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We present a comparison between the bosonic Feynman propagator in an external magnetic field calculated by
Ritus’ method with summation over Landau levels and its integral expression obtained via Schwinger’s proper
time method. Also, we have investigated the behavior boson system in a thermal reservoir under an increase in
the external magnetic field strength.
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1. Introduction

Magnetic fields of order B ≈ 1018 G created in ultra-
relativistic heavy-ion collisions or present in neutron
stars have a special influence on the phase transition
of dense hadronic matter[1–4]. The presence of these
magnetic fields on the physical systems brings a series
of interesting phenomena to be analyzed, namely: mag-
netic catalysis (MC) [5–10], inverse magnetic catalysis
(IMC) [11–17], and breaking-restoration of chiral sym-
metry [18, 19]. A mesonic system under an external
magnetic background also was considered in [20–23]. In
the finite size context, we have found that the magnetic
field produces the direct and inverse catalysis effects
in the Gross-Neveu model in the Refs. [24, 25] and
[24, 26], respectively. In the Nambu–Jona-Lasinio model,
the IMC phenomenon at finite size was found in [27] and
the MC considering finite size of the system was found
in [4, 28].

To include these magnetic effects in the theoretical
model, we have to calculate the Feynman propaga-
tor. It is an important function to achieve results in
quantum field theory (QFT). In particular, when we
have to take into account magnetic effects coming from
an external field, the Feynman propagator gets some
difficulties to be calculated. Some very important papers
in the literature are dedicated to exploring the external
field effects in the Feynman propagator with different
approaches [29–32]. In this paper, we propose investi-
gating the relation between Landau levels obtained by
Ritus’ method (eigenfunctions method) and the method
due to J. Schwinger (considering one extra dimension:
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the proper time S) in the calculation of the Feynman
propagator. In other words, we shall investigate how to
obtain one method from another, taking into account
the zero spin quantum field.

V. Ritus developed the eigenfunction method in the
1970′s (see Ref. [31, 32]). This method allows writing
the propagator under an external field as in the free
case, i.e., in a diagonal form. A few years ago, Ritus’
method was considered in low dimensions to describe
the graphene [33] and in QFT scenario [34–37].

The main purpose of this manuscript is to get the
expression written on the proper time representation
to the zero spin field propagator under the constant
external magnetic field present in Eq. (9) of Ref. [38].
For this, we will sum over all Landau levels that appear
through the eigenfunctions method applied to the Klein-
Gordon field.

The paper is organized as follows: In section 2, we
discuss Ritus’ method and apply it to find Green’s func-
tion of the Klein-Gordon field under a constant external
magnetic field in the z-direction. In section 3, we sum
over Landau levels present in the Green’s function and
will obtain Schwinger’s structure to the propagator, i.e.,
a closed expression on the proper time. In section 4, we
compute the magnetic and thermal corrections on the
mass parameter in a self-interaction zero spin system.
Also, we will define dimensionless quantities for a better
description of the system. Section 5 is reserved to
investigate the phase structure of the model. In section 6,
we conclude the paper and present some perspectives for
further development.

We will use natural units c = ℏ = kB = 1, metric
tensor η = diag(+, −, −, −) (unless we will be in the
Euclidean space, explicitly written by bar “−”).
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2. The Ritus’ Method

Let us calculate the propagator of the bosonic field under
an external magnetic field B, uniform, homogeneous,
and along z-direction. In this case, the Klein-Gordon
equation becomes[

−(iD)2 + m2
0
]

Φ (u) = 0,

where u ≡ uρ = (t, x, y, z), Dµ = ∂µ + ieAµ and we use
the Landau gauge: Aµ = (0, −yB, 0, 0).

The propagator satisfies the equation[
−(iD)2 + m2

0
]

G (u, u′, A) = −iδ4 (u − u′) . (1)

Ritus’ method is based on the existence of a com-
plete set of eigenfunctions Ep(u) of the operator (iD)2.
Furthermore, the method establishes the eigenvalue
equation

(iD)2Ep = p2Ep. (2)

If we are able to find a complete set of eigenfunctions
Ep, we can write

G (u, u′, A) =
∫

dp Ep(u) G(p, A) E∗
p(u′). (3)

Since, ∫
dp Ep(u) E∗

p(u′) = δ4(u − u′),

and take into account the Eqs. (1) and (3), we get

G(p, A) = lim
ε→0

i

p2 − m2
0 + iε

, (4)

and the problem of calculating the Feynman propagator
of the bosonic field in an external magnetic field will be
solved.

Let us find the analytical expression to Ep(u) and p2.
From the gauge that we have chosen, we can show that
the Klein-Gordon operator under the external magnetic
field reads

(iD)2 = −∂2
t + ∂2

x + ∂2
y + ∂2

z + 2 i ω y ∂x − ω2y2, (5)

where ω ≡ |eB| is the cyclotron frequency.
Thus, to solve the eigenvalue equation, we make the

ansätze [35–38]

Ep = const. exp [−i (ptt − ωξx − pzz)] Y (y). (6)

Replacing Eq. (6) on Eq. (2) and taking into account
Eq. (5), we obtain[

∂2
y − ω2(y + ξ)2 + a

]
Y (y) = 0, (7)

being a ≡ p2
t − p2

z − p2. The Eq. (7) is the differential
Hermite equation, which has finite solutions just to a =
ω(2ℓ + 1), being ℓ = 0, 1, 2, · · · . The normalized solution
of Eq. (7) given in terms of Hermite polynomials, Hℓ, is

Ep(u) = 1√
(2π)3

(ω

π

) 1
4 exp [−i (ptt − ωξx − pzz)]

· 1√
2ℓℓ!

exp
[
−ω(y + ξ)2

/2
]

Hℓ

[√
ω (y + ξ)

]
.

(8)

Using the orthogonality of Hermite polynomials and
the delta function representation in terms of complex
exponential, it is easy to show that∫

d4u Ep(u) E∗
p′(u)

= δℓ,ℓ′ δ (pt − p′
t) δ (pz − p′

z) δ [ω (ξ − ξ′)] .

Therefore, the bosonic propagator of the zero spin field
represented by the complete set of eigenfunctions Ep can
be expressed as

G (u, u′, A) =
∞∑

ℓ=0

∫
dpt dpz ω dξ Ep(u) G(p, A) E∗

p(u′),

(9)

where ℓ represents the Landau levels, Ep(u) is given in
the Eq. (8) and G(p, A) is given by Eq. (4) with p2 =
p2

t − p2
z − ω(2ℓ + 1).

3. Sum Over Landau Levels

In this section, we will sum over Landau levels of Eq. (9).
The explicit form of the propagator reads

G (u, u′, A) =
∞∑

ℓ=0

(ω

π

)1/2 1
2ℓℓ!

∫
dpt

2π

dpz

2π

ωdξ

2π

· exp {−i [pt (t − t′) − pz (z − z′)]}

· Hℓ

[√
ω(y + ξ)

]
Hℓ

[√
ω(y′ + ξ)

]
× G(p, A) exp

{
−iω

[
−ξ(x − x′)

− i

2
(
(y + ξ)2 + (y′ + ξ)2)]}

. (10)

After some manipulations, we can write the term [· · · ]
in the last exponential of Eq. (10) as

[· · · ] = − i

[
(ξ − A)2 + 1

4
(
(x − x′)2 + (y − y′)2)

+ i

2(x − x′)(y + y′)
]

,

where A = [i(x − x′) − (y + y′)] /2.
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Thus, the Green’s function of scalar field is given by

G (u, u′, A)

= exp [−iω(x − x′)(y + y′)/2]
∞∑

ℓ=0

(ω

π

)1/2

× 1
2ℓℓ!

∫
dpt

2π

dpz

2π

ωdξ

2π
exp [−i (pt(t − t′) − pz(z − z′))]

× exp
[
−ω

4 (r − r′)2
⊥

]
exp

[
−ω(ξ − A)2]

× Hℓ

[√
ω(y + ξ)

]
Hℓ

[√
ω(y′ + ξ)

]
G(p, A). (11)

Note that we factored the phase exp[−iω(x − x′)
(y + y′)/2]. This is the so-called Schwinger’s phase,
which arises in the proper time method by an appropri-
ately chosen path, generally a straight line. Nevertheless,
in the eigenfunction method, it is evident just from the
reordering of the propagator.

Let us solve the integral in ξ separately. Making the
change ξ = A + Ξ/

√
ω and taking into account the well-

known relation∫ +∞

−∞
dΞ Hℓ(Ξ + y) Hℓ′(Ξ + y′) exp(−Ξ2)

= 2ℓ′√
π ℓ !(y′)ℓ′−ℓ Lℓ′−ℓ

ℓ (−2yy′),

where Lℓ′−ℓ
ℓ (−2yy′) is the Laguerre polynomial associ-

ated, we obtain∫ +∞

−∞
dξ exp

[
−ω(ξ − A)2]

· Hℓ[
√

ω(ξ + y)] Hℓ[
√

ω(ξ + y′)]

= 2ℓ
( π

ω

)1/2
ℓ! Lℓ [−2ω(A + y)(A + y′)] . (12)

Noting that

(A + y)(A + y′) = −1
4

[
(x − x′)2 + (y − y′)2]

, (13)

which gives, after replacing Eq. (13) in Eq. (12) and the
resulting equation in Eq. (11), the expression

G (u, u′, A) = exp [−iω(x − x′)(y + y′)/2]

×
∫

dpt

2π

dpz

2π
exp {−i [pt(t − t′) − pz(z − z′)]}

×
∞∑

ℓ=0

ω

2π
exp

[
−ω

4 (r − r′)2
⊥

]
Lℓ[(r − r′)2

⊥ω/2] G(p, A).

(14)

Now we use the Eq. (ET II 13(4)a) of reference [39],
namely

(α − β)n

αn+1 exp
(
−Y2/2α

)
Ln

[
βY2

2α(β − α)

]
=

∫ ∞

0
dX X exp

(
−αX 2/2

)
Ln

(
βX 2/2

)
J0(X Y),

(15)

where Y > 0, ℜe(α) > 0 and J0 is the Bessel function.
Replacing Eq. (15) in Eq. (14) and labeling X = p⊥ =√

p2
x + p2

y, Y2 = (r − r′)2
⊥ and α = β/2 = 2/ω, we

obtain

G (u, u′, A) = exp [−iω(x − x′)(y + y′)/2]

×
∫

dpt

2π

dpz

2π
exp {−i [pt(t − t′) − pz(z − z′)]}

×
∞∑

ℓ=0

1
π

∫ ∞

0
dp⊥p⊥(−1)ℓ exp

[
−p2

⊥/ω
]

Lℓ[2p2
⊥/ω]

× J0

(
p⊥

√
(r − r′)2

⊥

)
G(p, A). (16)

On the other hand, the Bessel function J0 has the
following representation,

J0

(
p⊥

√
(r − r′)2

⊥

)
= 1

2π

∫ 2π

0
dφ exp

[
ip⊥

√
(r − r′)2

⊥ cos φ

]
. (17)

After going to momenta cartesian coordinates and
replace Eq. (17) in Eq. (16), we have

G (u, u′, A) = 2 exp [−iω(x − x′)(y + y′)/2]

×
∫

dpt

2π

dpx

2π

dpy

2π

dpz

2π
exp [−ip · (u − u′)]

×
∞∑

ℓ=0
(−1)ℓ exp

[
−(p2

x + p2
y)/ω

]
Lℓ[2(p2

x + p2
y)/ω]

× lim
ε→0

i

p2
t − p2

z − ω(2ℓ + 1) − m2
0 + iε

, (18)

where we have used G(p, A) defined on Eq. (4).
Now, let us use Schwinger’s idea and write the

momenta space propagator G(p, A) in terms of an inte-
gral expression, namely

i

p2
t − p2

z − ω(2ℓ + 1) − m2
0 + iε

=
∫ ∞

0
dS exp

[
iS

(
p2

t − p2
z − ω(2ℓ + 1) − m2

0 + iε
)]

,

(19)

being S the proper time variable. In terms of proper
time, we have

G (u, u′, A)

= 2 exp [−iω(x − x′)(y + y′)/2]
∫

dpt

2π

dpx

2π

dpy

2π

dpz

2π

×
∫ ∞

0
dS exp[iS(p2

t − p2
z − ω + iε)] exp[−ip · (u − u′)]

× exp
[
−(p2

x + p2
y)/ω

] ∞∑
ℓ=0

(−1)ℓLℓ[2(p2
x + p2

y)/ω]

× exp [−i2ωℓS] . (20)
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Finally, by using the expression
∞∑

ℓ=0
zℓLϵ

ℓ(q) = 1
(1 − z)1+ϵ

exp [qz/(z − 1)] ,

valid to |z| < 1, we get, for ϵ = 0,
∞∑

ℓ=0
[− exp (−i2ωS)]ℓ Lℓ[2(p2

x + p2
y)/ω]

= exp(iωS)
2 cos(ωS) exp

[
(p2

x + p2
y)

ω

(
2

1 + exp(i2ωS)

)]
.

(21)

Replacing Eq. (21) in Eq. (20), we obtain the scalar
field propagator under an external magnetic field

G (u, u′, A) = exp [−iω(x − x′)(y + y′)/2]

×
∫

d4p

(2π)4 exp [−ip · (u − u′)]

×
∫ ∞

0
dS sec(ωS) exp

[
iS

(
p2

t − p2
z − m2

0

+ iε − (p2
x + p2

y) tan(ωS)
ωiS

)]
. (22)

The Eq. (22), in the limit ω → 0, correctly gives the
free propagator.

We can calculate the limit u → u′ in the Eq. (22)
and perform a kind of Wick rotation in the proper-time
S (i.e., S → −iS̄ and pt → ip̄t) to get the Euclidean
Green’s function of the scalar field under the magnetic
field in the z-direction:

G (u, u, A)

=
∫ ∞

0
dS̄

1
cosh(ωS̄)

∫
dp̄t

2π

dpx

2π

dpy

2π

dpz

2π

× exp
{

−S̄

[
p̄2

t + p2
z + m2

0 + (p2
x + p2

y) tanh(ωS̄)
ωS̄

]}
.

(23)

The Eq. (23) was obtained in Ref. [38] (equations 8 and
9). It is the Feynman propagator taking into account
all Landau levels for the zero spin field. This equation
is important for including the corrections on the mass
parameter of the scalar field, as we shall perform in the
next section.

4. Corrections on Mass Parameter

4.1. Magnetic corrections

Let us consider a charged scalar particles gas system
with quartic self-interaction under a magnetic constant
field in z-direction. Initially, the Lagrangian density
at zero temperature is defined on four-dimensional
Euclidean space by

L = |Dµϕ|2 + m2
0 |ϕ|2 + λ0

4! |ϕ|4 .

Now the mass parameter m2
0 will be corrected by

the magnetic effects represented by ω. Then the mass
parameter in one loop order is given by

m2 = m2
0 + Σ, (24)

where the self-energy in one loop order is given by

Σ(ω) ≡ λ0 G, (25)

being G the scalar propagator under the constant exter-
nal magnetic field, computed in Eq. (23).

Performing four Gaussian integrations on Eq. (23), we
get the propagator at zero temperature and in the bulk
form

G (u, u, A) = ω

16π2

∫ ∞

0

dS̄

S̄

exp(−S̄ m2
0)

sinh(ωS̄)
. (26)

Below, we will analyze the changes in the mass param-
eter of the system when the magnetic field increases. For
this, is appropriated defined the dimensionless quantities

s̄ = S̄ m2
0; δ = ω/m2

0 .

Therefore, Green’s function written in terms of dimen-
sionless quantities becomes

G (u, u, A) = m2
0 δ

16π2

∫ ∞

0

ds̄

s̄

exp(−s̄)
sinh(δs̄) . (27)

4.2. Thermal and magnetic corrections

The thermal effects are included by imaginary-time
formalism [40–42]∫

dp̄t

2π
f (p̄t, p⃗ ) → 1

β

+∞∑
n=−∞

f (ωn, p⃗ )

being

p̄t → ωn ≡ π

β
(2n) − iµ, n = 0, ±1, ±2, · · · .

where T = 1/β is the temperature of the system and µ
its density (chemical potential).

The self-energy written on Eq. (25) taking into
account thermal effects reads

Σ (ω, T ) = λ0 ω

16 π2

∫ ∞

0

dS̄

S̄

exp
(
−S̄ m2

0
)

sinh(ωS̄)

· θ3

[
−i

µβ

2 ; exp
(
−β2/4S̄

)]
,

where we used the θ3 definition function, namely [43, 44]

θ3(z; q) =
+∞∑

n=−∞
qn2

exp [(2n) iz] .

Again, let us parametrized the model in terms of m0:

γ = µ/m0; t = T/m0 .
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Therefore, the self-energy in terms of dimensionless
parameters (δ, γ, t, s̄) is

Σ (δ, t) = λ0 m2
0

16 π2

∫ ∞

0
ds̄

[
δ

s̄ sinh(δs̄)

]
· θ3

[
−i

γ

2t
; exp

(
−1/4t2s̄

)]
exp (−s̄) . (28)

The factor [δ/s̄ sinh(δs̄)] presents the divergence of
kind 1/s̄2 for s̄ ≈ 0. There is an analogous divergence
in the Epstein-Huwrtiz zeta function approach found in
Refs. [41, 42]. To contour this problem, let us consider
just the finite part of self-energy in the proper time.
Replacing Eq. (28) on Eq. (24), we obtain

M2
eff

m2
0

= 1 + λ0

16 π2

∫ ∞

0
ds̄

[
δ

s̄ sinh(δs̄) − 1
s̄2

]
· θ3

[
−i

γ

2t
; exp

(
−1/4t2s̄

)]
exp (−s̄) , (29)

where we have defined the effective mass parameter as
M2

eff ≡ m2 − Σ∞ and the divergent part of the Eq. (28)
is represented by Σ∞.

In the following pictures, we shall investigate the
phase structure of the system through Eq. (29). We have
fixed λ ≡ λ0/(16 π2) = 0.095.

5. Phase Structure of the System

The system will suffer phase transition in the points
that define the effective mass parameter equal to zero.
Therefore, we obtained the critical temperature of the
system by transcendental expression M2

eff (tc, γ, δ) ≡ 0.
From Fig. 1, we observe that the critical temperature

of the system gets smaller values with the increase of
the external magnetic field dimensionless δ for vanishing
and non-vanishing chemical potential. However, the case
where chemical potential dimensionless is finite shows
a smaller critical temperature, considering the same
values of the external magnetic field dimensionless.
Still in Fig. 1, but focusing on the external magnetic
field, we observe the inverse magnetic catalysis (IMC)
phenomenon for both cases (γ = 0 and γ ̸= 0 ), i.e.,
the external field δ driven the system for small critical
temperatures tc while δ increases. Recently, one of us
(EBSC) and colleagues have found the IMC phenomena
in a fermionic system, considering a magnetic depen-
dence on the coupling constant of the Dirac field [27].
Nevertheless, this input was not necessary in the scalar
field context, as treated here.

To corroborate the IMC phenomenon, the effective
mass parameter is shown again in Fig. 2, but for several
chemical potential values. We note that critical temper-
ature values t1c for δ1 = 4.5 is higher than t2c values for
δ2 = 9 (top and bottom panels, respectively). Now, for
fixed δ, Fig. 2 shows that the effect on chemical potential
over the system is lower critical temperature values
while γ increases. Another characteristic of the phase

Figure 1: Effects arising from the finite temperature in the
system for different values of dimensionless external magnetic
field. In the upper panel, we have the dimensionless chemical
potential set at zero. At the bottom, we have a finite dimen-
sionless chemical potential.

transition bosonic covered here is the independence
of the chemical potential suggested by effective mass
parameter behavior for temperatures close to zero for
any external magnetic field finite. To see that, just take
a look at Fig. 2 (top or bottom panels) for dimensionless
temperature in the limit t → 0.

6. Comments and Conclusions

Along this paper, we applied Ritus’ method for calculat-
ing the Feynman propagator of the charged scalar field
under a constant and homogeneous external magnetic
field in the spatial z-direction. After we found the
propagator, we did the summation over all Landau levels
and got a closed expression for the propagator in terms
of Schwinger’s proper time. One of the main expressions
calculated in this manuscript is the Eq. (23). It is easy
to demonstrate that Eq. (23) describes correctly the
charged propagator in the limit ω → 0 and we invited the
reader to do it. Also, we have included thermal effects in
the magnetic propagator. This was done by Matsubara
formalism and from a mathematical point of view, the
Jacobi theta function θ3 was essential to compute all
frequencies ωn of the thermal scalar field. One of the
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e20230340-6 Charged scalar field propagator under an external magnetic field

Figure 2: Effects arising from the finite temperature in the
system for different values of dimensionless chemical potential.
In the top panel, we have the dimensionless external magnetic
field set at 4.5. At the bottom, we have δ = 9.

findings here is the IMC effect. This result was found
without the inclusion of magnetic dependencies on the
coupling constant, as usual in the effective models.

We will continue studying relations between Ritus’
and Schwinger’s methods in other external field configu-
rations, e.g., a magnetic field with decaying exponential.
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