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A note on potential energy in non-relativistic frames
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We show that, when associated with conservative forces that depend on two points in space: the center of the
force and the position of the particle under its action, the value of potential energy is the same, up to an additive
constant, in all frames of reference connected through an extended Galilean transformations. It is also assumed
that this conservative force’s direction is parallel to the straight line connecting the particle to this force’s center.
For both inertial and non-inertial frames, the result shown in this note is valid.
Keywords: Classical Mechanics, potential energy, extended Galilean transformations, conservative forces, inertial
and non-inertial frames, mechanical energy.

The author once said: “The potential energy of a conser-
vative force is the same in any frame”, while speaking
with a colleague. The colleague asked a straightforward
question: “Why? Do you include non-inertial frames in
your statement?”. The query becomes understandable
when we take into account that a particle’s kinetic
energy depends on the frame in which its motion is
measured.

When examining the literature, we realize that when
conservative forces are discussed, the movement of
particles under their influence is studied in inertial
frames [1–3].

We investigate in this note the well-known conser-
vative forces: the elastic Hooke’s force [3, p. 226–231,
p. 387–391], the gravitational force [3, p. 140–144] and
the Coulomb force [3, p. 145–147], when an extended
Galilean transformation [3, p. 175] links the kinematics
of a specific particle viewed from different frames in order
to expand the analysis of particle dynamics to any non-
relativistic frame.

Let S be an inertial frame from which the motion of a
particle with mass m is followed; for details, see Fig. 1a.

Here, we study the motion of a particle of mass m in
the inertial frame S, moving under the action of Hooke’s
force with a spring of constant k.

F⃗ (S)
s is the force that, at instant t, the spring applies

to the particle that is fixed to its end point P . It depends
on the positions of two points: the point Q, which is the
end point of the spring fixed in the wall, and its other
end point P , which is connected to the particle. This
is an important realization: this force depends on two
points.

We measure the positions of P and Q in the inertial
frame S at any given time t. r⃗P (t) is the vector position
of point P in this frame with respect to the origin O of
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the coordinate axes xyz. In the same frame the point
Q is localized with respect to the same origin O, at the
same moment t, by the vector position r⃗Q(t). See the
vectors r⃗P (t) and r⃗Q(t) in Fig. 1a. The coordinate axes
xyz are fixed in the inertial frame S.

Any observer at rest in the inertial S frame measures
the spring force F⃗ (S)

s acting on the particle. Its expres-
sion is equal to:

F⃗ (S)
s (⃗rP − r⃗Q) = −k

(⃗
rP − r⃗Q

)
. (1)

The force F⃗ (S)
s is only dependent on the particle’s

relative position (point P ) with respect to the force’s
center (point Q), or r⃗P − r⃗Q.

The dynamics of the particle in the inertial S frame is
described by Newton’s Second Law. If the conservative
force F⃗ (S)

s is the only force acting on it, then

m
d2r⃗P (t)

dt2 = F⃗ (S)
s (⃗rP (t) − r⃗Q(t)). (2)

It is important to mention that the point Q does not
have to be at rest in the inertial S frame.

We apply an extended Galilean transformation [3,
p. 175] to the vector locations of P and Q to obtain
the dynamics of the same particle followed by observers
at rest in the S ′ frame,

r⃗ ′
P (t) = r⃗P (t) + R⃗ (O′)

O (t), (3a)

r⃗ ′
Q(t) = r⃗Q(t) + R⃗ (O′)

O (t). (3b)

The vector positions of the points P and Q, measured
from the origin O ′ of the coordinate axes x ′y ′x ′,
are denoted by r⃗ ′

P (t) and r⃗ ′
Q(t), respectively. These

coordinate axes are fixed in the S ′ frame. The position
of the origin O of the axes xyz with respect to the origin
O ′ is determined by the vector R⃗( O′)

O (t), at time t. In
the general case, the vector R⃗( O′)

O (t) can describe an
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Figure 1: At position P , there is a particle attached to one end
of a spring. Point Q is identified as the other end of the spring.
a) From the inertial frame S, these two positions are observed.
In this frame, the particle is subject to the elastic force F⃗(S)

s .
The force that the spring applies to the particle is centered at
point Q. The coordinate axes xyz, which has the versors ı̂, ȷ̂,
and k̂, are fixed in the frame S. Measured from the origin O of
the axes xyz, the vector positions of the points P and Q are
r⃗P (t) and r⃗Q(t), respectively. b) The velocity of the frame S ′

with respect to the inertial reference frame S is V⃗ (O)
O ′ (t). The

coordinate axes x ′y ′z ′ are fixed in the frame S ′. r⃗ ′
P (t) and

r⃗ ′
Q(t) are respectively the position vectors of the points P and

Q relative to the origin O ′ of the axes x ′y ′z ′. R⃗ (O ′)
O is the

vector that locates the origin O relative to the origin O ′. The
S ′ frame can be non-inertial or inertial. In both frames, S and
S ′, all vectors in figures a and b are measured at time t.

accelerated motion between the two frames S and S ′.
Fig. 1b shows the vectors r⃗ ′

P (t), r⃗ ′
Q(t) and R⃗( O′)

O (t).
Through the use of the extended Galilean transforma-

tions (3a) and (3b), we obtain

r⃗ ′
P (t) − r⃗ ′

Q(t) = r⃗P (t) − r⃗Q(t), (4)

valid for any S ′ frame. S ′ can be an inertial or a non-
inertial frame.

The distance between the two locations P and Q and
the relative vector position of the particle in point P to
the center of the conservative force are both preserved at
time t by the extended Galilean transformation in any
S ′ frame, as demonstrated by the equality (4).

The dynamics (2) of the particle is rewritten in terms
of the vector positions r⃗ ′

P (t) and r⃗ ′
Q(t), as measured by

observers at rest in the S ′ frame, using the relations (3a)
and (4),

m
d2(⃗

r ′
P (t)

)
dt2 = F⃗ (S)

s

(⃗
r ′

P (t) − r⃗ ′
Q(t)

)
− m

d2(
R⃗ (O′)

O (t)
)

dt2

(5a)

≡ F⃗ (S ′)
s

(⃗
r ′

P (t) − r⃗ ′
Q(t)

)
− m

d2(
R⃗ (O′)

O (t)
)

dt2 .

(5b)

F⃗ (S ′)
s

(⃗
r ′

P (t)−r⃗ ′
Q(t)

)
is the force that acts on the particle

of mass m, measured in the S ′ frame. When comparing

the r.h.s. from equations (5a) and (5b), we obtain:

F⃗ (S ′)
s

(⃗
r ′

P (t) − r⃗ ′
Q(t)

)
= F⃗ (S)

s

(⃗
r ′

P (t) − r⃗ ′
Q(t)

)
= F⃗ (S)

s

(⃗
rP (t) − r⃗Q(t)

)
⇒ F⃗ (S ′)

s

(⃗
r ′

P (t) − r⃗ ′
Q(t)

)
= F⃗ (S)

s

(⃗
rP (t) − r⃗Q(t)

)
.

(6)

As can be seen from the result (6), the spring force acting
on the particle corresponds to the same vector in any S ′

frame. The S ′ frame is an inertial or non-inertial frame.
In a given S ′ frame, a force is said to be conservative

if its work to move a particle from its initial position
r⃗ ′

P (t1) to its final position r⃗ ′
P (t2), where t2 > t1, depends

only on these initial and final positions of the particle [2,
p. 70–75], that is,

WF⃗ (S′)
s

(⃗
r ′

P (t1) → r⃗ ′
P (t2)

)
=

∫ r⃗ ′
P (t2)

r⃗ ′
P

(t1)
F⃗ (S′)

s

(⃗
r ′

P − r⃗ ′
Q

)
· d⃗r ′

P (7a)

= V (S ′)(⃗r ′
P (t1) − r⃗ ′

Q(t1)
)

− V (S ′)(⃗r ′
P (t2) − r⃗ ′

Q(t2)
)
.

(7b)

The result (7b) is independent of the trajectory C
that the particle takes (see Fig. 2) to move from its
starting position r⃗ ′

P (t1) to its final r⃗ ′
P (t2). The particle’s

infinitesimal displacement, along the path C, d⃗r ′
P , is

depicted in Fig. 2.
In order for the result (7b) to hold true, the force

F⃗ (S ′)
s must satisfy the following requirement:

F⃗ (S ′)
s

(⃗
r ′

P − r⃗ ′
Q

)
= −∇⃗r⃗ ′

P

(
V ′

s
(S ′)(⃗r ′

P − r⃗ ′
Q

))
. (8)

Figure 2: In S ′ frame, the particle moves along the trajectory
C. At the instants t1 and t2, we have the position vectors of the
center of the conservative force (point Q) as r⃗ ′

Q(t1) and r⃗ ′
Q(t2),

where t2 > t1. At distinct instants, the locations of the particle
position vectors are: r⃗ ′

P (t1) and r⃗ ′
P (t2). At each instant t, the

infinitesimal displacement of the particle along the trajectory C
is represented by d⃗r ′

P (t). The vector positions of the points P
and Q are measured from the origin O ′ of the coordinate axes
x ′y ′z ′. These coordinate axes are fixed in the S ′ frame. ı̂ ′, ȷ̂ ′

and k̂ ′ are versors of the axes x ′, y ′ and z ′, respectively. The
S ′ frame can be an inertial or a non-inertial frame.
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The function V ′
s

(S ′) represents the potential energy of
the particle as a result of the spring’s action on it, as
seen in the S ′ frame. ∇⃗r⃗ ′

P
is the gradient of the function

V ′
s

(S ′) with respect to the vector r⃗ ′
P

1. The force F⃗ (S ′)
s

is conservative when the equality (8) holds.
It is simple to show that the potential energy of a

particle acted on by a spring of constant k, with one
end fixed at point Q and able of oscillating in three
dimensions under the force (1), in the inertial S frame,
is equal to:

V (S)
s

(⃗
rP − r⃗Q

)
= k

2 |⃗rP − r⃗Q|2 (9a)

= k

2
[
(xP − xQ)2 + (yP − yQ)2 + (zP − zQ)2]

,

(9b)

= V (S)
s

(
|⃗rP − r⃗Q|

)
(9c)

where

r⃗P (t) = xP (t) ı̂ + yP (t) ȷ̂ + zP (t) k̂, (10a)
r⃗Q(t) = xQ(t) ı̂ + yQ(t) ȷ̂ + zQ(t) k̂. (10b)

ı̂, ȷ̂, and k̂ are the unitary vectors along the x, y and z
axes, respectively. Fig. 1a shows these versors.

Equation (9a)/(9b) provides the potential energy
V

(S)
s , which in the inertial S frame fulfills condition (8),

that is,

F⃗ (S)
s (⃗rP − r⃗Q) =︸︷︷︸

(9c)

−∇⃗r⃗P

(
V (S)

s

(∣∣⃗rP − r⃗Q

∣∣))
. (10c)

The results (6) and (4), and the expression (1) of the
force F⃗ (S)

s , permit us to write:

F⃗ (S ′)
s

(⃗
r ′

P − r⃗ ′
Q

)
= −k

(⃗
r ′

P − r⃗ ′
Q

)
. (11)

The dependence of the force F⃗ (S ′)
s on the measured

relative position of the particle to the center of this force
in the S ′ frame, r⃗ ′

P − r⃗ ′
Q, is the same as the dependence

of the conservative force F⃗ (S)
s (⃗rP − r⃗Q) on the measured

relative position from the particle to the center of this
same force in the inertial frame S, r⃗P − r⃗Q.

Due to the force F⃗ (S ′)
s , measured in any frame,

having the same dependency on the particle’s relative
position to the force center, the particle’s potential
energy measured in the S ′ frame, V ′

s
(S ′)(|⃗r ′

P − r⃗ ′
Q|

)
,

1 We have:

∇⃗r⃗ ′
P

(
G(⃗r ′

P − r⃗ ′
Q)

)
=

∂G

∂x ′
P

ı̂ ′ +
∂G

∂y ′
P

ȷ̂ ′ +
∂G

∂z ′
P

k̂ ′.

ı̂ ′, ȷ̂ ′ and k̂ ′ are the versors of the coordinate axes x ′, y ′ and z ′,
fixed in the S ′ frame. G is any function of r⃗ ′

P − r⃗ ′
Q. The variation

of the vectors r⃗ ′
P and r⃗ ′

Q is independent of each other.

depends equally on the distance between the particle
position P and the force center Q, which is measured in
the S ′ frame. The expression of the function V ′

s
(S ′) has

to be similar to the result (9a), thus,

V ′
s

(S ′)(⃗r ′
P − r⃗ ′

Q

)
= k

2

∣∣∣⃗r ′
P − r⃗ ′

Q

∣∣∣2
(12a)

= k

2

[(
x ′

P − x ′
Q

)2 +
(
y ′

P − y ′
Q

)2 +
(
z ′

P − z ′
Q

)2
]

(12b)

= V ′
s

(S ′)(|⃗r ′
P − r⃗ ′

Q|
)
. (12c)

The components of the vectors r⃗ ′
P and r⃗ ′

Q in the
coordinate axes x ′y ′z ′, these axes being fixed in the S ′

frame, appear at r.h.s. of equation (12b),

r⃗ ′
P (t) = x ′

P (t) ı̂ ′ + y ′
P (t) ȷ̂ ′ + z ′

P (t) k̂ ′, (13a)
r⃗ ′

Q(t) = x ′
Q(t) ı̂ ′ + y ′

Q(t) ȷ̂ ′ + z ′
Q(t) k̂ ′. (13b)

ı̂ ′, ȷ̂ ′ and k̂ ′ are the versors of the axes x ′,, y ′ and z ′,
respectively. Fig. 2 shows the drawings of these unitary
vectors.

As the mathematical dependence of the potential
energy V

(S)
s

(⃗
rP − r⃗Q

)
of the components (xP , yP , zP )

and (xQ, yQ, zQ), see eqs.(9a) and (9b), is the same
as the function V ′

s
(S ′)(⃗r ′

P − r⃗ ′
Q

)
in the components of

(x ′
P , y ′

P , z ′
P ) and (x ′

Q, y ′
Q, z ′

Q), see eqs.(12a) and (12b),
therefore the following is true:

F⃗ (S ′)
s

(⃗
r ′

P − r⃗ ′
Q

)
= −∇⃗r⃗ ′

P

(
V ′

s
(S ′)(⃗r ′

P − r⃗ ′
Q

))
, (14)

Remember that V ′
s

(S ′)(⃗r ′
P − r⃗ ′

Q

)
is the potential energy

of the particle measured in the S ′ frame.
We remind the reader that the result (4) leads to

equality (6). The result (4) is valid for any S ′ frame
where the non-relativistic extended Galilean transfor-
mation, see eqs. (3a) and (3b), connects the information
about the particle position and the center of the force
to the ones measured in the inertial S frame. We follow
the motion of the particle in a S ′ frame that can be
inertial or non-inertial. The position of the points P and
Q in this frame, from where the motion of the particle
is observed, can vary over time.

The importance of equality (4) comes from the fact
that the conservative force vector depends on the relative
positions of two points in space: the position of the
center of the force (point Q) and the position of the
particle (point P ) on which this force acts. The extended
Galilean transformation (3a)/(3b) preserves the distance
between any two points and the direction of the relative
vector position that locates one of these points from the
other.

Now, we address a subtle problem that arises when we
write equation (8). It provides the necessary condition
for the force F⃗ (S)

s to be a conservative force. We are

DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0233 Revista Brasileira de Ensino de Física, vol. 46, e20240233, 2024



e20240233-4 A note on potential energy in non-relativistic frames

assuming here that the vectors r⃗ ′
P (t) and r⃗ ′

Q(t) have
independent dynamics in any frame. In Nature, forces
describe interactions between particles. When we have
an interaction between two particles in which the mass
of one of them is much, much, much greater than the
mass of the other particle, the effect of the action of the
lighter particle on the movement of the heavier particle
is negligible. In this note, we suppose that the motion
of the center of the force, point Q, which localizes the
heavier particle’s position in the interaction, is provided
by an outside agent, that would be us!!! This hypothesis
supports our assumption that when we calculate the
partial derivative with respect to the components of
the vector position r⃗ ′

P (t), the position vectors r⃗ ′
P (t) and

r⃗ ′
Q(t) vary independently.
What is the relationship between the expressions of

the particle’s potential energy measured in the inertial
frame S, V

(S)
s

(⃗
rP − r⃗Q

)
given by equation (9a)/(9b),

and its potential energy measured in the frame S ′,
V ′

s
(S ′)(⃗r ′

P − r⃗ ′
Q

)
given by equation (12a)/(12b)?

Beginning with equation (14), we obtain:

F⃗ (S ′)
s

(⃗
r ′

P − r⃗ ′
Q

)
= −∇⃗r⃗ ′

P

(
V ′

s
(S ′)(⃗r ′

P − r⃗ ′
Q

))
(15a)

=︸︷︷︸
(6)

F⃗ (S)
s

(⃗
rP (t) − r⃗Q(t)

)
(15b)

=︸︷︷︸
(10c)

−∇⃗r⃗P

(
V (S)

s

(⃗
rP − r⃗Q

))
(15c)

=︸︷︷︸
(4)

−∇⃗r⃗ ′
P

(
V (S)

s

(⃗
r ′

P − r⃗ ′
Q

))
(15d)

⇒ ∇⃗r⃗ ′
P

(
V ′

s
(S ′)(⃗r ′

P − r⃗ ′
Q

))
= ∇⃗r⃗ ′

P

(
V (S)

s

(⃗
r ′

P − r⃗ ′
Q

))
(15e)

⇒ V ′
s

(S ′)(⃗r ′
P − r⃗ ′

Q

)
= V (S)

s

(⃗
r ′

P − r⃗ ′
Q

)
+ B. (15f)

Any real number can be assigned to the constant B on
the r.h.s. of equation (15f). Our choice of the value of
the constant B corresponds to a particular choice of the
zero value of potential energy in each physical problem
discussed in the S ′ frame. The S ′ frame can be an
inertial or a non-inertial frame.

By substituting the equality (4) on the r.h.s. of
equation (15f), we arrive at:

V ′
s

(S ′)(⃗r ′
P − r⃗ ′

Q

)
= V (S)

s

(⃗
rP − r⃗Q

)
+ B. (16)

According to the result (16), in the case of the
conservative spring force acting on the particle, the
potential energy in any reference frame S ′ has the same
value, up to an additive constant.

We encourage the reader to proceed as before and
consider the case of the conservative forces: the grav-
itational force [3, p. 140–144] and the Coulomb force
[3, p. 145–147]

Figure 3: S is the inertial frame in which the coordinate axes
xyz are fixed. In this frame, the conservative force F⃗ (S)

Q→P is
measured. Point Q is where the center of this conservative
force is located. The particle localized at point P is subject
to the force F⃗ (S)

Q→P . This force has the same direction as the
line connecting the points P and Q. The vector positions of the
points P and Q, measured from the origin O of the axes xyz,
are denoted by r⃗P (t) and r⃗Q(t), respectively. A fixed coordinate
axes x ′y ′z ′ is located in the S ′ frame, which moves relative to
the inertial S frame. The vector positions of the points P and
Q, measured from the origin O ′ of the axes x ′y ′z ′, are r⃗ ′

P (t)
and r⃗ ′

Q(t), respectively. The location of the origin O with regard
to the origin O ′ is given by the vector R⃗ (O ′)

O . The versors of
the axes x, y, and z, in the inertial S frame, are ı̂, ȷ̂, and k̂,
respectively. The S ′ frame can be an inertial or a non-inertial
reference frame. All vectors in the figure are represented at
time t.

Finally, we check whether the result (16), which is
valid for the conservative spring force (1), can also be
applied to the potential energy of conservative forces
F⃗ (S)

Q→P

(⃗
rP − r⃗Q

)
of the following type:

F⃗ (S)
Q→P

(⃗
rP − r⃗Q

)
= F (

∣∣⃗rP − r⃗Q

∣∣) (⃗
rP − r⃗Q

)
. (17)

F⃗ (S)
Q→P

(⃗
rP − r⃗Q

)
is the conservative force that acts on

the particle, and it is measured in the inertial S frame,
see Fig. 3. Since we want to describe physical forces, the
F function on the r.h.s. of equation (17) is real and it
depends only on the distance |⃗rR − r⃗Q| at each instant t.

The vector position r⃗Q(t) locates the center of the
conservative force F⃗ (S)

Q→P at any instant t in the inertial
frame S. The vector position r⃗P (t) locates the particle
in this frame at time t. The time evolution of the vector
r⃗Q(t) is an information provided in the physical scenario;
therefore, it is independent of particle’s movement, that
is, it is independent of the vector r⃗P (t).

The movement of the particle of mass m, observed
from the inertial S frame, is given by Newton’s Second
Law, which describes the temporal evolution of the
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vector position r⃗P (t),

m
d2r⃗P (t)

dt2 = F⃗ (S)
Q→P

(⃗
rP − r⃗Q

)
. (18)

For the sake of simplicity, we assume that the only
force acting on the particle is F⃗ (S)

Q→P , see equation (17).
For a conservative force of type (17), we show in

Appendix A (Supplementary Material) that the poten-
tial energy V (S) associated with it is of type (equa-
tion (1): Supplementary Material),

V (S)(⃗rP − r⃗Q) = V (S)(
∣∣⃗rP − r⃗Q

∣∣), (19a)

and ∇⃗r⃗P

(
V (S)(

∣∣⃗rP − r⃗Q

∣∣)) gives a vector of type (17),
that is,

∇⃗r⃗P

(
V (S)(

∣∣⃗rP − r⃗Q

∣∣)) = −F (
∣∣⃗rP − r⃗Q

∣∣) (⃗
rP − r⃗Q

)
(19b)

= −F⃗ (S)
Q→P

(⃗
rP − r⃗Q

)
. (19c)

Using the non-relativistic extended Galilean trans-
formations (3a) and (3b), we may connect the vector
positions measured in S ′ frame to the analogous vectors
measured in the inertial S frame. For observers at rest in
any S ′ frame, we use the extended Galilean transforma-
tion (3a) of the vector r⃗P (t) to rewrite the equation (18)
in terms of the vector r⃗ ′

P (t). r⃗ ′
P (t) measures the location

of the particle (point P ) by observers in the frame S ′.
Equation (18) goes into:

m
d2r⃗ ′

P (t)
dt2 = F⃗ (S)

Q→P

(⃗
r ′

P − r⃗ ′
Q

)
− m

d2R⃗ (O ′)
O (t)
dt2 . (20)

We rewrite the argument of the force F⃗ (S)
Q→P , on the

r.h.s. of equation (20), using the equality (4). This rela-
tionship involving the relative position vector between
the location of the particle (point P ) and the center of
the general conservative force of type (17) (point Q),
r⃗P − r⃗Q = r⃗ ′

P − r⃗ ′
Q, remains valid in any frame. R⃗ (O ′)

O (t)
is the vector position of the origin O of the coordinate
axes xyz, fixed in the inertial S frame, with respect to
the origin O ′ of the axes x ′y ′z ′, fixed in the S ′ frame.

The acceleration A⃗ (O ′)
O (t) of the inertial S frame

relative to the S ′ frame is equal to:

A⃗ (O ′)
O (t) ≡

d2R⃗ (O ′)
O (t)
dt2 . (21)

When seen from the S ′ frame, the equation of motion
of the particle with mass m takes the following form:

m
d2r⃗ ′

P (t)
dt2 = F⃗ (S ′)

Q→P

(⃗
r ′

P − r⃗ ′
Q

)
− m A⃗ (O ′)

O (t), (22)

where F⃗ (S ′)
Q→P

(⃗
r ′

P − r⃗ ′
Q

)
is the force that acts on the

particle and is measured by observers at rest at the S ′

frame.

Comparing the first term on the r.h.s. of the equa-
tions (20) and (22), we obtain:

F⃗ (S ′)
Q→P

(⃗
r ′

P − r⃗ ′
Q

)
= F⃗ (S)

Q→P

(⃗
r ′

P − r⃗ ′
Q

)
(23a)

=︸︷︷︸
(4)

F⃗ (S)
Q→P

(⃗
rP − r⃗Q

)
. (23b)

Equations (23a) and (23b) show that the conservative
force of type (17) is the same in any S ′ frame. The latter
frame has a non-relativistic movement in relation to the
inertial S frame. The S ′ frame can be an inertial or a
non-inertial frame.

The final query to be addressed is whether the force
F⃗ (S ′)

Q→P

(⃗
r ′

P − r⃗ ′
Q

)
, expressed as a vector measured in the

S ′ frame,

F⃗ (S ′)
Q→P

(⃗
r ′

P − r⃗ ′
Q

)
=︸︷︷︸

(23a)

F⃗ (S)
Q→P

(⃗
r ′

P − r⃗ ′
Q

)
(24a)

=︸︷︷︸
(17)

F
(
|⃗r ′

P − r⃗ ′
Q|

) (⃗
r ′

P − r⃗ ′
Q

)
, (24b)

is a conservative force in all S ′ frames. If the last state-
ment is correct there is a potential energy V ′ (S ′)(⃗r ′

P −
r⃗ ′

Q

)
, that satisfies the relation (14), that is,

F⃗ (S ′)
Q→P

(⃗
r ′

P − r⃗ ′
Q

)
= −∇⃗r⃗ ′

P

(
V ′ (S ′)(⃗r ′

P − r⃗ ′
Q

))
. (25)

There is a function V ′ (S ′)(⃗r ′
P − r⃗ ′

Q

)
that satisfies

equality (25)?
Equations (23a) and (23b) allow us to obtain:

F⃗ (S ′)
Q→P

(⃗
r ′

P − r⃗ ′
Q

)
= F⃗ (S)

Q→P

(⃗
rP − r⃗Q

)
(26a)

=︸︷︷︸
(19c)

−∇⃗r⃗P

(
V (S)(|⃗rP − r⃗Q|

))
. (26b)

Due to the equality (4), we have

V (S)(|⃗rP − r⃗Q|
)

= V (S)(|⃗r ′
P − r⃗ ′

Q|
)
. (27)

The dependence of the function V (S)(|⃗rP −r⃗Q|
)

on the
components xP , yP and zP of the vector r⃗P in the axes
xyz, see equation (10a), is the same as in the components
x ′

P , y ′
P and z ′

P of the vector r⃗ ′
P on the axes x ′y ′z ′, see

equation (13a), and consequently,

∇⃗r⃗P

(
V (S)(|⃗rP − r⃗Q|

))
= ∇⃗r⃗ ′

P

(
V (S)(|⃗r ′

P − r⃗ ′
Q|

))
.

(28)

The result (28) is used to rewrite equation (25),

F⃗ (S ′)
Q→P

(⃗
r ′

P − r⃗ ′
Q

)
=︸︷︷︸

(25)

−∇⃗r⃗ ′
P

(
V ′ (S ′)(⃗r ′

P − r⃗ ′
Q

))
(29a)
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=︸︷︷︸
(26b)

−∇⃗r⃗P

(
V (S)(⃗rP − r⃗Q

))
=︸︷︷︸

(28)

−∇⃗r⃗ ′
P

(
V (S)(|⃗r ′

P − r⃗ ′
Q|

))
(29b)

⇒ ∇⃗r⃗ ′
P

[
V ′ (S ′)(⃗r ′

P − r⃗ ′
Q

)
− V (S)(|⃗r ′

P − r⃗ ′
Q|

)]
= 0.

(29c)

Finally, we derive that from the preceding equa-
tion (29c) that:

V ′ (S ′)(⃗r ′
P − r⃗ ′

Q

)
= V (S)(|⃗r ′

P − r⃗ ′
Q|

)
+ B, (30)

B being a real constant (B ∈ R).
The result (30) brings us the conclusions: i) the force

F⃗ (S ′)
Q→P

(⃗
r ′

P − r⃗ ′
Q

)
of the type (17) is also a conservative

force in any S ′ frame that connects to the inertial
frame S through the non-relativistic extended Galilean
transformations (3a) and (3b); ii) Up to an additive real
constant B, the value of potential energy is the same in
any S ′ frame. The choice of the value of the constant
B leaves open the choice of zero potential energy in
each physical situation in the S ′ frame from which the
movement of the particle is observed. The S ′ frame can
be an inertial or a non-inertial frame.

Conclusions

If the relative velocities between frames are much smaller
than the velocity c of light, the conservative forces
depend on two points: the force’s center (point Q)
and the particle’s position (point P ) that is being
acted upon, and this force is also collinear with the
particle’s relative position to the force’s center, (see
equation (17)), the force’s vector is the same in all
frames. The frame may be non-inertial or inertial. The
force is also conservative in all frames. Up to an additive
constant, the potential energy’s value remains the same
over all these frames. We do, however, remind the reader
that the value of the particle total mechanical energy
varies with the frame. The total mechanical energy of
the motion in the S ′ frame is not a constant if it is
non-inertial. Conservative forces whose direction is not
parallel to the relative location r⃗P − r⃗Q are not included
in the current result.

The present result is based on two properties of the
extended Galilean transformations (3a)/(3b), that is,
it preserves the distance between two points and their
relative position vectors measured from one of these
points.

Supplementary Material

The following online material is available for this article:
Appendix A
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