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In this paper, an approximate algebraic formula for calculating the period of a large-angle pendulum was
developed based on fifth-order iteration of the arithmetic-geometric mean (AGM) formula for the complete elliptic
integral of the first kind. The present formula is capable of estimating the period of the nonlinear pendulum for the
entire range of possible amplitudes i.e. 0◦ < A < 180◦, but it is particularly useful for large-angle (90◦ < A ≤ 170◦)
and extremely large-angle (170◦ < A ≤ 179.9◦) oscillations. The accuracy of the present formula was tested using
exact solution, numerical solution and other published large-angle formulas. It was observed that the present
formula is several orders more accurate than the numerical solution and the other published formulas. The
maximum error of the present formula for amplitudes up to 179.9◦ was found to be 2.93 × 10−6%. The present
formula can be used for pedagogical purpose because of its simplicity.
Keywords: large-angle pendulum, arithmetic-geometric mean, elliptic integral, nonlinear oscillations.

1. Introduction

The didactic value of the pendulum can hardly be
overstated. Perhaps, this can be attributed to the fact
that there are many mechanical systems and physi-
cal phenomena that exhibit pendulum-like motion [1].
A pendulum system exhibits rich physics that makes
it useful for teaching various topics on mechanics and
mechanical vibration. Nonlinear vibration can be intro-
duced at undergraduate level vibration courses using the
pendulum [2, 3]. This can be done by expanding the sine
nonlinearity of the pendulum equation using Taylor’s
series and truncating after the second term, which results
to the well-known cubic-nonlinear Duffing equation.
Also, the pendulum can be used to estimate local gravity
in a simple lab experiment [4] and to estimate the inertia
of compact bodies [5]. At graduate level, the pendulum
can be used to study the oscillations of mechanical and
other complex physical systems [1, 6] and to investigate
nonlinear phenomena such as chaos [7], jump [8, 9],
parametric oscillations [10] and bifurcations [11].

The Wolfram Demonstration Project is an open-access
peer-reviewed online resource that provides interactive
illustrations of the dynamics of various physical systems
and is very useful for students and instructors. The
online resource provides several applications of the
pendulum motion [12] and the pendulum system has
123 demonstration projects, which is the highest for
any single system. This huge number of demonstration
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projects can only attest to the pedagogical value of the
pendulum.

The dynamic equation for the undamped oscillations
of the pendulum motion is well-known to be:

φ̈ + ω2
0 sin φ = 0 (1)

where the initial conditions are φ(0) = A and φ̇(0) = 0,
and the possible oscillation amplitudes are in the range
A ∈ [0, π] radians. For the simple pendulum, ω0 =√

g/l where g is the acceleration due to gravity and
l is the length of the pendulum. For other pendulum-
like motions, ω0 is expressed differently based on the
system’s parameters [1].

The trigonometric nonlinearity in equation (1) arises
from the geometric effects, which depend on the ampli-
tude. During small-angle oscillations, i.e. A < 10◦,
the geometric nonlinear effect is insignificant and the
approximation sin φ ∼= φ is applicable. Therefore, the
pendulum motion can be modelled by a simple harmonic
motion (i.e. φ̈+ω2

0φ = 0) and has a constant period that
is given as T0 = 2π/ω0. In contrast, during moderate-
angle to large-angle oscillations, the geometric nonlinear
effect is appreciable and the period depends on the
amplitude. The greater the amplitude, the stronger the
geometric nonlinear effect and equation (1) must be
used to determine the period and oscillation profile of
the pendulum. The exact period of equation (1) can be
derived in terms of the complete elliptic integral of the
first kind as [6]:
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where m = sin2(A/2) is the elliptic parameter and
K(m) =

∫ π/2
0 (1−m sin2 θ)−1/2dθ is the complete elliptic

integral of the first kind.
The exact period in equation (2) is generally not

suitable for undergraduate courses because it is not
expressed in terms of elementary functions. Although
K(m) can be evaluated numerically, explicit alge-
braic solutions are preferable especially for introductory
courses. In view of this, there has been a renewed
interest to derive approximate algebraic solutions that
provide an accurate estimate of the period of a large-
angle pendulum [1–3, 6, 13–20]. However, most of these
approximations are only accurate to less than 1.0% rela-
tive error for a limited range of the possible amplitudes
and would require complementary solutions for those
amplitudes in which they are inaccurate [5].

A recent review of approximate algebraic formulas for
the period of a nonlinear pendulum was published by
Hinrichsen [5] and it provides a comprehensive collection
of over forty approximations that are applicable to small-
angle, medium-angle and large-angle oscillations. The
study [5] included a comparative analysis of the various
approximations which showed that the simplest and
most accurate formulas for small-angle oscillations with
nonlinearity (10◦ < A < 45◦) are those of Denman [21]
and Carvalhaes and Suppes [15].

The formula of Denman [21] is given as:

T

T0
= 1

1 − 16/A2 (3)

and was derived using a Chebyshev series expansion of
the sine nonlinearity. It produced a relative error that is
less than 0.2% for angles up to 90◦.

The approximate formula of Carvalhaes and Sup-
pes [15] for small-angle oscillations was derived based
on a second-order iteration of the arithmetic-geometric
mean (AGM) formula for K(m) and it is given as:

T

T0
= 4

(1 +
√

cos(A/2))2
(4)

Equation (4) produced a relative error that is less
than 0.001% for angles up to 90◦ but is slightly more
complicated than equation (3).

For moderate-angle oscillations (45◦ < A < 90◦),
equation (4) can be used although a more accurate
approximation by Belendez et al. [17] was recommended.
The formula of Belendez et al. [17] was obtained by
Taylor series expansion of the exact frequency relation
to K(m). The Taylor series expansion was implemented
about the point m = 4

√
1 − m =

√
cos(A/2) = 1 and

truncated at the fourth term to obtain the following
formula:

T

T0
= 4

(1 +
√

cos(A/2))2 − [(1 −
√

cos(A/2))/2]4
(5)

Equation (5) has a maximum relative error that is less
than 0.001% for amplitudes up to 105◦.

For large-angle oscillations, Hinrichsen [5] compared
a number of approximate formulas which included
Butikov [13], Lima [6], Qing-Xin and Pei [3], Xue
et al. [18], Big-Alabo [20] and Carvalhaes and Sup-
pes [15]. The comparison showed that the formulas of
Xue et al. [18] and Carvalhaes and Suppes [15] are the
most accurate for large-angle oscillations. The formula
of Xue et al. [18] was derived based on a logarithmic
approximation of K(m) and it is given as:

T

T0
= 1

π

[
ln 2 +

√
2

1 + sin2(A/2)

· ln
(√

2 +
√

1 + sin2(A/2)
√

2 −
√

1 + sin2(A/2)

)]

− (cos(A/2))1.6

70 (6)

whereas the formula of Carvalhaes and Suppes [15] is
based on a fourth-order iteration of the AGM formula
for K(m) and is given as:

T

T0
= 16

1 + cos(A/2) + 2
√

cos(A/2)
+ 23/2(cos(A/2))1/4[1 + cos(A/2)]1/4

+ 27/4(cos(A/2))1/8[1 + cos(A/2)]1/4

· [1 + cos(A/2) + 2
√

cos(A/2)]1/2


(7)

Big-Alabo [1] showed that the fourth-order iteration
of the AGM formula can be simplified algebraically to
produce a formula that has exactly the same accuracy
but is much simpler than equation (7) as shown:

T

T0
= 16[

1 +
√

cos(A/2) + 2
√

cos(A/4)(cos(A/2))1/4
]2

(8)
Equation (6) produces a maximum relative error that
is less than 0.02% for any amplitude while equation (7)
produces a maximum relative error of less than 0.04% for
amplitudes up to 179.9◦. However, equation (7) is more
accurate than equation (6) for large-angle oscillations
except in the case of extremely large-angle oscillations
in the range of 178◦ < A < 180◦.

In spite of the progress that has been made in
deriving approximate pendulum formulas for large-angle
oscillations, there is still need to derive a more accurate
and simpler formula composed of elementary functions;
perhaps one that can be introduced at undergraduate
level. In this paper, a new explicit algebraic approxima-
tion for the period of a large-angle pendulum that is
composed of elementary functions was derived based on
the fifth-order iteration of the AGM formula for K(m).
The accuracy of the new formula was investigated using
exact, numerical and published approximate solutions.
An important feature of the formula is that its derivation
is simple enough for inclusion into undergraduate courses
on mechanics and vibration.
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2. AGM Formula for Pendulum Period

The AGM is a recursive algorithm of two sequences; one
is an arithmetic sequence and the other is a geometric
sequence. The sequences can be defined as shown:

an = 1
2(an−1 + bn−1) (9a)

bn =
√

an−1bn−1 (9b)

where n ∈ Z+ and a0, b0 are the initial values for the
algorithm. Based on these sequences, the AGM is defined
for a0 > 0 and b0 > 0 as the point of convergence of an

and bn as n → ∞. Therefore,

M(a0, b0) = lim
n→∞

an = lim
n→∞

bn (10)

where M(a0, b0) is the AGM of a0 and b0. Since the
arithmetic mean of two numbers is always greater than
the corresponding geometric mean, then an decreases
and bn increases to the convergence point. The AGM has
a commutative property which implies that the order
of a0 and b0 is not important. Also, M(a0, b0) has a
quadratic convergence property, which means that its
accuracy doubles after each iteration. The consequence
is that only a few terms are necessary to obtain a
very high accuracy. The fast convergence of the AGM
algorithm can be illustrated by considering the AGM
of two numbers e.g.

√
2 and 1. The AGM results for

the fourth-order iteration are shown in Table 1 and are
displayed to 32 digits. It can be seen that after four
iterations the first 20 digits of an and bn match perfectly.
Hence, the fourth-order AGM has been used to derive
solutions for K(m) [1, 22] and for the period of a large-
angle pendulum [1, 15].

The AGM of 1 and
√

2 as demonstrated in Table 1 is
of historical significance in the study of elliptic functions
because its determination in connection to the perimeter
of a lemniscate that is 2 units long and has a focal
distance of

√
2 led to the discovery of the relationship

between the AGM and K(m) by Carl Fredrich Gauss
in 1799. However, the relationship was published about
two decades later in 1818.

The relationship between K(m) and the AGM can be
expressed as [1, 15]:

K(m) = π

2M(1,
√

1 − m)
(11)

Putting equation (11) in (2) and noting that m =
sin2(A/2) gives the exact period of the pendulum in
terms of the AGM as:

Tex = T0

M(1, cos(A/2)) (12)

Equation (12) implies that a0 = 1 and b0 = cos(A/2).
Now, we turn our attention to the approximate algebraic
expression for the AGM based on fifth-order iteration.

As explained in ref. [15], the application of the AGM
algorithm to compute the large-angle pendulum period
is widely known and not new. However, what is new is
extracting or deriving explicit algebraic solutions based
on the AGM algorithm. Previous studies [1, 15] have
provided explicit algebraic formula for the large-angle
pendulum period based on fourth-order iteration but
the present study is based on a fifth-order iteration. The
recurrence sequences in equations (9) express the current
approximation in terms of the immediate preceding
terms of the sequences and this approach was applied
in ref. [15] to derive an explicit formula for the large-
angle pendulum period. The idea of the present approach
in applying the AGM is to formulate a recurrence
relationship that expresses the current approximation in
terms of the starting values i.e. a0 and b0. This approach,
unlike the approach in ref. [15], simplifies the algebraic
manipulation and produces a more compact expression.

From equations (9), it follows that:

an−1 = 1
2(an−2 + bn−2) (13a)

bn−1 =
√

an−2bn−2 (13b)

Putting equations (13) in (9) and simplifying gives:

an =
(√

an−2 +
√

bn−2

2

)2

(14a)

and

bn =
(

an−2 + bn−2

2

)1/2
(an−2bn−2)1/4 (14b)

In equations (14), the current approximation is obtained
from the second preceding terms of the sequences. Again,
from equations (14), it follows that

an−2 =
(√

an−4 +
√

bn−4

2

)2

(15a)

Table 1: Quadratic convergence of the AGM.

Number of
n an bn exact digits
0 1.0000000000000000000000000000000

√
2 = 1.4142135623730950488016887242097 n/a

1 1.2071067811865475244008443621048 1.1892071150027210667174999705605 1
2 1.1981569480946342955591721663327 1.1981235214931201226065855718201 5
3 1.1981402347938772090828788690764 1.1981402346773072057983837881898 10
4 1.1981402347355922074406313286331 1.1981402347355922074392136559275 20
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and

bn−2 =
(

an−4 + bn−4

2

)1/2
(an−4bn−4)1/4 (15b)

Substituting equations (15) into (14a) and simplifying
gives:

an = 1
16

[
√

an−4 +
√

bn−4 + 2
(

an−4 + bn−4

2

)1/4

· (an−4bn−4)1/8

]2

(16)

Equation (16) produces the current approximation from
the fourth preceding terms of the sequences. Therefore,
the fifth-order approximation can be obtained by substi-
tuting n = 5 in equation (16).

a5 = 1
16

[
√

a1 +
√

b1 +
(

8(a1 + b1)
√

a1b1

)1/4
]2

(17)

Then substituting a1 = 1
2 (a0 + b0) and b1 =

√
a0b0 in

equations (17) expresses the fifth-order approximation
in terms of the initial values as shown:

a5 = 1
16

[√
a0 + b0

2 + (a0b0)1/4

+
(

2(
√

a0 +
√

b0)(a0b0)1/8
(

a0 + b0

2

)1/4
)1/2

2

(18)

Assuming a0 = 1 and b0 = β, then

M(1, β) ∼= a5 = 1
16

[√
1 + β

2 + β1/4

+
(

2(1 +
√

β)β1/8
(

1 + β

2

)1/4
)1/2

2

(19)

From equations (19) and (11), the approximate algebraic
solution for K(m) based on fifth-order iteration of the
AGM can be expressed as:

Ka(m) = 8π
√

1+β
2 + β1/4

+
(

2(1 +
√

β)β1/8
(

1+β
2

)1/4
)1/2


2

(20)
where β =

√
1 − m and Ka(m) is the approximate

algebraic solution for K(m). The maximum error (i.e.
100%[1 − Ka(m)/K(m)]) of equation (20) for −103 ≤
m ≤ 0.999, −105 ≤ m ≤ 0.99999 and −107 ≤
m ≤ 0.9999999 was calculated to be 2.739 × 10−12%,

1.001 × 10−7% and 2.194 × 10−5% respectively. These
errors are significantly smaller than the corresponding
errors of other published approximations [1].

Putting β = cos(A/2) in equation (19) and using
the resulting expression in equation (12) gives the fifth-
order AGM solution for the approximate period of the
pendulum as:

T

T0
= 16

√
1+cos( A

2 )
2 + cos1/4 (A

2
)

+
(

2
(

1 +
√

cos
(

A
2
))

cos1/8 (A
2
)

·
(

1+cos( A
2 )

2

)1/4
)1/2



2 (21)

Finally, application of the identity cos2 θ = (1+cos 2θ)/2
simplifies equation (21) to give:

T

T0
= 16cos

(
A
4
)

+ cos1/4 (A
2
)

+
√

2
(
1 + cos1/2

(
A
2
))

cos1/8
(

A
2
)

cos1/2
(

A
4
)
2

(22)

3. Results and Discussions

In this section the accuracy of the present formula for
the period of a large-angle pendulum was investigated
by comparing with results of the exact solution, other
published approximate formulas and numerical results.
The published large-angle formulas used for comparison
are those of Lima [6], Qing-Xin and Pei [3], Xue et al. [18]
and Carvalhaes and Suppes [15], and are presented as
equations (23) to (26). These approximate formulas were
selected for comparison with the present formula because
a recent analysis [5] showed that they are the most
accurate large-angle formulas.

Approximate formula of Lima [6]

T1

T0
=

2
π tan2(A/2) ln

(
4

cos(A/2)

)
+ 7.17

(1−cos(A/2)) ln
(

1
cos(A/2)

)
7.17 + tan2(A/2)

(23)

Approximate formula of Qing-Xin and Pei [3]

T2

T0
=

cos2(A/2)
(1−cos(A/2)) ln

(
1

cos(A/2)

)
+ 2 sin2(A/2)

π ln
(

4
cos(A/2)

)
1 − (π/25) cos2(A/2) sin2(A/2)

(24)
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Approximate formula of Xue et al. [18]

T3

T0
= 1

π

[
ln 2 +

√
2

1 + sin2(A/2)

· ln
(√

2 +
√

1 + sin2(A/2)
√

2 −
√

1 + sin2(A/2)

)]
− (cos(A/2))1.6

70
(25)

Approximate formula of Carvalhaes and Suppes [15] and
Big-Alabo [1]

T4

T0
= 16

1 + cos(A/2) + 2
√

cos(A/2)
+ 23/2(cos(A/2))1/4[1 + cos(A/2)]1/4

+ 27/4(cos(A/2))1/8[1 + cos(A/2)]1/4

· [1 + cos(A/2) + 2
√

cos(A/2)]1/2


= 16[

1 +
√

cos(A/2) + 2
√

cos(A/4)(cos(A/2))1/4
]2

(26)

Present approximate formula

T5

T0
= 16cos

(
A
4
)

+ cos1/4 (A
2
)

+
√

2
(
1 + cos1/2

(
A
2
))

cos1/8
(

A
2
)

cos1/2
(

A
4
)
2

(27)
Table 2 shows the computed normalized time period

results for the approximate formulas in equations (23)
to (27) and for the exact solution in equation (2).
The results are computed to 6 significant figures for
amplitudes in the range of 10.0◦ ≤ A ≤ 179.9◦. It
can be seen from the results in Table 2 that it is only
the present formula that matches the exact solution
perfectly. Therefore, to have better assessment of the
accuracy on the present pendulum formula, the absolute
errors (i.e. ε = |Tex − Ti|/T0 where i = 1 to 5) of
equations (23) to (27) were compared on semi-log plots
as shown in Figures 1 to 3.

Figure 1 shows an error analysis for small- to
extremely large-angle oscillations (10.0◦ ≤ A ≤
179.0◦) while Figures 2 and 3 show a similar analysis
for extremely large-angle oscillations in the range of
175.0◦ ≤ A ≤ 179.0◦ and 179.0◦ ≤ A ≤ 179.9◦

respectively. These figures show that the absolute error
of the present formula and the absolute error of T4/T0
increase with amplitude for large- to extremely large-
angle oscillations while the absolute errors of the other
three formula oscillate within the range of 10−2 < ε <
10−8. The error analysis shows that the present formula
and T4/T0 have similar accuracy for A ≤ 125.0◦ and are
at least eight orders more accurate than the other three
large-angle formulas. For large- to extremely large-angle
oscillations in the range of 140.0◦ ≤ A ≤ 179.0◦, the

Table 2: Normalized time period estimate of present formula
and other approximate formulas.

Approximate solutions Exact
A (◦) T1/T0 T2/T0 T3/T0 T4/T0 T5/T0 Tex/T0

10 1.00178 1.00197 1.00178 1.00191 1.00191 1.00191
15 1.00402 1.00443 1.00419 1.0043 1.0043 1.0043
20 1.00718 1.0079 1.00757 1.00767 1.00767 1.00767
25 1.01127 1.01237 1.01195 1.01203 1.01203 1.01203
30 1.01632 1.01787 1.01736 1.01741 1.01741 1.01741
35 1.02236 1.02442 1.02381 1.02383 1.02383 1.02383
40 1.02944 1.03204 1.03134 1.03134 1.03134 1.03134
45 1.0376 1.04076 1.04 1.03997 1.03997 1.03997
50 1.04691 1.05064 1.04984 1.04978 1.04978 1.04978
55 1.05742 1.06172 1.06092 1.06083 1.06083 1.06083
60 1.06922 1.07407 1.0733 1.07318 1.07318 1.07318
65 1.0824 1.08776 1.08706 1.08692 1.08692 1.08692
70 1.09707 1.10289 1.10231 1.10214 1.10214 1.10214
75 1.11335 1.11956 1.11914 1.11896 1.11896 1.11896
80 1.13139 1.13791 1.13768 1.13749 1.13749 1.13749
85 1.15137 1.1581 1.15809 1.15789 1.15789 1.15789
90 1.17347 1.18031 1.18053 1.18034 1.18034 1.18034
95 1.19795 1.20476 1.20522 1.20504 1.20504 1.20504

100 1.22507 1.23171 1.2324 1.23223 1.23223 1.23223
105 1.25519 1.26147 1.26236 1.26221 1.26221 1.26221
110 1.28868 1.29441 1.29546 1.29534 1.29534 1.29534
115 1.32605 1.33099 1.33214 1.33205 1.33205 1.33205
120 1.36786 1.37176 1.37293 1.37288 1.37288 1.37288
125 1.41486 1.4174 1.41852 1.41851 1.41851 1.41851
130 1.46793 1.4688 1.46978 1.46982 1.46982 1.46982
135 1.52822 1.52711 1.52787 1.52795 1.52795 1.52795
140 1.59723 1.59386 1.59433 1.59445 1.59445 1.59445
145 1.67699 1.6712 1.67133 1.67148 1.67148 1.67148
150 1.7704 1.76225 1.76203 1.7622 1.7622 1.7622
155 1.88196 1.87187 1.87132 1.8715 1.8715 1.8715
160 2.01924 2.00813 2.00733 2.00751 2.00751 2.00751
165 2.19684 2.18619 2.18529 2.18544 2.18544 2.18544
170 2.44827 2.44004 2.43926 2.43936 2.43936 2.43936
175 2.88197 2.87804 2.87761 2.87766 2.87766 2.87766
176 3.02255 3.0196 3.01927 3.01931 3.01931 3.01931
177 3.20431 3.20231 3.20208 3.20211 3.20211 3.20211
178 3.4612 3.46009 3.45996 3.45996 3.45997 3.45997
179 3.90148 3.90111 3.90106 3.90103 3.90107 3.90107
179.9 5.36688 5.36687 5.36687 5.36503 5.36687 5.36687

present formula is two or more orders more accurate than
T4/T0 and at least five orders more accurate than the
other three large-angle formulas. For extremely large-
angle oscillations in the range 179.0◦ ≤ A ≤ 179.9◦, the
present formula is several orders more accurate than the
other large-angle formulas except T3/T0 that has similar
accuracy with the present formula when A = 179.9◦. At
A = 179.9◦, the absolute error of the present formula
is approximately 1.57 × 10−7 while its relative error
is 2.93 × 10−6%. Hence, it can be concluded that the
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Figure 1: Absolute error of present formula and other approxi-
mate formulas for 10.0◦ ≤ A ≤ 179.0◦.
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Figure 2: Absolute error of present formula and other approxi-
mate formulas for 175.0◦ ≤ A ≤ 179.0◦.
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Figure 3: Absolute error of present formula and other approxi-
mate formulas for 179.0◦ ≤ A ≤ 179.9◦.

present formula is more accurate than the other existing
formulas for large-angle oscillations of a pendulum.

A further investigation of the accuracy of the present
large-angle formula was conducted by comparing with
numerical solution. The numerical results were obtained
by applying the explicit Runge-Kutta method, imple-
mented in Mathematica software package, to solve equa-
tion (1). The results of the comparison are presented
in Table S1 of the supplementary material and show
the absolute and normalized errors. The absolute error
was calculated as discussed earlier while the normalized
error was calculated as the ratio of the absolute error to
the machine epsilon error. According to IEEE 754-2008

standard for floating point arithmetic that is based on
64-bit or double precision, the machine epsilon error has
a value of 2−52 ∼= 2.22 × 10−16.

Table S1 shows that the present pendulum formula is
either more accurate or within the accuracy of machine
precision when A ≤ 170.0◦. The implication is that the
present formula is at least seven orders more accurate
than the corresponding numerical solution in this range.
For extremely large-angle oscillations in the range of
170.0◦ < A ≤ 179.9◦, the present formula is at least
four orders more accurate than the numerical solution.
The Table S1 also shows the period estimate when
A = 179.99999◦ and the error of the present formula was
calculated to be 0.0764%, which is excellent considering
how close this amplitude is to the limiting amplitude of
180.0◦.

4. Conclusions

An accurate formula that is based on elementary func-
tions has been derived to estimate the period of a
large-angle pendulum. The present formula is based on
algebraic simplification of the fifth-order iteration of the
AGM formula for the exact period of the pendulum. The
derivation of the present formula is simple enough for
inclusion in relevant undergraduate courses. The present
large-angle formula was validated using the exact solu-
tion, other published large-angle formulas and numerical
solution. The error analysis of the various approximate
solutions showed that the present formula is several
orders more accurate than the other published large-
angle formulas and the numerical solution. Furthermore,
the present formula is shown to combine simplicity
and accuracy. Hence, the present large-angle pendulum
formula is recommended for undergraduate and post-
graduate courses on mechanics, physics and vibration
where systems exhibiting pendulum-like motions are
taught.

Supplementary material

The following online material is available for this article:
Table S1 – Comparison of the present formula and
numerical solution.
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