICM). The ICM is discussed
in various undergraduate electromagnetism textbooks,
such as those by Griffiths, Reitz, Purcell, and Stump [11,
13–15]. However, when comparing these treatments to
more advanced classical works, exemplified by those
of Jeans, Maxwell, and Sommerfeld [16–18], as well as
more advanced textbooks of Jackson, Landau, Greiner,
Stratton, and Panofsky [19–23], the discussion accorded
to this very important topic is less than satisfactory.
None of the cited references address the problem of a
magnet near a ferromagnetic sphere.

Kelvin’s solution for the electrostatic potential pro-
duced by a unit charge in front of a conducting sphere is:

G(r⃗, r⃗′) = 1
4 π

(
1

|r⃗ − r⃗′|
+ F (r⃗, r⃗′)

)
, (13)

where the first term is the direct Coulomb potential pro-
duced by the unit charge and F (r⃗, r⃗′) is the contribution
arising from the image charges:

F (r⃗, r⃗′) = − a

r′
1

|r⃗ − (a2/r′2)r⃗′|
+ a

r′
1
|r⃗|

. (14)

The first term of F corresponds to the fictitious point
charge of magnitude −a/r′ located a distance a2/r′

(inversion point) from the center of the sphere, along
the vector r⃗′. Note that the image charge is always
inside the sphere since r′ > a, as illustrated in Fig. 6.
The second term denotes another charge of magnitude
+a/r′, positioned at the center of the sphere, ensuring
that the total charge of the conducting sphere remains
zero [13, 19].

Now that we understood the problem of a single
charge near a conducting sphere, we can consider the
case of four charges, corresponding to the two magnets
studied here (see Figures 1 and 6). In this case, the total
charge density can be expressed as:

ρm(r⃗) =
4∑

i=1
Qiδ(r⃗ − r⃗i), (15)

where for the sake of simplicity, we are considering both
magnets to be along the z-axis, with the position of

Figure 6: Illustration of the image charge method for two
electric dipoles in the proximity of a spherical conductor. In
this context, there are two real charges denoted as Q1 and
Q2 = −Q1 on the right side (R), while another pair of charges,
Q3 and Q4 = −Q3, are positioned on the left side (L). Their
respective vector positions from the center of the sphere are:
r⃗1 = (a + zR)ẑ, r⃗2 = (a + zR + dR)ẑ, r⃗3 = −(a + zL)ẑ, and
r⃗4 = −(a + zL + dL)ẑ. The magnitudes of the image charges,
indicated with the primes, are specifically q′

i = −Qi/ri and differ
from one another as these are influenced by both the magnitude
of real charges and their position. The image charges are located
at the respective inversion points, r⃗′

i = (a2/r2
i )r⃗i [11, 12]. Since

the sphere must remain neutral, with its surface equipotential,
we must also place a counter-charge q′′ = −

∑4
i=1 q′

i at the
center of the sphere. The different colors (online) are indicative
of the signs of the charges.

each (magnetic) charge located at: r⃗1 = (0, 0, a + zR),
r⃗2 = (0, 0, a + zR + dR), r⃗3 = (0, 0, −(a + zL)) and
r⃗4 = (0, 0, −(a+zL +dL)), while the center of the sphere
is at (0, 0, 0). The values of dL and dR correspond to
the lengths of the left and right magnet, respectively.
The monopole charges corresponding to the right and
left magnets are respectively: Q1 = −Q2 = QR and
Q3 = −Q4 = QL, as is illustrated in Fig. 6. In the
present experiment we will fix the position zL and move
only the right hand magnet.

By analogy with electrostatics, the energy of a system
of magnetic charges can be written in terms of G(r⃗i, r⃗j),
corresponding to the interaction potential between the
two magnetic charges Qi and Qj , located respectively at
the positions r⃗i and r⃗j , in the presence of an infinitely
permeable sphere:

Um = µ0

2

N∑
i=1

N∑
j=1

QiQj

(
G(r⃗i, r⃗j) − δij

4π|r⃗i − r⃗j |

)
, (16)

where δij is the Kronecker delta. The second term
inside the parenthesis subtracts the self energy of each
charge. In the specific case under consideration, which
involves N = 4 charges, the magnetostatic energy is a
function of variables: zL, zR, dL, dR, QL, QR, and a. The
magnetic force is then readily determined by calculating
the negative gradient of the energy, eq. 16, with respect
to the distance between the magnets:

f⃗m = −∇⃗Um. (17)

This method uses the concept of virtual work that is
usually covered in more advanced textbooks on E & M.
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Alternatively we can treat the problem analogously
to electrostatics, calculating the force acting on the
monopoles of the right hand magnet produced by the
charges (real and imaginary) through the Coulomb inter-
action. This method is particularly easy to explain to
undergraduate students since it only requires calculating
the Coulomb force [14], as illustrated in Fig. 6. For a
fixed position of the left-hand magnet, the magnitude of
the force on the right-hand magnet is:

fm = µ0

4π

 2∑
i=1

4∑
j=3

QjQi

|r⃗i − r⃗j |2
− a

2∑
i=1

4∑
l=1

QlQi

rl|r⃗i − a2

r2
l

r⃗l|2

+ a

2∑
i=1

4∑
l=1

QlQi

rl|r⃗i|2

)
(18)

where the first term corresponds to the force between
the real charges Q1,2 and Q3,4 and the second and third
terms are due to the interaction between charges Q1,2
and the image and the counter-image charges.

3. Comparison with Experiment

The magnitude of the experimental force was measured
directly by reading the value on the balance scale display
in kilograms and then multiplying it by the modulus
of the acceleration due to gravity (g), which was taken
to be 9.8 m/s2. This electronic scale is equipped with a
cover designed to reduce the impact of air currents on the
measurements. We used this cover to gauge the distance
between the second magnet and the sphere, using the
ruler shown in Fig. 3.

It is essential to note that the natural attraction
between the lower magnet and the metallic sphere causes
the sphere to be firmly attached to it. On the other
hand, since the tray of the electronic balance is not
ferromagnetic, the lower magnet needs to be affixed
to it by a double-sided tape. To determine the dis-
tance between the magnets, we measure the separatrion
between the top of the sphere and the reference point
L. Subsequently, using the scaled pen, we measure the
distance between the extremity of the upper magnet
and the same reference point, L − ZR, see Fig. 3.
As the magnet approaches the sphere (zR → 0), the
force becomes significantly higher, leading to increased
fluctuations in the scale readings compared to when the
magnets are at greater separations.

We next compare the measured forces with the the-
oretical predictions, for various distances between the
magnets. First, we proceed to determine the values
of the charges QL and QR for a single neodymium
magnet. To achieve this, we measure the magnetic
induction, denoted as B, at the center of one of the
flat circular surfaces of the magnet using a teslameter
probe in direct contact with the magnet’s surface. By
considering that this magnetic induction is generated by
two parallel disks – separated by the distance dL,R – each

of radius rm, carrying a magnetic surface charge density
of σL,R = ±QL,R/πr2

m. The charge of the corresponding
monopoles QL,R is calculated to be [9]:

QL,R = 2πBr2
m

µ0

√
1 + (rm/dL,R)2. (19)

The comparison between theory and the experimental
data is presented in Fig. 7. We observe an excellent
agreement between theory and experiment, without the
need for any adjustable parameters. Note that if one
would model the cylindrical magnet as a point dipole,
one would obtain a very poor agreement with the exper-
imental data. For the smallest metal sphere, we notice a
slight deviation between the theory and experiment at
short distances. This is primarily due to the failure of
the approximation used in the calculation of magnetic
energy/force that replaced the disk-like charge distribu-
tion of a cylindrical magnet by equivalent point charges.
Clearly, when the radius of a ferromagnetic sphere is
comparable to the radius of a cylindrical magnet such
approximation looses its validity at short separations.
Indeed, we see an improving agreement between the
theory and experiment for larger metal spheres, see
Fig. 7.

We next replace the individual magnets by three
neodymium magnets stuck together, and repeat the
measurements of the force. Sticking three magnets
together does not change the monopole charge, since
it is determined only by the magnetization M⃗ – which
remains the same for three magnets stuck together –
but will increases the distance between the monopoles.
We thus obtain a new set of force curves, which are –
once again – in good agreement with the experimental
measurements, see Fig. 8.

Figure 7: A comparison between theory (curves) and experiment
(symbols). Two neodymium magnets of dimensions dL = dR =
3.00(1) mm and rm = 2.50(1) mm were utilized. The magnetic
induction [24] at contact with the flat surface of a magnet was
measured using a teslameter [25] to be B = 0.358(1) T. The
curves correspond to ferromagnetic spheres of different radii, a.
The position of one magnet was fixed at contact with the metal
sphere, while the position of the second magnet zR was varied.
The inset displays the graph on the semi-log scale. There is an
excellent agreement between theory and experiment, without
any adjustable parameters.
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Figure 8: A comparison between theory (curves) and experiment
(symbols) when three single magnets are stuck together forming
one magnet of length dL = dR = 9.00(1) mm. From theory, this
corresponds to two monopoles of the same charge as in Fig.7,
but which are now farther apart. Everything else is the same
as in Fig. 7. The inset displays the graph on a semi-log scale.
Once again there is an excellent agreement between theory and
experiment, without any adjustable parameters.

4. Conclusions

Playing with magnets offers an intriguing journey into
the realm of electromagnetism. The remarkable agree-
ment between theory and experiment presented in this
paper underscores the vast potential of simple demon-
strations to capture students’ attention and delve deeply
into the underlying physics. At a qualitative level, one
can understand the physics behind the demonstrations
discussed above using the image charge construction.
When magnets are far away from the metal sphere,
all image charges are located close to the sphere’s
center, resulting in a negligible contribution to the mag-
netic induction. This explains why for large separations
between magnets – with like-poles facing each other –
we only observe repulsion. As the magnets approach the
sphere, the image charges located at the two inversion
points move closer to the surface. When the magnets are
near the surface of the sphere, the interaction with the
image charges – which have opposite sign to the charge of
the monopoles closest to the surface, leads to an effective
attraction between the magnets, a negative force that
can be observed in the Figures 2, 7, and 8. The simplicity
of this explanation makes it feasible to integrate this
demonstration into an undergraduate physics course.
The experiment presented in this paper can solidify
student’s understanding of image charge methods in
electrostatic and to show how magnetostatic problems
can be approximately solved using electrostatic analogy.
Note that in practice it is much easier to use magnets
to experimentally demonstrate image charge methods
than conductors and electric charges, for which these
methods were originally developed. For more advanced
E&M course, the problem studied can serve as a gateway
to introduce advanced Green function methods, which
are very powerful tools in the fields as diverse as

electrical engineering, ionic liquids, and Monte Carlo
simulations [26].
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