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Abordamos a questão do movimento de uma part́ıcula com massa variável observada a partir de um referencial
inercial. Consideramos duas situações diferentes de corpos com massa variável: (i) o valor de massa intŕınseca da
part́ıcula varia ao longo do tempo; (ii) consideramos um sistema de part́ıculas cujo o valor da massa do centro
de massa (CM) varia, sendo que o conjunto é formado por part́ıculas, essas com massa constante, mas cujo o
número de part́ıculas que o constituem varia no tempo. Mostramos que a Segunda Lei de Newton distingue o
caso em que a massa intŕınseca da part́ıcula varia ao longo tempo da situação em que temos sistemas compostos
de part́ıculas cuja massa total varia com o tempo. No primeiro caso, estudamos as consequências da equação de
movimento de um part́ıcula com massa variável não ser covariante em referenciais inerciais sob as transformações
galileanas. Nós também mostramos que a equação que descreve a dinâmica do CM de um sistema com número
variável de part́ıculas preserva a equivalência de todos os referenciais inerciais sob as transformações galileanas.
Verificamos a não conservação do vetor de momento linear do CM de um conjunto de part́ıculas livres durante o
tempo em que uma part́ıcula sai ou entra no sistema.
Palavras-chave: Mecânica, Segunda Lei de Newton, part́ıcula com massa variável, part́ıcula com massa intŕınsica
variável, referencial inercial, centro de massa (CM) de um sistema com massa variável, momento linear, energia
mecânica.

We approach the question of the movement of a particle with variable mass observed from an inertial frame.
We consider two different situations: (i) a particle whose intrinsic mass value varies over time; (ii) the center
of mass (CM) of a set of particles with constant mass but with a variable number of particles belonging to it.
We show that Newton’s Second Law distinguishes the case in which the intrinsic mass of the particle varies over
time from systems composed of particles, with constant mass, whose total mass varies over time. In the first
case, we study the consequences of the equation of motion of a particle with variable mass is not covariant in
inertial references under Galilean transformations. We also show that the equation that drives the dynamics of
the CM of a system with variable number of particles preserves the equivalence of all inertial frames under the
Galilean transformations. We verify the non-conservation of the linear momentum vector of the CM of a set of
free particles during the time that one particle leaves or comes into the system.
Keywords: Mechanics, Newton’s Second Law, particle with variable mass, variable intrinsic mass of the particle,
inertial frame, center of mass (CM) of systems with variable mass, linear momentum, mechanical energy.

1. Introduction

The three laws stated by Sir Isaac Newton in his
“Philosophiae Naturalis Principia Mathematica” in
1687 [1] describe the movement of the classical particles
and extended bodies. Their dynamics are driven by
Newton’s Second Law. The mass of the known particles
in Nature are constant, although the mass of extended
bodies may vary over time.

When we think of a body that has a variable mass,
systems like this appear in our minds: rockets that
release fuels, mineral deposit conveyor, a chain reaching
the ground and other similar bodies.

In A. Sommerfeld’s original proposal [2] to obtain the
dynamic equation of a body with variable mass during
its movement he uses the conservation of the total linear
momentum of the entire system frame of reference of this
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body. Since then, in the 60’s we have some articles that
present a framework to describe systems with variable
masses [3, 4]. More recently, this issue has been revisited
by some authors [5–7]. We can find a more complete list
of references on the dynamics of bodies with variable
mass in those last articles. All the articles look for
the equation that describes correctly the dynamics of
a system whose mass varies with time. In these systems,
their masses vary over time, although they are make
up of particles with constant masses. In the previous
references, the authors apply the Impulse-Momentum
Theorem or the conservation of the linear momentum
of the system in the body reference frame whose mass
varies during its movement.

In these mentioned references, the equations that
describe the dynamics of extended bodies with variable
masses are not obtained directly from Newton’s Second
Law applied to particles of variable mass. It is stated
that, in the case of particles with variable mass that the
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e20210090-2 Newton’s Second Law of a particle with variable mass

equation of motion obtained from Newton’s Second Law
is not invariant under the transformations of Galileo [8].
However, this general statement in Newton’s Second Law
applied to particles of variable mass does not explain
how would be the movement of a particle with intrinsic
variable mass if we assume that Newton’s Second Law
is valid for this type of particle.

In 2019, Thomaz and Corrêa Silva [9] studied the
dynamics of the center of the mass (CM) of a system
with variable mass. They applied Newton’s Second
Law to each particle, in a inertial frame, to derive
the CM movement from this system. They considered
two physical situations where we have the mass of the
particle set varies over time: (i) each particle in the set
has constant mass but the number of particles that make
up the system varies in time; (ii) the mass of one of the
particles, that belong to the set, varies over time.

An interesting question to be addressed here is
whether Newton’s Second Law distinguishes the afore-
mentioned composite system, with variable mass, from
particles whose intrinsic mass varies over time. This
issue has not been discussed in undergraduate Physics
textbooks. It is always interesting to challenge under-
graduate students with new situations in addition to
traditional books, where they have to apply the basic
laws of physics.

In the present article, we have two aims: (i) to study
the consequences of Newton’s Second Law in describing
the motion of a particle whose intrinsic mass varies over
time; (ii) to verify if the equation derived in reference [9]
for the movement of a CM of a set of particles of constant
mass and whose number of components varies over time
of one unit is covariant in all inertial frames under the
Galilean transformations. The discussion of these two
items will allow us to answer the question previously
presented.

As we said before, we still do not know any particle in
the Nature whose mass varies over time. However, it is
interesting to explore the consequences of the laws that
we believe that could describe the Nature.

In section 2 we study the dynamics of a particle
with variable intrinsic mass. We study the validity of
Newton’s three laws in describing the motion of this
type of particles when they are observed from different
inertial frames. In subsections 2.1 and 2.2 we bring
our attention to the linear momentum vector and to
the mechanical energy of particles whose intrinsic mass
varies with time. In section 3 we follow the dynamics of
the CM of a system of particles, with constant masses,
but with a variable number of elements that belong to it.
We consider the simplest set with N = 2 particles. We
show in this case that the CM equation of motion of the
particle set is invariant under Galileo’s transformations.
We also discuss the behaviour of the linear momentum
vector of the CM when its particles are free. In section 4
we have our conclusions. In Appendix A we present the
solutions of Newton’s Second Law in a particular inertial
frame for some special forces.

2. Newton’s three laws applied to a
particle with variable mass

The measured values of the kinematic quantities of a
given particle depends of the reference frame where the
observer is at rest. Two or more observers who have
relative movement among themselves can follow and
measure the position, velocity and/or acceleration of the
same particle. For velocities v much smaller than the
velocity of light c, that is, v � c, with c = 299.792kms ,
the relationship between the values of the kinematic
quantities of a given particle, measured in distinct
frames, is given by the Galilean transformations [10:175].

In Fig. 1 we draw the coordinate axes that are fixed
in the frames S and S′. The frame S′ moves with
velocity ~V(t) relative to frame S. The coordinate axes
xyz (x′y′z′) are fixed in the frame S (S′). O (O′) is the
origin of the set of coordinates xyz (x′y′z′). Vector ~R(t)
gives the position of the origin O′ with respect to the
origin O.

Let ~r(t) be the position vector of the particle P with
respect to the origin O, fixed in reference frame S,
at instant t. The vector position of the same particle
measured from the origin O′ of the frame S′, in the same
instant is ~r ′(t).

Figure 1 permits to write down the Galilean trans-
formations of the position vectors of the same particle
measured from the distinct frames S and S′,

~r(t) = ~r ′(t) + ~R(t). (1)

From eq. (1) we obtain the relationship between the
velocity vectors of the particle measured in frame S,
~v(t) = d~r(t)

dt , and its velocity vector measured in frame
S′, ~v′(t) = d~r ′(t)

dt ,

~v(t) = ~v′(t) + ~V(t). (2)

The equation that relates the acceleration of the P
particle in frame S, ~a(t) = d~v(t)

dt , and the acceleration of

Figure 1: The position vectors of the same P particle are
measured from the origins O and O′ fixed in the frames S
and S′, respectively. The meanings of the vectors drawn in this
figure are described in the text.
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the same particle measured in frame S′, ~a′(t) = d~v′(t)
dt is

derived from eq. (2),

~a(t) = ~a′(t) + d~V(t)
dt

. (3)

If the frame S′ moves with constant velocity with
respect to the frame S,

d~V(t)
dt

= ~0⇒ ~a(t) = ~a′(t). (4)

The observers at rest in each frame, S or S′, measure
the same acceleration vector for the particle P. The
result (4) is independent of the equations that drive the
dynamics of each particle observed from a given inertial
frame.

From now on in this article we consider the physical
situations where frames have constant velocity vector
between them and result (4) is valid in all these frames.

Now we turn to the dynamics of moving particles with
velocities much smaller than the velocity of the light.
These motions are described by Newton’s Second Law
when they are observed from an inertial frame.

In the Classical Mechanics textbooks [10:161, 11, 15],
Newton’s Second Law relates the movement of the
particle to the net force that acts on it,

d(m~v(t))
dt

= ~FR(t), (5)

where ~v(t) is the velocity vector of the particle with mass
m, and ~FR(t) is the resultant of the physical forces acting
on this body. It is important to define the reference frame
from which the kinematic quantities of the particle, such
as: position velocity and acceleration, are measured. We
call an “inertial frame” the frame where the movement
of the particle is correctly described by eq. (5).

In textbooks the mass m of the particle does not vary
in time. We do not know, until now, any fundamental
particle in Nature whose intrinsic mass is variable. It
is not a settled subject if Sir Isaac Newton in his
Philosophiae Naturalis Principia Mathematica leaves the
possibility that in the Second Law of dynamics that the
mass of the particle could not be constant [12].

As a theoretical experiment, we look in this paper for
the consequences we could have if Newton’s Second Law
was also valid for a particle with a variable intrinsic mass
m(t), that is,

d~p(t)
dt

= ~FR(t), (6a)

where the vector linear momentum ~p(t) of this particle
is defined as

~p(t) ≡ m(t)~v(t). (6b)

We continue to call “inertial frame the reference frame
where the eq. (6a) correctly describes the motion of the

massive point with variable mass m(t). S is the inertial
frame where eq. (6a) is valid to describe the dynamics
of a particle whose mass varies over time.

Let us see how eq. (6a) transforms under the Galilean
transformation of the velocity (2). The frame S′ moves
with constant velocity ~V with respect the inertial frame
S. The particle with mass m(t) has velocity ~v′(t) for
observers at rest in the frame S′. Substituting the
equality (2) on the l.h.s. of eq. (6a), we obtain:

d~p′(t)
dt

= −
(
dm(t)
dt

)
~V + ~FR(t). (7)

~p′(t) is the linear momentum vector of the particle with
mass m(t) measured in frame S′,

~p′(t) ≡ m(t)~v′(t). (8)

All frames S′ that move with a constant velocity in
relation to the inertial frame S, is also called here an
inertial frame. We will explore this point later.

If the physical forces acting on the particle with mass
m(t) depend on the relative position of this point body
to another body, and/or the relative velocities between
them, these types of forces are the same for observers
at rest in any reference frame. The Galilean trans-
formations (1) and (2) preserve relative positions and
velocities between any two bodies. With this conclusion
about these types of physical forces and comparing the
eqs. (6a) and (7), we find that Newton’s Second Law is
not covariant under these transformations when applied
to a particle of variable mass. Equation (7) shows that
this dynamic equation depends on the velocity ~V with
which the frame S′ moves with respect to the inertial
frame S. We remember that we assume that Newton’s
Second Law (6a) is valid in the inertial frame S, even for
particles with variable intrinsic mass.

Result (7) confirms that Newton’s Second Law is not
invariant under the Galilean transformations, as pointed
out in ref. [8]. There would be a unique inertial frame S
where eq. (6a) describes properly the dynamics of a
particle with a time-varying mass. This is certainly a
very uneasy result. The equivalence of all inertial frames
is the cornerstone of Classical Mechanics.

Instead of stopping here because Newton’s Second
Law for variable intrinsic mass particle is not covariant
under Galilean transformation (2), following in this
section we see what happens to Newton’s three laws if
eq. (6a) would be valid only in the inertial frame S.

We start by discussing Newton’s third law, also called
the “action and reaction law”. Let us assume that there
are two particles: particles 1 and 2. ~F1→2 (~F2→1) is
the force that particle 1 (2) acts on particle 2 (1).
We presume that Newton’s Third Law is valid in the
inertial frame S,

~F2→1 = −~F1→2. (9)

If the forces ~F1→2 and ~F2→1 depend on the relative
position of these two particles and/or their relative
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velocities, these two vector forces are the same in all
reference frames, as we argued earlier. As a consequence
of this fact Newton’s Third Law is valid in all reference
frames, even if one or both particles has an intrinsic mass
that varies over time.

In order to discuss Newton’s First Law for a particle
with variable intrinsic mass m(t), we rewrite eq. (6a)
in terms of the acceleration vector ~a(t) of this particle
measured in the inertial frame S, ~a(t) = ~v(t)

dt ,

m(t)~a(t) = −
(
dm(t)
dt

)
~v(t) + ~FR(t). (10)

From eq. (10) we verify that for ~FR(t) = ~0 Newton’s
First Law is not valid in the inertial frame S if the
velocity of the particle with variable intrinsic mass m(t)
is not at rest during the time that the mass m(t) varies
in time, that is, ~v(t) 6= ~0.

For ~FR(t) = ~0 and ~v(t) 6= ~0, throughout the
movement of this particle, that is observed from the
inertial frame S, its velocity varies over time while its
mass is also changing. The change in mass corresponds
the inertia of the body is changing and it is also a source
for varying of the velocity of the particle besides the
application of a force on it.

Equation (10) gives us that the particle remains at
rest on the inertial frame S if ~FR(t) = ~0 at any time
if the particle is initially at rest, ~v(0) = ~0. It does not
acquire any finite velocity if at the beginning it has null
velocity, even if its intrinsic mass changes.

The velocity of this same particle observed from an
inertial frame S′ is given by eq. (2). In the case that
particle with variable mass remains stationary in the
inertial frame S, ~v(t) = ~0, its velocity for observers of the
inertial frame S′ is equal to a constant velocity, that is,

~v′(t) = ~V, (11)

where ~V is the velocity of the frame S′ with respect
to the frame S. Measuring velocity ~V would be a way
to determine the relative velocity of any inertial frame
S′ to the single inertial frame S where Newton’s Second
Law is valid.

Except in the special case of the particle of variable
mass m(t) remains at rest in the inertial frame S, it is
not possible to have Newton’s First and Second Laws
valid at same time in any inertial frame.

If we consider that Newton’s Second Law (6a) is valid
to describe the dynamics of a particle of mass m(t) in
the inertial frame S, a possible statement for Newton’s
First Law modified is:

“When the net force of the physical forces
applied on a particle with variable mass m(t)
is null, there is an inertial frame where if the
body is at rest at any moment, it will remain
at rest forever.”

Equation (7) describes the movement of the particle
with mass m(t) for observers of the inertial frame S′,

which moves with velocity ~V with respect to the inertial
frame S. The acceleration vector of this particle in the
inertial frame S′ is ~a′(t) = d~v′(t)

dt . We rewrite eq. (7) in
terms of the acceleration ~a′(t), that is,

m(t)~a′(t) = −
(
dm(t)
dt

)
(~v′(t) + ~V)︸ ︷︷ ︸

~v(t)

+~FR(t). (12)

Comparing the eqs. (10) and (12), we verify that the
dependence of the acceleration vectors of the particle
with mass m(t) at the frames S and S′ on the net force,
that acts on it, and the velocity of the particle measured
in the frame is not the same. The expression of the
acceleration vector of the variable mass particle is not
covariant under de Galilean transformations. But using
the transformation (2) for the velocities of the particle
measured in different frames, we find that the vector
acceleration of the particle with mass m(t) is the same
in all inertial frames, retrieving the kinematic result (4).
The type of motion of this variable intrinsic mass particle
observed in all frames that move with constant velocity
~V with respect to the inertial frame S is the same. That
is the reason why we also call these frames S′ of inertial
frames.

In Appendix A we calculate the trajectories of a
particle with variable mass m(t) with three special types
of forces acting on it: (i) the net physical force acting on
the particle is null (free particle), ~FR(t) = ~0; (ii) the
particle is under the action of a constant force vector ~F,
~FR(t) = ~F; and (iii) the particle of variable mass is in
a free fall, ~FR(t) = m(t)~g, where ~g is the acceleration
due to gravity.

2.1. Discussion on the conservation of the linear
momentum vector of a particle with variable
intrinsic mass

Conservation laws are very important in solving many
physical problems. They can avoid to look for the solu-
tions of differential equations that describe the dynamics
of the particles.

When the mass of the particle is constant, Newton’s
Second Law in any inertial frame is given by eq. (6a),

d~p(t)
dt

= ~FR(t) and d~p′(t)
dt

= ~FR(t), (13)

where ~p(t) = m~v(t) and ~p′(t) = m~v′(t) are the linear
momentum vectors of the same particle measured in
the inertial frames S and S′, respectively. From the
transformation (2) we have ~p(t) = ~p′(t) +m~V.

When the net force ~FR(t) is null, ~FR(t) = ~0, both
eqs. (13) give the conservation of the linear momentum
vectors in both inertial frames in the case of particles
with constant mass,

~p(t) = ~p(t1)⇒ ~v(t) = ~v(t1), (14a)
~p′(t) = ~p′(t1)⇒ ~v′(t) = ~v′(t1). (14b)
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The results (14a) and (14b) show that the conservation
of the linear momentum vector for particles with con-
stant mass is valid in any inertial frame if ~FR(t) = ~0
throughout the body’s movement.

Let us return to the case in which the intrinsic mass of
the particle varies over time, m(t). In the inertial frame
S, eq. (6a) gives the equation that drives the movement
of this particle,

d~p(t)
dt

= ~FR(t), (15)

with ~p(t) = m(t)~v(t). In this inertial frame when
~FR(t) = ~0, eq. (15) gives the linear momentum vector is
conserved,

~p(t) = ~p(t1)⇒ m(t)~v(t) = m(t1)~v(t1), ∀t. (16)

Unlike the case of the particle with constant mass, the
conservation of the vector ~p(t) does not imply that the
velocity vector of the particle remains constant while
~FR(t) = ~0. From eq. (16) we obtain that for particles
with variable intrinsic mass the conservation of the
linear momentum vector implies that its velocity vector
changes its modulus depending on the variation of the
mass value. This conclusion is only valid in the inertial
frame S where Newton’s Second Law (15) is valid.

Equation (7) describes the movement of the particle
with mass m(t) by observers at rest in the inertial frame
S′. This frame moves with constant velocity ~V with
respect to the inertial frame S. Since we are considering
the physical situation where ~FR(t) = ~0, in this case
eq. (7) becomes

d(~p′(t) +m(t) ~V)
dt

= ~0

⇒ ~p′(t1) +m(t1) ~V︸ ︷︷ ︸
~p(t1)

= ~p′(t) +m(t) ~V︸ ︷︷ ︸
~p(t)

(17a)

⇒ ~p′(t)− ~p′(t1) = (m(t1)−m(t)) ~V, ∀t, (17b)

t1 is any fixed time while ~FR(t) = ~0.
During the time that the intrinsic mass m(t) of the

particle varies, (17b) shows that the linear momentum
vector ~p′(t), measured in the inertial frame S′, is not con-
served. From the result (17a) we see that the vector that
is conserved in the inertial frame S′ is the vector ~p(t),
but it is not equal to the linear momentum vector of the
particle in the frame S′.

Only in the special frame S, where holds Newton’s
Second Law (6a), the linear momentum vector is con-
served when ~FR(t) = ~0. We must be very careful
to apply the conservation of the linear momentum of
particles whose intrinsic mass varies over time. The non-
equivalence of inertial frames, due to the dynamical
description of the particles with variable intrinsic mass,
breaks the idea that the conservation law should be valid
in all inertial frames.

2.2. The total mechanical energy of a particle
with intrinsic mass m(t)

The kinetic energy EK(t) of a particle is a measure of
its movement in the frame in which it is observed. This
quantity depends on the square of the modulus of the
velocity vector of the body in the observed frame.

In inertial frames, where the motion of the particles
with constant mass are followed, we have that the
variation of the kinetic energy at two distinct moments,
ti, the initial time, and tf , the final time, is equal to work
realized by the net physical force acting on the particle
to take it from its initial to final position [10:367],

EK(tf )− EK(ti) =
∫ ~r(tf )

~r(ti)
C

~FR(t) · d~r. (18)

C is the path followed by the particle to go from the
initial position ~r(ti) to the final position ~r(tf ).

We look for the relationship between the variation
of the kinetic energy EK(t) and the work realized by
the net force ~FR(t) acting on the particle with variable
intrinsic mass to take it from its initial position up to
its final position along its path C. The work done by
the net force on this particle and its kinetic energy are
calculated in the inertial frame S, where we assume that
Newton’s Second Law (15) is valid.

We begin extending the expression of the kinetic
energy EK(t) to particles with variable intrinsic mass,

EK(t) ≡ 1
2 m(t)~v(t)2 = ~p(t)2

2m(t) . (19)

Unlike the case of particles with constant mass, the
variation of the kinetic energy EK(t) depends on the
variation of the velocity of the particle and the change
of the value of its intrinsic mass.

In what follows in this subsection, the measures of the
quantities that characterize the state of movement of the
particle with variable intrinsic mass m(t) are performed
by observers at rest in the inertial frame S.

The time derivative of both sides of eq. (19) gives

dEK(t)
dt

= ~p(t)
m(t) ·

(
d~p(t)
dt

)
︸ ︷︷ ︸
~FR(t)

−EK(t) d(ln(m(t)))
dt

⇒

⇒ dEK(t)
dt

= ~v(t) · ~FR(t)− EK(t) d(ln(m(t)))
dt

, (20)

where ~v(t) is the velocity vector of the particle with
intrinsic mass m(t) measured in the inertial frame S,
and ~FR(t) is the net force that is applied to this body.
To write the first term on the r.h.s. of eq. (20) we used
Newton’s Second Law (6a). The expression of EK(t) is
given by eq. (19).

As in the case of particles with constant mass, the
term ~v(t) · ~FR(t) gives no contribution to the variation
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e20210090-6 Newton’s Second Law of a particle with variable mass

Figure 2: The path C is followed by the particle with intrinsic
mass m(t). This particle is seen by the observers fixed in the
inertial frame S. ~r(t0) and ~r(t) are the position vectors of
this particle at t0 and t, respectively. d~r(t) is the infinitesimal
displacement of the particle during the infinitesimal interval of
time t and t+ ∆t, with ∆t→ 0.

of EK(t) if ~FR(t) is perpendicular to the velocity of the
particle in the inertial frame S.

The term −EK(t) d(ln(m(t)))
dt on the r.h.s. of eq. (20)

gives a negative (positive) contribution to the variation
of the kinetic energy when the mass of the particle
increases (diminishes). The increase (diminution) of the
mass of the particle increase (decrease) its inertial that
decreases (enlarge) its velocity.

Remembering that the velocity ~v(t) can be written in
terms of the infinitesimal displacement d~r(t) along the
path C followed by the particle, see Fig. 2,

~v(t) = d~r(t)
dt

, (21)

and the result (20) is rewritten as

dEK(t) = d~r(t) · ~FR(t)− EK(t) d(ln(m(t))). (22)

The first term d~r(t) · ~FR(t) on the r.h.s. of eq. (22)
is the infinitesimal work done by the net force ~FR(t)
on the particle with variable mass along its infinitesimal
displacement d~r(t).

The integral form of result (22) is

EK(t)− EK(t0)

=
∫ ~r(t)

~r(t0)
C

~FR(t) · d~r−
∫ t

t0

EK(t′) d(ln(m(t′)))
dt′

, (23)

showing that for particles with intrinsic mass m(t) you
have two sources for varying their kinetic energy EK(t):
(i) the work of the net physical force ~FR(t) that acts
on the particle; (ii) the variation of the inertia of the
particle.

As we said before, the dependence of EK(t) on
the mass m(t) of the particle, see definition (19), is

responsible for part of the variation of this kinematic
function, but the velocity ~v(t) also changes with the the
variation of body mass, see eq. (10). For distinguish these
two contributions to the variation of EK(t), we rewrite
eq. (10) introducing a tracer a, that is,

m(t)~a(t) = −a
(
dm(t)
dt

)
~v(t) + ~FR(t). (24)

At the end of the calculation of dEK(t)
dt we take a = 1.

The presence of the tracer a in the expression dEK(t)
dt

permits us to know the contribution of the first term
on the r.h.s. of eq. (24) for the variation of the kinetic
energy, EK(t).

We write EK(t) as

EK(t) = 1
2 m(t)~v(t)2

, (25)

whose the time derivative on both sides gives

dEK(t)
dt

= m(t)~v(t) · d~v(t)
dt

+ 1
2
d(m(t))
dt

~v(t) · ~v(t)⇒

⇒︸︷︷︸
(24)

dEK(t)
dt

= ~v(t) · ~FR(t)

− (2a− 1)EK(t)
(
d(ln(m(t)))

dt

)
. (26)

If we take a = 1 on the r.h.s. of eq. (26), we recover
the result (20). The previous result permits to have
a clear understanding of the two sources to the term
−EK(t)

(
d(ln(m(t)))

dt

)
in the time variation of the kinetic

energy EK(t).
So far, the net physical force ~FR(t) could be any force.

Now, we restrict our discussion to the set of conservative
forces,

~FR(t) = −~∇V (~r). (27)

V (~r) is a potential energy. This function has no explicit
dependence on the time t.

Substituting equality (27) on the r.h.s. of eq. (22), it
becomes

dEK(t) = −dV (~r)− EK(t) d(ln(m(t)))⇒
⇒ d[EK(t) + V (~r)] = −EK(t) d(ln(m(t))). (28)

Using the usual definition for total mechanical energy
to define it for a particle with variable intrinsic mass,
ET (t),

ET (t) ≡ EK(t) + V (~r), (29)

eq. (28) becomes

d(ET (t)) = −EK(t) d(ln(m(t))), (30a)
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that has the integral form,

ET (t)− ET (t0) = −
∫ t

t0

EK(t′) d(ln(m(t′)))
dt′

dt′. (30b)

The results (30a) and (30b) show that the total
mechanical energy of the particle with variable intrinsic
mass, ET (t), under the action of a conservative force,
is not constant while the intrinsic mass of the particle
varies over time. The integral on the r.h.s. of eq. (30b)
depends on the path followed by particle starting from
its initial position ~r(t0) to the position of the particle
at time t, ~r(t). This result is completely different from
the physical situation when the mass of the particle is
constant.

As a final reminder, the results obtained in this
subsection on mechanical energy of a particle with
variable intrinsic mass are valid in the inertial frame S,
where Newton’s Second Law (15) is valid.

3. Newton’s Second Law for an extended
body with variable number of
particles

Thomaz and Corrêa Silva studied in reference [9] the
dynamics of the center of mass (CM) of a system
of particles whose total mass varies during an interval of
time. They considered two mechanisms for the mass
of the CM to change over time: (i) all particles in the set
have constant mass, but one of the particles leaves the
system; (ii) the mass of the one of the particles, which
belong to the set, varies with time.

In this section we discuss the equation of motion of
a set of particles with constant mass whose number of
members varies of one unit. To simplify the presentation
of this matter we assume that at the beginning of the
system, called by A, has two particles, N = 2, and in
the end it has only one particle. This case corresponds to
have N = 2 in the eqs. (60) and (61) of the reference [9].
This is a oversimplified description of systems with
variable mass, such as rockets, conveyors for mineral
deposits and so on.

The particles 1 and 2 have constant masses m1 and
m2, respectively. In any inertial frame their motions are
described by Newton’s Second Law (6a). In an inertial
frame S1, the equations that driven the motions of the
two particles in the set A are:

d~p(1)
1 (t)
dt

= d(m1 ~v(1)
1 (t))
dt

= ~F(ext)
1 (t) + ~F(int)

2→1 (t), (31a)

d~p(1)
2 (t)
dt

= d(m2 ~v(1)
2 (t))
dt

= ~F(ext)
2 (t) + ~F(int)

1→2 (t). (31b)

~v(1)
i (t) is the velocity of the i− th particle, with i = 1, 2,

measured by observers at rest in the inertial frame S1.
~F(ext)
i (t) is the net external physical force applied to the

i − th particle, with i = 1, 2, and ~F(int)
2→1 (t) (~F(int)

1→2 (t))
is the internal force that particle 2 (1) acts on the
particle 1 (2). It is important to point out that ~F(int)

2→1 (t)
and ~F(int)

1→2 (t) are internal forces while both particles
belong to the set A of particles.

The position of the CM of the system A in the inertial
frame S1, ~R(1)

CM (t), is

~R(1)
CM (t) ≡ m1~r(1)

1 (t) + f(−t)m2~r(1)
2 (t)

m1 + f(−t)m2
. (32)

We plot in Fig. 3a the positions and velocities of
particles 1 and 2, (~r(1)

1 (t), ~v(1)
1 (t)) and (~r(1)

2 (t), ~v(1)
2 (t)),

respectively, in an inertial S1. The position ~R(1)
CM (t) is

also drawn in this figure.
We associate an imaginary particle to the movement

of the CM of the set A. The position of this imaginary
particle coincides with the location of the CM of the
set A at all times. The mass of this imaginary particle,
MCM (t), is chosen to be equal to

MCM (t) ≡ m1 + f(−t)m2. (33)

We follow reference [9], so that the function f(t) is
defined as being

f(t) ≡


0, t < − 1

α

g(t), − 1
α ≤ t1 ≥

1
α

1, t > 1
α

. (34)

Figure 3: (a) The position and the velocity vectors of particle 1 (2) for observers at rest in the inertial frame S1, ~r1(t) (~r2(t)) and
~v1(t) (~v2(t)). We also draw the CM position vector of this set of particles, ~RCM (t); (b). We draw the set A with the particles that
belong to it, for t� −1

α
and t� 1

α
, when we have a well-defined number of particles in the system A.
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e20210090-8 Newton’s Second Law of a particle with variable mass

The g(t) function smoothly connects the two regions of
f(t) with t < − 1

α and t > 1
α . In the definitions (32) and

(33), along with the function (34), describe a physical
situation where particle 2 leaves the set A for t > 1

α .1
In Fig. 3b we show the particles that are part of the
system A for the time regions t � − 1

α and t � 1
α ,

when the number of particles in this set is well defined.
Note that the variation of the value of the mass of the
CM, MCM (t), comes from the fact that the number of
particles in the set A varies over time. This is a different
framework that we studied in section 2.

The velocity of the CM of the system A in an inertial
frame S1 is

~V(1)
CM (t) = d~R(1)

CM (t)
dt

(35a)

= m1~v(1)
1 (t) + f(−t)m2~v(1)

2 (t)
MCM (t) +

+ 1
MCM (t)

(
dMCM (t)

dt

)
(~r(1)

2 (t)− ~R(1)
CM (t)).

(35b)

The linear momentum vector of the CM of the set A
in an inertial frame S1, ~P(1)

CM (t), is defined in the same
way as we define for any punctual body,

~P(1)
CM (t) ≡MCM (t) ~V(1)

CM (t). (36a)

From eq. (35b) we obtain the expression of the linear
momentum of the CM of the set A of particles in terms
of the physical quantities of the particles that belong
to it. All vectors are measured in an inertial frame S1,

~P(1)
CM (t) = m1~v(1)

1 (t) + f(−t)m2~v(1)
2 (t)

+
(
dMCM (t)

dt

)
(~r(1)

2 (t)− ~R(1)
CM (t)). (36b)

The previous expression of ~P(1)
CM (t) is reduced to the

known linear momentum vector of the CM presented in
textbooks when dMCM (t)

dt = 0, and t < − 1
α or t > 1

α .
Newton’s Second Law (31a) and (31b) of physical

particles 1 and 2, valid in any inertial frame, permits
calculating the equation of motion of the CM of the set
A, and it is equal to

d~P(1)
CM (t)
dt

= ~F(ext)
1 (t) + ~F(int)

2→1 (t)

+ f(−t) [~F(ext)
2 (t) + ~F(int)

1→2 (t)] +

1 All the arguments presented in section 3 are still valid if initially
the set A has only the particle 1 and after t > 1

α
the particle 2 is

included in the set A. To implement this scenario we could have
the function fc(t),

fc(t) ≡

{
1, t < − 1

α
gc(t), − 1

α
≤ t ≤ 1

α
0, t ≥ 1

α

.

The function gc(t) must connect the values of the fc(t) function
in the regions t < − 1

α
and t ≥ 1

α
.

+ d

dt

[(
dMCM (t)

dt

)
(~r(1)

2 (t)− ~R(1)
CM (t))

]
+

+
(
dMCM (t)

dt

)
~v(1)

2 (t). (37)

The last term on the r.h.s. of eq. (37) depends on
the velocity on the particle 2 measured in the inertial
frame S1. Is this equation of motion of the CM of the
system A invariant under Galilean transformations (1)
and (2)?

Let S2 be another inertial frame. The relations
between the position and velocity vectors measured in
the inertial frames S1 and S2 are

~R(1)
CM (t) = ~R(2)

CM (t) + ~V t, (38a)
~V(1)
CM (t) = ~V(2)

CM (t) + ~V, (38b)

~r(1)
2 (t) = ~r(2)

2 (t) + ~V t, (38c)
~v(1)

2 (t) = ~v(2)
2 (t) + ~V. (38d)

~V is the constant velocity of the inertial frame S2
with respect to the inertial frame S1. ~R(i)

CM (t) and
~VCM (t)(i)(t) are the position and velocity vectors of the
CM of the set A in the inertial frame Si , i = 1 e 2. The
position and the velocity vectors of particle 2 measured
by observers at rest in the inertial frame Si are ~r(i)

2 (t)
and ~v(i)

2 (t), with i = 1, 2.
From the relations (38a)–(38d) we obtain that the

relative position of the particle 2 with respect to the
position of the CM of the set A is the same in all inertial
frame: ~r(1)

2 (t)− ~R(1)
CM (t) = ~r(2)

2 (t)− ~R(2)
CM (t).

We use the relations (38a)–(38d) again to rewrite
the eq. (37) in terms of the vectors measured in the
inertial frame S2. After a few algebraic manipulations
the eq. (37) gives:

d~P(2)
CM (t)
dt

= ~F(ext)
1 (t) + ~F(int)

2→1 (t) + f(−t) [~F(ext)
2 (t) + ~F(int)

1→2 (t)] +

+ d

dt

[(
dMCM (t)

dt

)
(~r(2)

2 (t)− ~R(2)
CM (t))

]
+

+
(
dMCM (t)

dt

)
(~v(2)

2 (t) + ~V)−
(
dMCM (t)

dt

)
~V︸ ︷︷ ︸(

dMCM (t)
dt

)
~v(2)

2 (t)

.

(39)

Equation (39) shows that eq. (37), that describes
the movement of the CM of the set A in the inertial
frame S1 is invariant under Galilean transformations
(1) and (2) for all inertial frames, although it explicitly
depends on the velocity of the particle leaving the
system. This result is different from the one that we
discussed in the section 2, where we assumed that the
intrinsic mass of the elementary particle change over
time. Remember that Newton’s Second Law (15) of a
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particle with variable intrinsic mass is not invariant
under the Galilean transformations that connects the
measurements of kinetic quantities of particles realized
in inertial frames.

We return to the eqs. (37) and (39) to discuss the
conservation law satisfied by the motion of the CM of
the set A when this system is isolated and the physical
forces satisfy the conditions:

~F(ext)
1 (t) + ~F(int)

2→1 (t) = ~0, (40a)

and

~F(ext)
2 (t) + ~F(int)

1→2 (t) = ~0. (40b)

Under the conditions (40a) and (40b), the eq. (37) in
any inertial frame is equal to

d

dt

[
~PCM (t)−

(
dMCM (t)

dt

)
(~r2(t)− ~RCM (t))

− MCM (t)~v2(t)
]

= ~0. (41)

In eq. (41), we removed the top indexes on all vectors
since this equation is valid in any inertial frame.

The conditions (40a) and (40b) include the possibility
of the particles being free, that is, ~F(ext)

1 (t) = ~F(int)
2→1 (t) =

~F(ext)
2 (t) = ~F(int)

1→2 (t) = ~0. From the result (41) we find
that in this case the linear momentum vector of the
CM of the set A, ~PCM (t), is not conserved during the
time interval in which the value of its mass MCM (t)
is changing. During the time interval in which particle
is leaving the set A, t ∈ (− 1

α ,
1
α ), the vector that

conserves is:

~PCM (t)−
(
dMCM (t)

dt

)
(~r2(t)− ~RCM (t))

−MCM (t)~v2(t) = constant vector. (42)

This vector is also conserved during the whole movement
of the set A of particles. As in the case of the particle
with variable intrinsic mass, discussed in the section 2,
the linear momentum vector of the CM of the set with
two free particles, an isolated system, is not conserved
during the time that one of the masses is leaving the
system.

To exemplify the result (42) we follow the reference [9]
and we assume that the function f(t) is equal to:

f(t) = 1
2 (1 + tanh(α t)), (43)

with α > 0. The masses of the two particles in the set A
are: m1 = m0 and m2 = 2m0.

In this case, the mass (33) of the CM of the set A is

MCM (t) = m0 + 2m0 × f(−t) (44a)
= m0 (2− tanh(αt)). (44b)

Substituting the conditions (40a) and (40b) on the
r.h.s. of the eqs. (31a) and (31b), respectively, we obtain,
in any inertial frame,

~v1(t) = ~v1 and ~v2(t) = ~v2, (45)

where ~v1 and ~v2 are constant vectors. We also have

~r1(t) = ~r1(0) + ~v1 t, (46a)
~r2(t) = ~r2(0) + ~v2 t. (46b)

~r1(0) and ~r2(0) are the position vectors of the particles
1 and 2 respectively at t = 0.

Equation (35b) gives the relationship between the
velocity of the CM of the set A, ~VCM (t), and the
informations of the particles that belong to this system.
Since ~PCM (t) = MCM (t) ~VCM (t), for this example of
two free particles, with particle 2 leaving the system
after t & − 1

α , as described by function f(t) given by
(43). The linear momentum vector in any inertial frame,
~PCM (t), is

~PCM (t) = m0~v1 +m0(1− tanh(αt))~v2

−m0

(
α sech2(αt)

2− tanh(αt)

)
× [~r1(0)−~r2(0) + (~v1 − ~v2) t], (47)

with α > 0.
For t� − 1

α , we have

~P(b)
CM ≈ m0~v1 + 2m0~v2. (48a)

For t� + 1
α we obtain

~P(a)
CM ≈ m0~v1. (48b)

The vector ~PCM (t) is constant outside of the time
interval (− 1

α ,
1
α ) while the value of the mass of the CM

of the set A is changing. Although the vectors ~P(b)
CM and

~P(a)
CM are constant vectors, they are different vectors.
As an example of these results, we consider that the

two free particles perform a one-dimensional movement
along the x-axis. The particles satisfy the following
initial conditions:

~r1(0) = ~r2(0), (49a)
~v1 = 1 ı̂ and ~v2 = −3 ı̂. (49b)

In this case, the vector ~PCM (t) = PCM (t) ı̂, where ı̂
is the unit vector along the x-axis. Then,

PCM (t)
m0

= 1− 3 · (1− tanh(αt))− 4α tsech2(αt)
2− tanh(αt) . (50)

We plot in Fig. 4 the graph PCM (t)
m0

× t with α = 8.
In this simple example we verify that the linear momen-
tum of the CM of a system with a variable number of
particles does not conserve during the entire motion of
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Figure 4: Plot of the expression (50) of the function PCM (t)
m0

,
with α = 8. We have PCM

m0
≈ −5 for t . −1 and PCM

m0
≈ 1 for

t & 1. During the interval t ∈ (−1, 1), when the particle 2 is no
longer part of the set A, PCM (t) is not a conserved quantity.

the CM of the set of particles. The value of PCM (t)
before and after the time interval in which its mass
varies are constant but the values of theses constants
are distinct. The value of the PCM (t) varies during the
time in which the particle 2 is leaving the system. We
must be careful when applying the conservation of the
linear momentum for the movement of the CM of mass
of a system with variable mass.

The results of section 3 obtained for the CM of a set of
particles, that we has called setA, can be easily extended
to the case of a system with N particles, N ≥ 2, with
all N particles having constant mass, where one or more
particles leave or enter in this system during the time
we follow the motion of the CM from an inertial frame.

4. Conclusions

The fundamental particles that we know today in Nature
have constant mass. But in Physics textbooks, the
Newton’s Second Law that describes the motion of
particles followed by observers at rest in inertial frames,
relates the time variation of their linear momentum
vectors with the vector resulting from the physical forces
acting on them. When we mention a body with a variable
mass, composite systems like rockets, currents hitting
the ground, and so on, come to mind. These bodies are
made of parts, with constant mass value, that can leave
or be added to the system that we follow, changing the
value of their total mass over time. We have another
theoretical possibility: a particle whose value of its
intrinsic mass varies with time.

It is possible that Newton’s Second Law (15) distin-
guishes the dynamics of an intrinsically variable particle
mass from a complex body formed by parts, with
constant mass, that break or add to the body under
study, changing its value?

In section 2 of this paper we assume that the particles
has a variable intrinsic mass and that the Newton’s
Second Law is valid in one particular inertial frame, that
we call S inertial frame. In this section we retrieve the
known result that this Newton’s Law is not covariant
under the Galilean transformations during the time
interval that mass of the particle varies with time. We
explore the consequences of the non-covariance of the
equation that drives the particle dynamics observed from
different inertial frames. Newton’s Third Law is still
valid in all frames, but the Newton’s First Law is not
valid in any inertial frame as the mass of the particle
varies. If the mass of the particle varies over a finite
interval of time, the Newton’s Second Law remains valid
in all inertial frames from where the body is observed
while its mass is kept constant. But this Newton’s Law is
only valid in one inertial frame, which we call the inertial
frame S, during the interval of time that the mass of
the particle vary. We have no recipe for determining
this unique inertial frame where Newton’s Second Law is
valid to describe the motion of the particle with variable
intrinsic mass. The equivalence of all inertial references
under the Galilean transformations are lost while the
intrinsic mass of the particles varies.

One of the consequences of the loss of the equivalence
of all inertial frames is that the conservation of the linear
momentum vector of the particle with variable intrinsic
mass in the absence of a net physical force acting on it,
that is, ~FR(t) = ~0, is just valid in the particular inertial
frame S, where Newton’s Second Law (15) is valid. When
~FR(t) = ~0, the body with variable intrinsic mass has
an accelerated or slow movement while its mass varies,
unless it is at rest in the S inertial frame. The variation
of the velocity of the particle comes from the change of
the value of its inertia.

We also present how changing the value of its intrinsic
mass affects its mechanical energy. We show that the
Work-Energy Theorem, valid for particles with constant
mass, is modified by the contribution coming from de
variation of the intrinsic mass of the particle. Even when
a conservative force acts on the particle with variable
mass its total mechanical energy does not conserve while
the intrinsic mass of the particle changes. In this case
the variation of the kinetic energy depends on the path
followed by the particle while its intrinsic mass varies in
time.

We follow reference [9] where the authors derive
the dynamic equation of the CM of a set of particles
whose the total mass value, MCM (t), varies over time.
In section 3 we discuss the dynamics of the case pre-
sented in this reference where the value of the mass of
each particle belonging to the system is constant, but
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one of these particles leaves or enters the system making
the value of the mass of its CM to change over time.
To simplify the discussion of this topic in section 3 we
consider the special case where initially we have two
particles in a set A and that at end has only one particle.
The results derived in section 3 are valid if the moving
particle is leaving or entering into the set A.

Equation (37) drives the dynamics of the CM with
variable mass and on its r.h.s. we have a dependency
on the velocity vector ~v2(t) of the moving particle in
the set A, but we show that this equation is invariant
under the Galilean transformations in any inertial frame.
We show that although the dynamic equation depends
on the velocity vector of one particle, all inertial frames
are equivalent under the Galilean transformations.

We also show in the case that the particles that belong
to the set A are free particles, the linear momentum vec-
tor of the CM of this, ~PCM (t), does not conserve in any
inertial frame during the interval of time when the value
of its mass MCM (t) changes over time. To exemplify this
non-conservation law of ~PCM (t) we consider the motion
of two free particles with constant mass moving in a one-
dimensional trajectory.

The results presented in section 3 can be extended
to the movement of a CM of a set with N particles
with constant mass, with N ≥ 2, and one or more
particles leaving or entering this system of particles.
They also show that we must be more careful when
applying conservation laws to the movement of extended
particles with variable masses.

In Appendix A we present the solutions of the New-
ton’s Second Law, in the inertial frame S, for some types
of force: ~FR(t) = ~0, ~FR(t) = ~F, with ~F being a constant
force, and ~FR(t) = ~P(t), where ~P(t) is the weight force
of the particle with variable intrinsic mass. We derive
the expressions of the position, velocity and acceleration
of this particle for arbitrary functions m(t), and consider
two special functions m1(t) and m2(t) to have some
closed expressions of these vectors.

As a final comment, we must say that the results of the
present article show that the dynamics of a variable mass
body obtained from Newton’s Second Law distinguishes
two situations: (i) a particle with intrinsically variable
mass; (ii) a composite body made up of parts, whose
masses are constant, that can come out or be added to
it. The undergraduate student must know that it is not
possible to mimic the dynamics of a particle with vari-
able intrinsic mass by studying the temporal evolution
of composite bodies whose mass varies over time.

A. Newton’s Second Law solutions
for a particle with mass m(t) under
the action of special forces

In this appendix we calculate the solutions of the New-
ton’s Second Law (6a), in the inertial frame S, for three
simple physical situations. Equation (10) corresponds to

rewriting eq. (6a) of the particle with mass m(t) in terms
of its acceleration vector ~a in this frame S,

~a(t) = −
(
dm(t)
dt

)
~v(t)
m(t) +

~FR(t)
m(t) . (51)

~v(t) is the velocity vector of this particle measured in
the inertial frame S. ~FR(t) is the net physical force that
acts on this punctual body.

In this appendix we calculate the vectors: position
(~r(t)), velocity (~v(t)) and acceleration (~a(t)) of the
particle with variable mass, in the inertial frame S, for
the following forces ~FR(t):

(i) ~FR(t) = ~0, for t ∈ (−∞,+∞), ~0 being the null
vector:
In the inertial frame S, the particle with mass m(t) is in
free motion since ~FR(t) = ~0. In this case eq. (6a) gives
the conservation of the linear momentum vector ~p(t),
~p(t) = m(t)~v(t), in this inertial frame,

d(m(t)~v(t))
dt

= ~0⇒ ~v(t) = m(t0)
m(t) ~v(t0). (52)

t0 is a fixed time, that we choose, and t ∈ (−∞,+∞).
We assume that m(t) 6= 0 for the the entire time span.

Replacing the result (52) in the r.h.s. of eq. (51), with
~FR(t) = ~0, we obtain the acceleration vector of the
particle with mass m(t),

~a(t) = − m(t0)
m2(t)

(
dm(t)
dt

)
~v(t0). (53)

The acceleration ~a(t) is parallel to the velocity ~v(t) of
the particle at any time while its mass is varying. ~a(t)
has the same (opposite) direction as ~v(t) if the value
of the mass is decreasing (increasing). The movement of
the particle is one-dimensional for any dependence of the
mass in the time t, m(t).

To calculate the particle position vector with mass
m(t), ~r(t), we return to eq. (52),

~v(t) = d~r(t)
dt

= m(t0)
m(t) ~v(t0)⇒

⇒ ~r(t) = ~r(t0) +m(t0)
(∫ t

t0

dt′

m(t′)

)
~v(t0), (54)

where ~r(t0) is the position vector of this particle at the
fixed instant t = t0, and t0 being a moment that we
choose in its motion. In particular we can take t = 0,
the initial time that we start following this particle.

Now we calculate the function m(t) for which the
acceleration ~a(t) is a constant vector, see eq. (53), that is,

− m(t0)
m2(t)

(
dm(t)
dt

)
= A, (55)

A being a constant, A ∈ R. The dimension of the
constant A is the inverse of the time: [A] = T−1.
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The solution from eq. (55) is

mA(t; t0) = m(t0)
1 +A(t− t0) . (56)

Now we consider two time dependencies of the mass
of the particle, m(t), to explicitly calculate the vectors
~r(t), ~v(t) and ~a(t) of the free particle with variable mass,
~FR(t) = ~0, in the inertial frame S. To simplify the
expressions of these vectors, we take t0 = 0.
(i.1)

m1(t) ≡

m(0), t < 0
mA(t; 0), 0 ≤ t1
mA(t1; 0), t ≥ t1

. (57)

A is a real constant. Due to the positivity of the mass
m(t) we have to have the condition: 1 + At1 > 0.
The time t1 only has to satisfy the condition to be
greater than 0, t1 > 0. The m1(t) mass graph, with
A > 0, is shown in Fig. 5a.

For 0 ≤ t ≤ t1 the mass varies over time and it is
equal to the function mA(t; 0) given by eq. (56). During
this time interval Newton’s Second Law is valid only
in one inertial frame, the inertial frame S. We do not
have a recipe to determine which inertial frame is this
particular inertial frame.

In the inertial frame S, where Newton’s Second Law
(15) is valid, we have

d(m1(t)~v(t))
dt

= ~0,

and from it it we obtain:

~a(t) =︸︷︷︸
(55)

= A~v(0), (58a)

~v(t) =︸︷︷︸
(52)

= (1 +At)~v(0), (58b)

~r(t) =︸︷︷︸
(54)

= ~r(0) + t ~v(0) + At2

2 ~v(0). (58c)

In this case, the free particle with variable mass
m1(t), ~FR(t) = ~0, has a uniformly accelerated
movement along the direction of the initial velocity
~v(0) during the time interval that its mass changes.
(i.2) Let us consider another time dependence for the
variable intrinsics mass, m2(t),

m2(t) ≡ m0 (a+ b tanh(αt)), t ∈ (−∞,+∞). (59a)

The constant m0 has a mass dimension, [m0] = M , the
constants a and b are dimensionless and the constant α
has dimension of the inverse of the time, [α] = T−1. We
assume that a and α are positive real constants, and b
is also a real constant that can be negative or positive.
To guarantee that the mass m2(t) is positive at any time,
the constants a and b have to satisfy the condition:

a− |b| > 0. (59b)

In Fig. 5b you have the plot of m2(t) with b > 0.
In the inertial frame S, where Newton’s Second Law

(52) is valid, we substitute the expression of the mass
m2(t) in the results (53), (52) and (54) to calculate the
vectors ~a(t), ~v(t) and ~r(t), respectively, which describe
the motion of this particle in the inertial frame S,

~a(t) = −a bα
(

sech(αt)
a+ b tanh(αt)

)
~v(0), (60a)

~v(t) =
(

a

a+ b tanh(αt)

)
~v(0), (60b)

~r(t) = ~r(0) + a

[
at

a2 − b2

− b

α(a2 − b2) ln
(
b senh(αt) + a cosh(αt)

a

)]
~v(0).

(60c)

The limits of t → ±∞ of the vectors ~a(t), ~v(t) and
~r(t) describe a free particle with constant mass in a two
different uniform one-dimensional movements.

Figure 5: (a) The mass shape graph m1(t) as a function of the time t, see eq. (57), with A > 0 and m(0) > 0; (b) We draw the
shape of the function m2(t) as a function of the time t, see eq. (59a), with b > 0. The values of the constants m0, a and α are
also positive.
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(ii) ~FR(t) = ~F, ~F being a constant force vector:
In this case, the law (15) that drives the motion of the
particle with variable mass in the inertial frame S is

d(m(t)~v(t))
dt

= ~F (61a)

whose solution is

~v(t) = m(t0)
m(t) ~v(t0) +

(
t− t0
m(t)

)
~F, (61b)

where t0 is a fixed time that we choose.
From the eq. (61a) we obtain a relationship between

the acceleration vector of the particle with mass m(t)
and its velocity,

~a(t) = − 1
m(t)

(
dm(t)
dt

)
~v(t) +

~F
m(t) . (62)

Replacing the result (61b) in the r.h.s. of the previous
result, we obtain the expression of ~a(t),

~a(t) = −m(t0)
m2(t)

(
dm(t)
dt

)
~v(t0)

+
[
1− (t− t0)

m(t)

(
dm(t)
dt

)] ~F
m(t) . (63)

Since ~v(t) = d~r(t)
dt , we calculate the position vector

~r(t) of the result (61b),

~r(t) = ~r(t0)+ + m(t0)~v(t0)
(∫ t

t0

dt′

m(t′)

)
+ (t− t0)2

2m(t)
~F +

+
(∫ t

t0

(t′ − t0)
m2(t′)

(
dm(t′)
dt′

)
dt′
) ~F

2 . (64)

It is simple to verify that the expressions (61b), (63)
and (64) for the particle with constant mass, dm(t)

dt = 0,
are reduced to the known vectors ~v(t), ~a(t) and ~r(t)
when this body with constant mass is under the action
of a constant force vector ~F.

From the result (63) we notice that the acceleration
vector of the particle with variable mass, ~a(t), acquires
a component in the direction of the velocity ~v(t0) while
the value of the mass varies over time, in addition to
the component of the acceleration towards the constant
force ~F. The component of ~a(t) in direction of ~F also
has a contribution from the variation of the inertia of
the body.

As a final comment on the expression (64) of ~r(t), we
see that while its mass varies, the particle moves in the
plane containing the vectors ~v(t0) and ~F when they are
not collinear vectors. When the vectors ~v(t0) and ~F are
collinear, the particle moves along a straight line during
the time its mass varies.
(iii) ~FR(t) = m(t)~g = ~P(t), the free fall of a particle
with variable mass under the action of its weight:
We describe the motion of a particle of mass m(t)
that has an initial velocity vector ~v(0) which is drawn

Figure 6: A particle with mass m(t) is launched in a free falling
motion from the initial position ~r(0) = x(0)̂ı + y(0)̂ and with
velocity ~v(0). The only force acting on the particle is its weight,
~P(t) = m(t)~g. ı̂ (̂) is the unitary vector along the x-axis
(y-axis).

in Fig. 6. The motion of this body is observed from
the inertial frame S, where Newton’s Second Law (15)
describes its movement,

d(m(t)~v(t))
dt

= m(t)~g (65a)

= m(t) g ̂. (65b)

We have g < 0 and ̂ is the unit vector in the y axis,
see Fig. 6. The motion of the particle with mass m(t)
happens in the plane formed by the initial velocity vector
~v(0) and the vertical direction, the y axis.

Instead of completely solving the problem of a particle
with a variable mass in free fall, with the general function
m(t), which has a long expression for the position vector
and it does not give more insight on this problem, in
the following we calculate the vector ~v(t) and ~a(t) in
the inertial frame S for arbitrary m(t) and the position
vector ~r(t) for the particular expression m1(t) for the
particle’s variable intrinsic mass.

We write the velocity vector at any time t, ~v(t), in
terms of its x and y components, see Fig. 6,

~v(t) = vx(t) ı̂+ vy(t) ̂. (66)

ı̂ (̂) is the unitary vector in the x-axis (y-axis).
From eq. (65b), we have

d(m(t) vx(t))
dt

= 0⇒ vx(t) = m(0)
m(t) vx(0), (67a)

d(m(t) vy(t))
dt

= m(t) g ⇒ vy(t) = m(0)
m(t) vy(0)

+ g

m(t)

(∫ t

0
m(t′) dt′

)
. (67b)
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When writing eqs. (67a) and (67b) we choose t0 =
0 to simplify the expressions of the vectors. We must
remember that g < 0.

Equation (65a) relates the acceleration vector of the
particle with mass m(t), ~a(t), with its velocity, ~v(t),

~a(t) = − 1
m(t)

(
dm(t)
dt

)
~v(t) + ĝ. (68)

Writing the acceleration ~a(t) in terms of its x and y
components, ax(t) and ay(t), respectively, that is

~a(t) = ax(t) ı̂+ ay(t) ̂, (69)

eq. (68) gives:

ax(t) = − m(0)
m2(t)

(
dm(t)
dt

)
vx(0), (70a)

ay(t) = − m(0)
m2(t)

(
dm(t)
dt

)
vy(0) +

+
[
1− 1

m2(t)

(
dm(t)
dt

)∫ t

0
m(t′) dt′

]
g. (70b)

When we compare the motion of the particle in free
fall when its mass is constant and when it (the mass)
varies over time, we verify from the eqs. (67a) and (70a)
that the x component of the velocity vector ~v(t) is not
constant during the time when the intrinsic mass of the
body varies. To have an horizontal component of the
velocity in the movement of the particle in free fall, we
must have vx(0) 6= 0.

Equations (67b) and (70b) shows that the variation of
the y component of the velocity, vy(t), depends on the
weight force of the particle, ~P(t) = m(t)~g, but it also
depends on the initial value of vy(t), that is, vy(0) 6= 0.
We do not have this last dependence on vy(t) in the
expression of ay(t) if the mass of the particle is constant.

The g-term in the component ay(t), see eq. (70b), has
a contribution coming from the variation of the value of
the mass m(t) over time.

To end this appendix, we assume that m(t) =
mA(t; 0), see the expression (56). In this case we obtain,

ax(t) = Avx(0), (71a)
ay(t) = g +Avy(0) + g ln(1 +At), (71b)
vx(t) = (1 +At) vx(0), (71c)

vy(t) = (1 +At) vy(0) + g

A
(1 +At) ln(1 +At). (71d)

The position vector of the particle with mass mA(t; 0),
~r(t), has components x and y, that is,

~r(t) = x(t) ı̂+ y(t) ̂. (72)

From the results (71c) and (71d) we calculate the
two components of ~r(t) of a particle of mass mA(t; 0)

in free fall,

vx(t) = dx(t)
dt
⇒ x(t) = x(0) + vx(0)t+ At2

2 vx(0),

(73a)

vy(t) = dy(t)
dt
⇒ y(t) = y(0) +

(
t+ At2

2

)
vy(0) +

+ g

2A2

[
1
2 −

(1 +At)2

2 + (1 +At)2 ln(1 +At)
]
.

(73b)

The mass mA(t; 0), see the expression (56) of this
mass, has to satisfy the condition:

1 +At > 0, (74)

where A ∈ R. Note that the results (71a)–(71d), and
(73a) and (73b) are independent of the initial value m(0)
of the mass mA(t; 0).

In the limit of A → 0, x(t) and y(t) recover the
expressions of the movement of a particle, with constant
mass, in free fall,

lim
A→0

x(t) = x(0) + vx(0)t, (75a)

lim
A→0

y(t) = y(0) + vy(0)t+ t2

2 g. (75b)
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