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We aim to present an interdisciplinary way of showing the subject determinism versus stochasticity; and write
the text in such a way that this subject can be treated from the point of view of physics teaching. We approach
the technical part of this work intuitively and later we present this question in a more formal way. When the
trajectory of a dynamical system in the phase space repeats itself after some time. We say that the system
displays recurrence. Recurrence plots (RP) and recurrence quantification analysis (RQA) took place as tools to
investigate this property. We employ the RP and the RQA the behavior of a long time series of the returns of
the Bovespa index. We have carefully studied the obtention of the parameters for the phase space reconstruction
of the supposed dynamical system which created the time series. After building the RPs for the time series of
the returns, the values of the quantities from RQA were computed and then compared with values obtained for
the randomized series. Our investigations suggest that the real financial market dynamics is a combination of

deterministic chaos and stochastic behavior.

Keywords: Stockmarket; Stochastic; Determistic; Recurrence Plots.

1. Introduction

In a simplified way, the role of a scientist is to observe a
system and explain it in order to translate such explana-
tions into a mathematical form. Through this mathemati-
cal model, it is possible to reproduce the observed system
behavior, in order to facilitate the theoretical examina-
tion and the speculation about the temporal evolution of
the system, besides the prediction of new phenomena. In
this work, we consider two types of mathematical models:
the deterministic and the stochastic ones. The former
manages to establish a temporal evolution that repeats
itself if we always use the same set of initial conditions.
The latter depends on a probability density function,
and it is not possible to always retrieve the same result
when we start with the same set of initial conditions.
From the point of view of physics teaching, we feel the
lack of literature that addresses the difference between
determinism and stochasticity. For this reason, we have
decided to write this manuscript, to try to fill this gap a
little bit. We choose to examine a system that draws at-
tention in the real world because it moves a large amount
of money and knowing how to model such a system is
the dream of many people. This system is the financial
market. In these notes, we will scrutinize a component
of the financial market, the Stock Exchange of the State
of Sao Paulo.

Some physicists consider the financial market as a com-
plex system, which presents real problems that deserve
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detailed examinations [IH4]. Specifically, essential works
in references [5,/6] approach index returns of the stock
markets as stochastic processes. This procedure gener-
ated exciting discussions |11H13|. Recent works tried to
answer the following question: Can a stock market be
studied from the point of view of the deterministic sys-
tem? [11H13]. These works performed the time series
analysis based on the theory of dynamical systems. Since
irregularity is present in the time series, it is then reason-
able to consider the stock market as a chaotic dynamical
system. The most direct link between chaos theory and
the real world is the analysis of time series from real
systems concerning nonlinear dynamics. However, one
might think of incorporating a stochastic component into
the description as well. In this work, we have to assume
that this stochastic component is small and does not
change the nonlinear properties. We would like to an-
swer the abovementioned question for the Brazilian stock
market index returns studied in [14}[15] like a stochastic
series. The authors of the references |16] and [17] also
studied the question about the deterministic character in
the stock market and considered the time series of such
system in the context of recurrence plots (RP). Works
like these have inspired us to conduct our research with
the same tools. Regarding the Bovespa index, the follow-
ing references present detailed studies of the time series
based on the first Poincare return [18H20]. Still, regard-
ing the Bovespa, there are detailed studies that address
other aspects of this system. In the reference [21] the
authors analyze the Ibovespa from the statistical point of
view find that the index is described by an exponentially
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truncated Levy flight. The detection of long-range corre-
lations in the Bovespa index appears as a result of the
reference [22]. The authors of the reference [23| present
an introductory course to econophysics. Finally, among
other works, reference [24] presents a quantification of
fluctuations in the Brazilian stock market.Here we do
not treat with stochastic processes and Poincaré returns,
and we do not deal with the chance of people gain or
lose money under certain a probability. Instead, we are
interested in understanding the mechanisms that govern
the stock market index returns from a deterministic point
of view, using the return map of the stock returns.

We organized the article as follows. To ensure a quick
apprehension of the reader of the primary theoretical
tool used in this work, we have graphically introduced
the concept of return plot in Section 2 of this paper. Sub-
sequently, the manuscript becomes more technical, but
the question about the difference between determinism
and stochasticity permeates the whole discussion that is
in the text. In Section 3 we present briefly the Brazilian
stock market index, or Bovespa Index, which is the focus
of our study. Section 4 makes an overview concerning
phase space, chaotic attractors, and phase space recon-
struction; we also accomplish the reconstruction of the
Brazilian market attractor to estimate its fractal dimen-
sion. In Section 5 we make an overview of recurrence
plots (RP) and quantitative recurrence analysis (RQA).
In section 6 we use the RQA based on the time series of
Bovespa Index to suggest it has a deterministic compo-
nent. In Section 7 we present some scaling laws obtained
through the RQA. Finally, in section 8 we present our
conclusions.

2. An intuitive approach to return plots

A significant part of the experimental data collected in
the real world comes in the form of long time series. These
series are analyzed using several techniques, but the pur-
pose of the analysis is always the same: to understand the
dynamic behind the process that generated this series, to
establish a mathematical model based on some suitable
variables and parameters, and then to use the model built
for predict the dynamic at a future time. In general, the
time series can be generated by a stochastic or determin-
istic system. In the deterministic case, a system creates
a sequence according to a rule. A notable example would
be the trajectory described by a particle under the action
of an external field. As we learn in classical mechanics
once the forces acting on a particle are known, Newton’s
laws allow us to understand the future motion from a
given initial condition, that is, we can determine future
states (the points of the trajectory) uniquely from the
past states. In the case of a stochastic system the series
arises without any previously established rule, we say in
this case that the data are random: a typical realization
of such a system is the flipping of a fair coin each day to
determine the price of an asset on the next day. Another
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example of a deterministic series is the one provided by
the logistic map x,4+1 = axy, (1 — 2,,), in which a € [0, 4]
and x € [0, 1] [26]. In this equation the state variable at
time n + 1, z,41, obtained from z,,, is reintroduced into
the equation in order to generate a new state. In this
way, we can generate a time series {xg, 1, Z2,...} from a
certain initial condition zg. A system which evolves ruled
by this equation will exhibit a great dynamic diversity,
according to the value of the parameter a: stationary
solutions (fixed points), cycles, aperiodicity (chaos). In
Figure a), we represent a small fragment of a long time
series generated by the logistic map when a = 3.83, we
can see that the dynamic is that of a cycle of period
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Figure 1: (a) Logistic map time series with @ = 3.83 and 200
instants. (b) Recurrence plot for the series in (a). (c) Logistic
map series with a = 4.00 and 200 instants. (d) Recurrence plot
for the series in (c).
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3, that is, {0.505,0.957;0.156;0.505;0.957; ...}. In this
case, the system described by this equation returns to
the same state every three iterations. This return of the
system to a certain state or even a neighborhood of this
state is known as recurrence. A graphic way to see this
recurrence would be to construct the recurrence plot, see
Figure b): in this type of graph, we compare the value
of the variable z at a certain instant ¢ with its value
at another instant j. We repeat the same procedure for
all other points in the analyzed series. Every time the
values of the variables associated with two instants ¢ and
7 are within a small neighborhood ¢ we draw a black
dot in the coordinates (i,j) of a graph i versus j, if the
points are outside this neighborhood, we draw a white
point. We will formally introduce this type of graph into
a future section, but we can already mention some of its
striking features. In Figure b) we notice the regularity
in the spacing between the 45 degree inclined strips, this
is a striking feature in an RP for periodic dynamics. In
Figure C), we show a logistic map series for a = 4.00,
at first glance, the dynamic does not seem to differ much
from stochastic dynamic (Figure a)), but this is only
apparent. The dynamic generated by the logistic map
with a = 4.00 has exceptional characteristics: absence
of cycles (aperiodicity), the dynamics is limited to the
interval [0,1], the dynamic presents sensitivity to the
initial conditions [26]. In this case, we say that the dy-
namic is chaotic. It is interesting to compare the RPs for
the chaotic series with the stochastic one (Figures [I[d)
and b)), we note two very striking differences, the RP
for the chaotic series presents greater recurrence, it also
shows a set of 45 degree inclined strips of various sizes,

Figure 2: (a) Random number time series in the interval [0,1]
with 200 instants. (b) Recurrence plot for the series in (a).
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the so-called diagonal structures. Such characteristics are
not present in stochastic dynamics.

3. The Bovespa Index

The movements of the prices in a stock market reflect
the changes in the business environment of a market or
a sector of a market. These movements can be captured
using stock indices, which express the performance of
the stock prices of a collection of important companies
in a market. The Bovespa index hereafter referred to as
Ibovespa, is the main indicator variable of the Brazilian
stock market [27]. For the analysis of such an index,
represented in this work by I(t), we selected a dataset
with 846,000 successive observations sampled each 30
seconds, from January 2003 to February 2007 (50 months
or 1050 trading days). Figure[3|(a) shows I(t) as a function
on time t. The visual examination of this figure shows us
that I(t) increases for time intervals of about 20 months.
However, we can observe a decreasing behavior of the
index for a shorter time interval, as illustrated in the small
inset. This oscillation is one of the most studied features
of the stock market indices since it is thus important to
know if the index will increase or decrease after a time
interval. This issue is about how much money people
will gain or lose with the change of the stock market
index at a period. A device for measuring changes in
the stock market index is the return of this economic
variable, defined by

(1)

Z(t) =1n [M] ,

1(t)

where Jt is an arbitrary time interval multiple of 30
seconds. In this work we shall use dt = 30s.

A more simplified version of that quantity is the stan-
dard return index, which is defined by

A(t) = ———, (2)

where (Z) and o are the mean value and the standard
deviation of the distribution of Z, respectively. The trans-
formation provides a distribution with mean value
equals zero and standard deviation equals 1. Therefore,
all fluctuations about the mean are measured in units
of . In figure [3(b) are displayed the dependence of the
standard return index z on time ¢ for the data used in

a).

4. Phase Space and Attractor
Reconstruction

The phase space of a dynamical system is a vector space
with f orthogonal axes representing the f independent
variables, or degrees of freedom needed to specify the
instantaneous state of the system. While the time evolves,
this collection of variables merged in a vector state
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time (months)

Figure 3: (a) The Ibovespa I(t) time series from January 2003
to February 2007. (b) Ibovespa standard return z as a function
on time t for 6t = 30s.

Z(t) = (z1(t), z2(t), ...,z s(t)) traces an orbit in this f-
dimensional space. In dissipative systems, the orbits are
attracted asymptotically from a basin of initial condi-
tions to a limiting set of states called attractor. The
volume of an attractor is always zero and its dimension
d typically smaller than the dimension f of the phase
space. Despite these simple characteristics some attrac-
tors can have very intricate structures |28]. A chaotic
attractor, for instance, is a set of states on which the
orbit wanders forever visiting regions of the phase space
in a non-periodic and highly disordered way. Although
the phase space of a dissipative system can be possibly
high dimensional, the dynamics on the attractor is nev-
ertheless low dimensional, in other words, the effective
number of degrees of freedom needed to characterize the
long-term dynamics is relatively small. The low dimen-
sional feature is an advantage since we are particularly
interested in studying the evolution of the attractor of a
dynamical system itself and not the evolution in the full,
high dimensional phase space. Following this idea, we
suppose in this work that all-time series emerge from a
chaotic attractor of a possible high dimensional system,
the stock market itself.

In computer experiments we generally know the vec-
tor state & at each instant of time because we have the
mathematical equations for the time evolution of Z, in
other words, we have a model at hand. However, for
natural experiments, the equations of the system under
investigation is unknown, and consequently, we do not
have access to all components of the vector Z, which can
have thousands of components, but to only one or at

Revista Brasileira de Ensino de Fisica, vol. 41, n® 2, e20180190, 2019

BOVESPA: Stochastic or Deterministic?

most a few components of it. However, such a situation
does not represent, at least in a preliminary investigation,
an obstacle to construct or model the dynamics on the
attractor. Since a single-variable experimental time series
from a system is affected by all of the state variables,
it, therefore, contains some historical information of the
dynamics. It is thus possible in principle to reproduce
the dynamics from a single-variable time series without
reference to other state variables. This single-variable
approach is the central idea of the phase space recon-
struction method. Packard presented this idea [29] from
a purely empirical point of view, but it also has a rig-
orous mathematical basis in the works of Whitney [30],
Takens [31] and Mané [32]. We shall describe it below
empirically by considering the time series of the Ibovespa
standard return z(t) as the single-variable natural time
series obtained from the Brazilian market attractor.

Suppose the single-variable experimental time series
{zn,n =1,...,N, z, R} of N successive points on a d-
dimensional attractor (d < f). In order to reconstruct
the dynamics on the attractor we must transform the
scalar measurements z,, in vector states 5 of a new m-
dimensional phase space. Each vector 5 consists of a
m-tuplet of consecutive values (delayed coordinates) of
the time series.

gi = (2ns Zntry -+ s Zn+(m*1)7)’ 3)

where the delay time 7 is some multiple of the spacing
between successive measurements.

When this set of vectors are graphed (embedded) in the
new m-dimensional space, it can be analyzed as if it were
an orbit of a dynamical system. Though the reconstructed
attractor usually has a different shape of the original one,
it preserves the original dynamical properties provided
we determine an adequate value for m.

If we choose m too small it may happen that the re-
constructed attractor is too folded, that means that two
distant points on the attractor in the original phase space
will overlap each other in the reconstructed space. This
overlapping of points, known as false-neighbors points,
produces errors in the calculation of many dynamical
properties since the calculation are based on the trajec-
tories in the phase space. This overlapping can also be
seen as a self-intersection of the reconstructed orbit at a
given instant of time, which leads clearly to a violation of
the deterministic nature of a trajectory: it is not possible
to have two distinct future states from just one prior
state (or initial condition). To disconnect these false-
neighbors points, the attractor must be represented in
spaces of higher dimensions. According to Takens Theo-
rem, m = 2d+ 1 is a sufficient condition for the attractor
to be completely unfolded [33].

A pictorical example of attractor reconstruction (m =
4, 7 = 1) for the data series of the Ibovespa standart
return z(¢) is presented in figure 4| by means of the
planes (2, zn41) and (2, zn43) (figures ffa) and ff(b),
respectively). The set of points do not resemble a cloud
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Figure 4: (a) Plane (zn, zn4+1) of the reconstructed attractor
from the Ibovespa standard return time series (6t = 30s). (b)
Plane (zn, zn+3) for the same dataset used in (a). (c) Correlation
integral C'(¢) versus the threshold e for m = 2,4,6,10,12,16
and 7 = 1. The arrows near the curve for m = 10 indicate the
limits of the linear scaling. We have used the first 3000 points
of the data set to compute each curve.

(or ball) of uniform scattered points, which is typical for
data emerging from a random source, the set of points
seems to have a strong spatial correlation. The straight
horizontal or vertical lines appearing in Figure [4] are
the results of a new zero return followed by a sharp
increase, or decrease (or vice-versa) in return. These lines
appear for the data collected at the opening and closing
of the stock exchange. In these two times, the volume
of transactions decreases and the Ibovespa variation is
practically non-existent.

According to Takens theorem the required value for the
embedding dimension m is known only if we determine
the attractor dimension d. A good estimation for d is the
correlation dimension d. |34]. To calculate d. we need
first evaluate the correlation integral,

1< -
Ce)= lim = deE-l1E-&l, (@)
i,j=1

€20180190-5

for the reconstructed orbit, N is the number of points
on the attractor, € is a threshold distance, ||...| is the
Euclidean norm and ©(.) is the Heavside step function.
Grassberger and Procaccia established that for small
¢ the correlation C(e) grows like a power, C(g) ~ g%,
and the exponent d. can be taken as a measure of the
dimension of the chaotic attractor [35]. It is clear that the
obtained value for this exponet is affected by the choosed
embedding dimension m, since C(e) itself is a quantity
that depends on the distance between points in the m-
dimensional space. We conclude that if we calculate d.
by increasing m sucessively (m = 1,2,3,...), once the
attractor is fully unfolded d. must cease to modify as
m changes, in other words, d. saturates. We have then
at the same time reached the exact value for d. and
m. On the basis of our assumptions we have estimate
the correlation dimension d. for the Brazilian market
attractor as well as a satisfactory value for m. Fig(c)
presents the result, in this figure we can fairly observe
a range of values of € at which the slope d. (correlation
exponent) is constant, we have used this range to feet the
power law scaling region. We can observe a reasonable
saturation beyond m = 10 (see table), we shall use the
value m = 10 throughout this work. The corresponding
fractional dimension calculated is d. ~ 6.004.

5. Recurrence Plots and Recurrence
Quantification Analysis

We saw that in a chaotic dynamical system the orbit
exhibits bounded, aperiodic and highly erratic behavior.
Though the state variables never return to their previous
values, they may return very close to them. Recurrence
plots (RPs) [36437] provide a graphical representation of
how close an orbit or a reconstructed orbit approaches
or recurs itself, in other words, RPs exhibit the recurring
patterns of a system. Such a graphical representation can
be introduced by the N x N matrix

where 5 € R™ represents a dynamical state in the m—di-
mensional phase space. The RP is thus obtained by as-
signing a black dot, called recurrence point, to a position
of coordinates (i,j) provided that the spatial distance
between the system states at instants n =7 and n = j
is smaller than a distance . The construction of RP

Table 1: Estimate of slope d. for different embedding dimensions, from m = 2 through m = 12. We presume that for m = 10 a

saturation value for d. is attained.

m Estimated slope d.

Standard deviation

Correlation coefficient

2 1.821353 0.005061482 0,9998186
4 3.275242 0.007255244 0.9998524
6 4.465634 0.01414984 0.999734
8 6.285727 0.005242163 0.9988355
10 6.003654 0.004297553 0.9995703
12 6.002467 0.005634016 0, 9999990
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requires the specification of the time delay 7, but for dis-
crete time series such as financial data , 7 = 1 is usually
apropriate. [42] [17].

The recurrence points (black dots) may form two small-
scale structures which contribute to the overall pattern
of the RP: the vertical and diagonal lines. A vertical
line identifies a state which does not change considerably
during an interval of time [38], the length of this interval
is precisely the length of the vertical line. A diagonal line,
represented by any line parallel to the main diagonal,
identifies two similar segments of the trajectory beginning
at different instants of time, the length of a diagonal line
is the interval of time in which those distant segments
remain similar. A priori, diagonal and vertical lines must
not occur in a RP arising from a random time series [41].

Different time series exhibit different RPs; we have
thus a huge number of visual patterns, which depend
on particular details of dynamics. Introduced by Zbilut
and Webber [39H41]/43-45|, the recurrence quantification
analysis (RQA) assigns a group of real numbers to each
RP regardless of its visual appearance. These numbers,
or measures, were mostly based on the statistical analysis
of diagonal structures, but a few years later, further mea-
sures based on vertical structures have been integrated
into this analysis [39]. The set of all measures represents
a clear and sound criterion nowadays for comparison
between RPs from different types of dynamics. Since
RPs and RQA were introduced they have been exten-
sively used in a wide diversity of applications: quantifi-
cation of complex behavior in heart-rate-variability [38]
and electroencephalographic data [47], quantification of
correlation between data from different climatological
phenomena [46]. More recently they were also extended
beyond the domain of time analysis: the quantitative
analysis of spatial disorder or correlation in complex spa-
tial patterns at a fixed time [48}49]. In this work we deal
with four measures, namely the recurrence rate (REC),
the determinism (DET), the entropy (ENT), and the
laminarity (LAM) [38l|431/44].

The simplest measure of the RQA is the recurrence
rate

Lo
REC(e) = el Z R, ;(e), (6)

,j=1

which is a measure of the density of recurrent points in
the RP.

The laminarity is definded as the ratio of recurrence
points forming vertical structures of length v, larger than
VUmin, 10 all recurrence points.

N
2 v=vgn VE(0)
om0 ()
P(v) denotes the histogram of the vertical lines. The

determinism DFET is defined as the ratio of recurrence
points that form diagonal structures of length I, larger

LAM = (7)
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than {,,;,, to all recurrence points (points belonging to
the main diagonal are always excluded), and reads

X, PO
Y, LP(D)

in which P(l) is the histogram of diagonal lines of length
l. Stochastic processes display absence of short diagonals
even for large values of €, whereas deterministic processes
cause longer diagonals and less single, isolated recurrence
points. Another measure based on the length of diagonal
lines is the Shannon entropy of the probability p(l) =
P(l)/N; of finding a diagonal line of length [ in the RP,

DET : (8)

N
ENT =— > p(l)log, p(l), 9)

I=lmin

where N is the total number of diagonal lines. A RP
with large (small) diversity of diagonal lines renders a
high (small) value for ENT, e.g. for uncorrelated noise
the value of ENT is quite small, indicating low diversity
of diagonal lines. The measure ENT is thus inversely
related to the amount of disorder (dynamical complexity)
in the time series under analysis. In the present analysis
we have used [,,,;,, = 3 and v, = 2.

6. RQA for original and shuffled
financial data

The shuffling of a data series does not affect its statistical
distribution, measures like mean, variance and standard
deviation are preserved. On the other hand, the shuffling
affects the ordering of data, measures like correlation
and recurrence are therefore strongly affected: the more
the set is shuffled, the more uncorrelated it becomes.
Since the RP and the measures of RQA are based on the
recurrence, it is thus possible in principle to find out if
a time series has a deterministic or random nature by
shuffling the data and comparing the respective RPs and
the results from RQA for the original afterwards and
shuffled series: if the RPs and the measures from RQA
are different for the original and shuffled data series, we
may suppose there must be a deterministic component
in the original series.

For the RQA analysis, we selected two intervals of the
time series of the standard return index. The intervals
are distant in time and have different degrees of disor-
der, which can be estimated through the average of the
absolute value of returns, < |z| >. In Figs. [f[a) and [5{b)
we present the time series and the corresponding RPs
for the intervals I; = [1;4800] and I = [150001; 154800],
respectively. Whereas Figs. c) and d) were based on
the the shuffled data series of intervals Iy and Is, re-
spectively. For the construction of each RPs, we choosed
e = 1.08, for the RPs of Figs. [f(a) and [f|c) and & = 1.18,
for the RPs of Figs. [5[b) and [5|(d). We selected values
for the cutoff distance e so that REC keeps close to 1%.
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Figure 5: (a) The recurrence plot for the interval [1;4800]. (b) The recurrence plot for the interval [150001; 154800]. (c) Recurrence
plot for the shuffled data corresponding to (a). (d) Recurrence plot for the shuffled data corresponding to (b). All intervals are

obtained from the time series showed in Fig. [3(b).

Although the time series of the standard return index
display highly disordered data, the RPs, on the other
hand, display some interesting large-scale structures or
“clusters” of recurrence points. Such clusters disappear
in the RPs for the shuffled data. The RQA reveals a
large decrease in all four measures when we compare
the original and shuffled data [2} The qualitative and
quantitative analysis shows that the consecutive returns
from the stock market must not be considered a set of
disconnected and random data.

7. Scaling laws arising from diagonal and
vertical lines

The RP for a periodic time series consists of a series
of parallel stripes at 45 degrees, with length decreasing
from the length of the main diagonal line to the length of
the shortest diagonal line at the lower-right corner of the
RP. The vertical distance between two successive stripes
is right the period. Following this idea, it is thus possible
to obtain some information about the periodicity of a
reconstructed orbit from an arbitrary dynamical system
by analyzing the set of vertical blank gaps, also called
recurrence times, in the corresponding RP. The following
process can obtain the set of recurrence times: for each
state ¢ of the horizontal axe we compute the number and
the length of the vertical blank gaps by varying j from 1
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to NV, the number of states of the reconstructed series,
then we equally vary ¢ from 1 to N.

Once the set of recurrence times is obtained, we can
compute the probability p(q) of finding a recurrence time
of length ¢. We computed such a distribution for the
RPs based on the intervals I; and I5 studied in the last
section. The empirical distribution, presented in figure [6]
for both sets of recurrence times, can be exceptionally
well fitted (see straight line) in the full range of ¢ by the
mixed function

p(q) = aq " exp(—q/7). (10)

In an earlier work the authors of the [25] reference, the
authors propose a stretched exponential scaling-law to
describe recurrence events in the case of long-term corre-
lations. This proposition is in agreement with our result
since the index time series long-range correlation. For
interval I; we obtained (a; ;) = (0.187;0.987;478.77),
whereas for interval Iy (o; 8;v) = (0.246;1.093; 549.12).
We could observe that the power law behavior is notice-
able for low values of ¢. Since ¢ is a time interval, we may
conclude it exists a scale invariance, at least for ¢ < 100
or equivalently 3000 seconds, in the set of recurrence
times. Such mixed function p(q) showed to be persistent
throughout the analysis of other intervals of the time se-
ries of Ibovespa returns and also of other time series with
different values of §t. Concerning the question about the
deterministic nature of the times series under analysis,
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Table 2: Measures of RQA based on RPs obtained from intervals I; = [1,4800] and I = [150001, 154800] of the Ibovespa standard
return (6t = 30s).

RQA Original data  Shuffled data A%
%REC 1.18 0.103 —91.27
I %DET 69.67 39.837 —42.82
<|z| >=0.496 %LAM 22.61 4.560 —79.83
ENT 2.889 1.820 —37.00
%REC 1.12 0.055 —95.09
Ip) %DET 73.44 37.868 —48.43
<|z| >=0.578 %LAM 30.92 3.954 —87.21
ENT 3.056 1.803 —41.00
] T |ll|||ll T lllll"l T T |l||“l T T TTTIT07 ] T |||||||I T |||||||| T |||||||| T T rrrrm
17 = [1.4500) Iz.= (150001154801
— curye filing — curye filing
oo - oo —
plg) plg
0,001 -1 0Lco —
(a) f :
]e_m 1 1 IIIIIII 1 1 IIlIlII 1 1 lllllll IB AT ]e_m 1 llllllll 1 llllllll 1 llllllll I N
1 10 (] 10C0 10Co2 1 10 100 10C0 10Cce
q (x 30s) q (x 30¢)

Figure 6: Distribution of the recurrence epochs ¢, with ¢ higher than 2, for the intervals (a) I = [1;4800] and (b) I, =
[150001; 154800] of the Ibovespa standard return (8¢t = 30s). The straight line shows the fitting with the mixed function (equation

10).

we observed that the RPs for the corresponding shuffled
data did not exhibit any recurrence pattern. As a result,
the corresponding distribution of recurrence times must
approximately follow a uniform distribution, and scaling
laws will thus obviously not arise.

Motivated by the obtention of a simple function de-
scribing the distribution of recurrence times, we also
computed the probability p(l) of finding a diagonal line
of length [ from the RPs based on the intervals I; and
I5. These distributions, with length [ larger than 3, are
displayed in figure [l Again, the fitting with a mixed
function,

P(l) = al~? exp(~1/7) (1)

with parameters («; 8;7) = (22767.20;0.419; 3.272) for I
and (a, 8,7) = (26048.4;0.902;4.949) for I, showed to
be remarkably good (see the straight and dashed lines).
However, different from the distribution of recurrence
times, a power law behavior extends only over a very
small range. Moreover, we observe a quite small diversity
of diagonal lines as well as the absence of long ones: the
maximum value is [ & 40, which represents a time interval
of about only 1200 seconds (40 x 30s), in other words, the
longest similar segments of the reconstructed series last
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1200 seconds. As for the corresponding set of vertical lines,
we did not obtain a well-behaved distribution. Because of
this, a fitting with some simple function was not possible.

The distribution of diagonal lines can be useful when
we intend to accomplish a fast computation of the mea-
sures DET and ENT, equations [8[ and El, respectively. A
comparison between both ways of computation of these
two measures is summarised in table [3] We see that the
obtention of DET and ENT by using equation [11]is in
good agreement with the direct counting based on the
RP, see the deviation presented in the last column.

8. Conclusions

This paper aimed to investigate whether there is some de-
terministic behavior ruling the stock market. To do this

Table 3: Comparison between numerical and analytical results
for RQA.

Numerical  Analytical deviation %
I, %DET 69.67 72.40 3.92
ENT 2.889 2.885 0.14
I,  %DET 73.44 69.72 5.06
ENT 3.056 3.039 0.56

DOI: http://dx.doi.org/10.1590/1806-9126-RBEF-2018-0190



Vasconcelos et al.

10000 =il T T T 1T I T T T T T 1713
E o 1p=[14800] .
i — curve fitting for I 7
1000 oI5 =[150001,154800]| o
E curve fitting for Iy 3

100

P(/)

T Illllll

T T
Ll

T
-
Ll

Figure 7: Histogram of diagonal lines with length [ > 3 for
the intervals I; (o) and I> (O). The corresponding fittings
with equation [TT] are also displayed: straight and dashed lines,
respectively.

task, we have hypothesized the existence of a “hidden”
dynamical system controlling a specific stock market,
the Brazilian stock market. We have then applied the
Grassberger-Procaccia method to estimate the dimen-
sion of the attractor of the dynamical system. Different
from data arising from a random source, the correla-
tion integral computed for the dataset from Ibovespa
tend to saturate around an embedding dimension of 10
which leads to a fractal dimension of about 6.004. We
laid a particular emphasis on the method of Recurrence
Plots and Recurrence Quantitative Analysis; the broke
of patterns in the recurrence plots and the decreasing of
the measures from RQA after shuffling the dataset from
Ibovespa support our hypothesis about the existence of
a dynamical system.

We have analyzed the distribution of recurrence times
and diagonal lines from the obtained RPs; both distri-
butions showed to be extremely well fitted by a product
of two essential functions: a power law and an exponen-
tial function. This scaling seems not to depend on any
particular segment of the time series.
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