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The present work investigates the dynamics of electrical discharges in a capacitor where both plates
are internally connected by a conducting wire. A simplifying assumption used to solve the problem is
to consider a uniform distribution of the surface charges on the plates. This implies uniform electric
fields as well, and allows to calculate the current in the wire as if it were flowing along a simple RC
circuit. We show that although the assumption is good if the conductivity of the wire is small, it fails if
the conductivity becomes larger than a critical value. The device’s behavior beyond this critical value
is then analyzed and discussed. The relevance of the problem is discussed in connection to solid-state
devices, as well as in problem solving contexts.

Keywords: Electrical discharges, Vacuum and solid-state electronics, Electromagnetic waves.

O presente trabalho investiga a dindmica de descargas elétricas em um capacitor onde ambas as placas
estao internamente conectadas por um fio condutor. Uma suposicao simplificadora usada para resolver o
problema é a de considerar uma distribui¢do uniforme de cargas superficiais nas placas. Isto implica em
campos elétricos também uniformes, e permite calcular a corrente no fio como se estivesse fluindo ao
longo de um circuito RC simples. Mostramos que embora a suposi¢ao seja boa se a condutividade do fio
é pequena, falha se a condutividade ultrapassa um valor critico. O comportamento do dispositivo além
deste valor critico é entao analisado e discutido. A relevancia do problema ¢é discutida em conexao a
dispositivos de estado s6lido, bem como em contextos relacionados a resolugao de problemas.
Palavras-chave: Descargas elétricas, Eletronica de vicuo e de estado sélido, Ondas eletromagnéticas.

1. Introduction

One problem occasionally discussed in electromag-
netism classes is that of the electrical discharge
in an internally wired capacitor [1-3]. That is, a
capacitor whose plates are connected directly one
to another by a resistive wire, and not indirectly
connected across an external electronic circuit as
is the usual situation. The setting is not only of
relevance in problem solving contexts, but also in
solid-state device electronics, where leakage currents
may flow from one plate to the other along faulty
inner channels of solid-state planar capacitors [4].
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The discharge dynamics is of peculiar interest be-
cause it involves simultaneous fluxes of electric and
displacement field currents inside the capacitor, as
opposed to the usual model of isolated plates which
admits only displacement currents if the circuit is
set to operate under nonstationary regimes [5]. The
simultaneous presence of electric and displacement
currents in the same volume provides one convenient
setting to discuss the Ampere’s law, in its form cor-
rected by Maxwell, since the total current flowing
inside the capacitor must satisfy continuity, the very
condition that motivated Maxwell’s analysis. Fur-
thermore, adequate manipulation of electric and
displacement currents allows the evaluation of the
magnetic field inside the capacitor, which is often
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the primary question posed in theoretical discus-
sions and which will be used in the present analysis
to pose proper boundary conditions.

The usual approach to accomplish the task of
calculating the fields inside the capacitor is to as-
sume circular geometry, uniformly distributed sur-
face charges over both plates at all times, and a
resistive wire connecting both geometric centers of
the plates. Under the condition of uniform electric
fields, which is critical for reliability of solid-state
devices, and with help of the capacitive relationship
between electric field and surface charges, one can
calculate: (i) the current flowing along the wire, (ii)
the resulting charge depletion over the plates along
with the associated variation of the electric field and,
ultimately, (iii) the magnetic field as obtained from
the Ampere’s law [1},2].

The issue with this kind of approach is precisely
the assumptions on uniformity. As pointed out by
Feynman, in an analysis excluding the wire and the
associated electric current, if there is dynamical flux
of magnetic field, there must be space dependence
of the electric field because Faraday-Lenz’s law de-
mands so [6,|7]. In other words, the assumptions of
a uniform electric field must be examined with care.

Feynman goes on and obtains a solution for the
unwired case in terms of Bessel’s functions [8]. His
solution is fully self-consistent, admits boundary
conditions, and is in fact what motivates the present
analysis. More to the point, we wish to examine
what happens with a discharge in the internally
wired capacitor when we allow for space-time effects.
In particular, we would like to examine how good is
the usual assumption of a thorough uniform electric
field inside the device during the discharge.

The paper is organized as follows: in §2 we intro-
duce the model to be studied; in §3 an analytical
and numerical investigation is carried out; and in
§4 we draw our final conclusions.

2. The model

The model we shall employ, as represented in Fig.
is almost self-explanatory. Two perfectly conduct-
ing circular plates, both of radius a, are connected
through a cylindrical solid structure of radius b < a
and length L. The cylindrical structure is a material
of uniform conductivity g which is defined in terms
of the electric current density j and electric field
E as j = g E. The conducting region is somewhat
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Figure 1: Relevant ingredients and geometry of the inter-
nally wired capacitor. Both plates have radius a and the
wire has radius b. The role of surface S bounded by curve
C' is discussed in the text.

equivalent to lossy dielectric regions in electronic
devices [9].

The evolution law of the electromagnetic field in
the volume between the plates follows from the time
dependent Maxwell’s equations

0B
%2 _VUxE 1
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VXB:MOJ‘FCjaa (2)

with B as the magnetic field, o as the vacuum
permeability, and ¢ as the speed of light. The pair of
equations and can be combined into a wave
equation with a current term
2 .
V’E - %87]23 - M()@
¢ ot ot
if one uses V-B = (0 and assumes no charge build-up
between the capacitor plates so that V- E = 0 as
well.
In the following we use the small gap condition
L < a, as roughly suggested by the aspect ratio of
Fig. 1l Under this circumstance we neglect fringe
effects and also consider the case of uniform fields
along the axis, noting that in this case the length
L has no functional bearing on the analysis to be
performed. However, we allow for full azimuthally
symmetric dependence on the radial coordinate r
of a cylindrical set of coordinates, which precisely
embodies the kind of nonuniformity to be studied
in this work.
Taking the polarization of the fields into account,
the electric and magnetic fields are repectively rep-
resented by

=0, (3)

E(r,t) = E(r,t) 2 (4)
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and

B(r,t) = B(r,t)0, (5)
with the hatted quantities as the polarization versors
for the respective fields. The underlying adopted ge-
ometry is consistent with the divergence-less electric
field and promptly leads to the following equation
for the scalar field E(r,t) in the form

10 < 8E(r,t)) O0?E(r,t)
2y _
r Or or ot2

OE(r,t)
—H(b—-r)g————= =0. 6
- r)g 2o ()
In Eq. (6), the Heaviside step function H(z > 0) =
1, H(x < 0) = 0 controls the presence of the electric
current between the plates; current can only flow
in the region r < b. In addition, space, time and
the conductivity have all been made respectively
dimensionless with r/a — r, c¢t/a — t, and pogca —
g.

3. Solutions for the wave equation

3.1. Analytical approach

We look for solutions of the wave equation @ in a
normal mode separable form [10],

E(r,t) = Ege ™, (r). (7)

The normal mode frequency w and the spatial eigen-
function v,, should be sought-for with help of the
differential equation and its boundary conditions
which we now discuss. We start off with the bound-
ary conditions, and analyze the differential equation
and the appropriate continuity conditions immedi-
ately afterwards.

Solutions must be finite at any radial position,
particularly at the origin, so

Y, (r — 0) < oo. (8)

Furthermore, we recall that fringe effects are ab-
sent and avoid the inherent complications of an
open boundary problem assuming that most of the
electric field lines reside between both plates. Un-
der this approximation, the total current (electric
plus displacement) flux crossing the open surface S
bounded by circular curve C' of radius r = 1 in Fig.
(1) vanishes. Likewise, the magnetic field vanishes
at r = 1 since its line integral along C' equals the
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total current flux across S from Ampere’s law. From
expressions and the magnetic field is seen
to be proportional to the simple derivative of the
electric field E(r,t). Therefore, from expression
our boundary condition at 7 = 1 reads

s,

or r=1

Let us then resolve the temporal part of Eq. @
and write down the differential equation in its spatial
form both in the conducting and vacuum regions.
One has

—0. (9)

ki, Yy =0 for r<b,
10 [ O, with k2 = w? +igw,
s (1) * Ky ths =0 for b,
with k2, = w?,

where we recall that both magnetic and electric fields
are continuous at r = b. In other words, both 1, and
its space derivative must be continuous across the
wire radius. We note that the vacuum wave vector
Kout coincides with the frequency w.

Both equations contained in the above set are
in the form of azimuthally symmetric Bessel’s differ-
ential equations, whose solutions can be formed by
appropriate linear combinations of Bessel’s functions
of first and second kind, Jy and Y respectively [11].

In the conduction region, where r can go to zero,
one must pick the Jy function, which is finite at the
origin. In the vacuum the complete solution must
be formed as a linear combination of the .Jy and Y)
functions. One thus has

Jo(KinT) if r<b,
Yo(r) = { .
« JO(/QoutT) + ﬂ}/()(’foutr) if >0,
(10)

where 1), is conveniently scaled that ¢, (r = 0) =1,
and where we see that the Bessel’s functions depend
on complex arguments.

The boundary condition @ along with the deriva-
tive properties of the Bessel’s functions, Jj(z) =
i (2); Y{(x) = ~Yi(z) [, yields

- o Jl(“out)
ﬂ N Yl(’iout)j (11)

and combination of relations and with the
continuity of function v,, and its derivative at r = b
finally generates relation
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Jl (K,m b)

Rout H(’{out)Jl (’fout b) - Jl(/‘iout)Yl(/fout b) '

(12)

from which one can determine the spectrum of allowed values of w.

3.2. Numerical analysis of the frequency
spectrum

We have two free parameters in the dimensionless
system: the conductivity g and the radius b of the
inner, conductive region. In order to emulate a thin
conducting wire, we shall take b = 0.1 unless other-
wise stated. Given the fixed radius b, we shall then
examine the imaginary and real parts of the complex
frequency w = w(g) as functions of g.

If we took a uniform medium, characterized by
g = 0, solutions would be given in the form of single
Bessel functions of the first kind Jy(x,7) throughout
the entire volume of the capacitor, with x,, as one of
the roots of expression J{)(knr)|r=1 = —knJ1(kn) =
0. One particular solution would be the one with no
spatial dependence, kg = 0. The dispersion relation
w = k for this g = 0 case would imply a vanishing
frequency w as well, which places this particular set-
ting in a fully stationary regime where the capacitor
plates remain uniformly and invariantly charged.

We may start our numerical investigation at this
point, since our central question is precisely on how
far does the discharge remain approximately homo-
geneous as the conductivity increases. Given the
initial root kg = w(g = 0) = 0 we will iteratively
calculate the corrected frequency w = w(g) as g
departs from zero. We shall also extend the tech-
nique to the adjacent smallest nontrivial real root
kn=1 > 0 to have a more panoramic view of the
system behaviour even when the zero conductivity
case is neither homogeneous nor stationary.

Figure [2| reveals the behaviour of the imaginary
and real parts of the complex frequency w(g) as
functions of g (only the root with positive real part
is depicted in each panel).

As mentioned, panel (a) is the one of central inter-
est in our discussion, since it describes the frequency
as it rises from the fully stationary and uniform case
w(g = 0) = 0. One indeed sees that at relatively
small values of g the real part of the frequency stays
glued the zero frequency axis, while its modular
imaginary part rises very slowly away from the axis.
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Figure 2: Real and imaginary parts of the eigen-frequencies
of the discharge modes. In panel (a) with start from w(g =
0) = 0 and in panel (b) from the lowest nontrivial root
of Ji(k) = 0, which is approximately w(g = 0) = 3.831.
The vertical line in (a) locates the respective giransition as
estimated by Eq. (13)).

This kind of behaviour goes on until a sharply de-
fined point where the real part starts to increase
while the modular imaginary part starts to decrease.
This sharply defined point may appear unexpected
at a first look, but a closer examination shows that
it must exist. Indeed, when g lies within its range of
small values g < 1, there is little difference between
the conducting region r < b and vacuum region
r > b [12-14]. The electric field is thus mostly uni-
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form and slowly varying, and the current basically
grows as the conductivity increases. The decay time
scale for the electrical discharge acquires a large but
finite value and the modular imaginary part of the
negative imaginary frequency, which can be thought
as the inverse of the discharge time scale, increases
slightly. But this kind of behaviour cannot go on in-
definitely. If g becomes too large, skin depth effects
expel the electric field from the conducting region,
dissipation ceases , and the system re-morphs
into a resonant cavity which extends from r = b to
r = 1 and supports a real resonant frequency. This
is why, as seen in panel (a), the real part of the
frequency saturates at its terminal value and the
imaginary part approaches a final vanishing value.
Estimates can be even obtained for the transition
point. First of all one should notice that for small
conductivities, the time scale of the electrical dis-
charge can be evaluated as the characteristic time
7 of a RC circuit composed by the capacitor and
the resistive wire connecting the plates: one has
lw| = 1/7 ~ 1/RC ~ gb* with R and C respectively
as the resistance and capacitance of the RC circuit.
Secondly, one can estimate the already mentioned
skin depth characteristic length J, associated with
the penetration of the electric field lines into the
conducting portion of the circuit: §; ~ 1/4/g|w| .
For very small values of either g or |w|, the skin
depth is large and the field freely diffuses into the
wire. For large values of the combination ¢ |w|, on
the other hand, d5 diminishes to a point where it be-
comes smaller than b. This is where the field begins
to be expelled from the wire as commented before.
The critical g can be estimated as one takes §; ~ b
and makes use of |w| = 1/7 above. One obtains

Gtransition ™~ 1/b2, (13)

which well approximates the transition in the case
b = 0.1 seen in panel (a) of Fig. [2[ - giransition 18
indicated by the vertical black line. We have further
tested expression for b = 0.01 and once again
nice agreement is obtained. We point out that the
transition seen in Fig. a) is similar to the one seen
in RLC circuits, whenever a dominant RC mode
jumps to an LC dominant mode.

To make a comparison with an inherently nonuni-
form case, in panel (b) we examine the behaviour
evolving from the first nontrivial oscillatory mode
associated with the g = 0 case. More precisely, we
pick k1 with J1(k1) = 0 and analyse what happens
as g increases.
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Figure 3: Space-time history for the eigenmodes of the
internally wired capacitor: g = 0.01 in panel (a) and g = 10%
in panel (b). For small conductivities panel (a) shows that
the discharge follows the decay pattern of a simple RC
circuit, while for large conductivities panel (b) shows that
the system behaves as a weakly dissipative resonant cavity.

The result is depicted in the curves of panel (b)
which essentially shows the same kind of profile than
panel (a), with the exception of the expected offset
associated with the nonzero frequency at g = 0;
w(g =0) = 3.831.

To complement the present analysis, Fig. [3] of-
fers two panels displaying the space-time history of
the real part of the electric field in two conductive
regimes: small conductivity g = 0.01 in (a) and large
conductivity g = 10* in (b), both roots arising from
the kg = 0 case.

While the first panel, panel (a), shows the nearly
uniform decay of the electric field towards its vanish-
ing final value, the second panel, panel (b), reveals
what is best described as a very slow decay of an
eigenmode of a high quality resonant cavity affected
by a truly small dissipation rate. In particular, we
point out how much smaller is the normalized field
E/Ey inside the conducting wire, within r < b, as
compared with the field without. We also point out
that since the electric field is flat inside the wire,
the associated magnetic field appears for the first
time only at its surface.
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4. Conclusions

In the present work we performed a fully self-consistent

electromagnetic analysis of a device used to give stu-
dents a firm grasp on the role of displacement cur-
rents in Maxwell’s theory. The model is built-up on
the concept of an internally wired capacitor where
the plates are directly connected one to another as
seen in Fig.

The model is also suggested to be of relevance
to leaky solid-state devices. Reference |4] indeed
shows that conductive regions are likely to appear
in the central regions of capacitive structures, where
insulation between the plates is susceptible to struc-
tural defects. We note that under the extremes of
an avalanche breakdown one would have a highly
conductive path between the plates.

Given the azimuthally symmetric geometry of the
problem, the task is to calculate the electromagnetic
fields generated at an arbitrary radius inside the
capacitor. To do that along an initially pedagogical
way, one first uses the simplifying hypothesis of
a fully uniform electric field between the plates.
The current is calculated as one takes the wired
capacitor as a simple RC circuit, and the magnetic
field is obtained with help of Ampere’s law, with
the symmetric source provided by the electric and
displacement currents.

The present work is concerned with the validity
of this approach. We examine in more detail how
far can we take the uniformity of the electric field
as a good approximation. The conclusion is that
the approach is accurate while the conductivity g
is small enough that the electric field can diffuse
freely into the conducting wire. However, as the
conductivity increases and electric field lines are
expelled from the conductor, the system becomes
increasingly inhomogeneous. This is demonstrated
by panel (a) of Fig. [2/ which shows the clear birth
of an inhomogeneous and oscillatory mode as one
goes past the transition value for g. A brief analysis
of inherently nonuniform modes is also performed.
In a way, as the conductivity grows what is seen
is a transition between a dominant RC mode to a
dominant LC mode of a RLC series circuit.

The present work does not look at certain features,
as for instance nonuniformities along the capacitor

axis, and finite conductivity of the capacitor plates.

Despite these limitations, our model provides a way
to determine the range of values for g where the
discharge is uniform across the axis, and what can
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be expected when one goes beyond the transition
point.
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