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This is the fourth paper of a series devoted to mathematically derive the Schrödinger equation using stochastic
constructs. We then show that Quantum Mechanics has a stochastic support by following two paths: we first
present a stochastic derivation already known in the literature and show that it is equivalent to the characteristic
function derivation, made by us in the first paper of this series. However, this approach does not furnish the
true stochastic dynamics of the quantum mechanical system, but only an averaged one. We then present a new
derivation of the Schrödinger equation based on Langevin equations that present all features of a true stochastic
system. These two approaches then improve our understanding of Quantum Mechanics to encompass stochastic
behavior.
Keywords: Langevin equations, Schrödinger equation, Stochastic derivation, Teaching of Quantum Mechanics.

Este é o quarto artigo de uma série dedicada a derivar matematicamente a equação de Schrödinger usando
construtos estocásticos. Nós, então, mostramos que a Mecânica Quântica tem suporte estocástico seguindo dois
caminhos: primeiro apresentamos uma derivação estocástica já conhecida na literatura e mostramos que ela é
equivalente à derivação de função característica, feita por nós no primeiro artigo desta série. No entanto, esta
abordagem não fornece a verdadeira dinâmica estocástica do sistema da mecânica quântica, mas apenas uma
média. Apresentamos então uma nova derivação da equação de Schrödinger baseada nas equações de Langevin
que apresentam todas as características de um verdadeiro sistema estocástico. Essas duas abordagens aprofundam
nossa compreensão da Mecânica Quântica no sentido de abranger o comportamento estocástico.
Palavras-chave: Equações de Langevin, Equação de Schrödinger, Derivação estocástica, Ensino de Mecânica
Quântica.

1. Introduction

This is a paper devoted to show that Quantum Mechan-
ics has a stochastic support, and is conceived as a means
to bring to completion what we have presented in papers
I [1], II [2] and III [3] of this series, which has its fourth
part in this article. This problem of finding a stochastic
support for Quantum Mechanics is not new. Indeed this
search flourished in the early 1950’s [4, 5] and has a great
improvement in the next two decades [6–14], being a field
of investigation up to now.

Indeed, in paper III [3], we showed that the
Schrödinger equation can be derived from the axioms
presented in papers I [1] and II [2], by considering
sums of random variables, which we assumed as being
connected with the momentum variable by making the
sampling over “fibers” on phase space labelled by the
configuration space coordinate q. However, as we have
stressed there, at that point we have no clue whatsoever
of the equation that will provide us with such random
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variables. This, of course, calls for a dynamical equation
that must be different from Newton’s equation, since we
need that the momentum be a random variable, not a
deterministic one.

The usual stochastic derivations of the Schrödinger
equation does not furnish this equation. In fact, as we
will show, these derivations show us why the random
variables do not appear in the Schrödinger equation
(a mean is being taken, as we will see, that washes
out these variables). We then need to search elsewhere
for an equation that deals with random variables, that
connects these variables to the momenta of the phys-
ical system and still recovers all the behavior of any
quantum mechanical system. As we will show, these
equations are the Langevin equations, modelled to give
the appropriate results of usual Quantum Mechanics in
the appropriate limit.

Thus, we have mathematically connected various con-
structs and derivations of the Schrödinger equation,
as shown in Figure 1, but it still remains to show,
in the sense aforementioned that the theory can also
be obtained by a set of equations related to random
variables, that is, that it has a stochastic support.
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e20240234-2 Derivation of the Schrödinger equation IV

Figure 1: The present status of our derivations and their,
mathematically proven, interconnections.

To accomplish that, the paper is organized as follows:
in the second section, we present one of the stochastic
derivations already known in the literature, and show
that this derivation has an immediate formal connection
with the approach based on the characteristic function,
developed in paper I of this series [1]. Then, after
recognizing that the previous derivation cannot furnish
a true random behavior for the physical systems, given
that averages were performed, we show, in section three
that it is possible to introduce a Langevin equation that
gives the correct quantum mechanical description of the
system and also makes it explicit the momentum random
variables which can then be summed up to construct
the probability density function over phase space that
is the one obtained in paper II [2] of this series. This
equation is quite easy to computationally simulate and
we present, in section four and without entering into too
much details, the results of these simulations made for
some concrete quantum mechanical systems. The fifth
section is devoted to our final considerations.

2. Stochastic Average Derivation

One can find many stochastic derivations of the Schrö-
dinger equation in the literature [15, 16]. However,
in this section we will use the stochastic derivation
of de La Peña [16–18], which makes it explicit the
stochastic variables and their properties. We will adapt
de La Peña’s derivation to one dimension as a means
to simplify it, making the didactic transposition of the
approach, and because in this way it is by far a more
direct derivation, and the comparison to what we have
done in paper I [1] is immediate.

Thus, let us begin assuming that the velocity c of the
particle is the sum of a systematic or current velocity v
and a stochastic component u

c = u+ v, (1)

and let us introduce the time inversion operator T̂ . We
now impose (a first axiom) that the velocities transform
under T̂ as

T̂ v = −v; T̂ u = u. (2)

Obviously, it is the random character of the stochastic
velocity that makes it be invariant under time inversion.
On the other hand, the first equality imposes itself since
we want our formalism to imply Newtonian mechanics in
the limit in which stochastic velocities are absent and, in
this case, the velocity must transform as a vector under
time inversion. We thus have

T̂ c = c′ = −v + u, (3)

and thus

v = 1
2 (c− c′) ; u = 1

2 (c+ c′) . (4)

We now need an operator that correlates the position
and velocities (like d/dt in usual Newtonian mechanics).
We thus assume that there exists a distribution of the
changes in the space coordinate

δq = q(t+ δt) − q(t), (5)

occurring in a small time interval δt. Suppose now that
f(q; t) is any smooth function of q and t; we can write

f(q(t+ δt), t+ δt) − f(q(t), t)
δt

≈
[
∂

∂t
+ 1
δt
δq

∂

∂q
+ + 1

2δtδq
2 ∂

2

∂q2 + · · ·
]
f(q(t), t).

(6)

Taking the average of the above expression (average
values with respect to the δq distributions) we find

D̂f (q; t) = lim
δt→0

⟨f (q (t+ δt) , t+ δt) − f (q (t) , t)⟩
δt

=
[
∂

∂t
+ c

∂

∂q
+D

∂2

∂q2 + · · ·
]
f (q; t) , (7)

where c, 2D, . . . stand for the limits of the first-, second-
, . . . order moments of the distribution divided by δt,
and we are identifying c with the components of the
previously introduced velocity c – note that all the
dependence of the equation on δq is now inserted in the
coefficients c, 2D . . .

Note that D̂ → ∂/∂t+c∂/∂q = d/dt in the limit when
D → 0. This operator D̂ gives under time inversion the
result

D̂′f (q; t) = T̂ D̂f (q; t)

= −∂f (q; t)
∂t

+ c′ ∂f (q; t)
∂q

+D′ ∂
2f (q; t)
∂q2 ,

(8)
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and we call D̂ the mean forward derivative operator,
while we call D̂′ the mean backward derivative operator,
since in the limit u → 0, this operator goes into −d/dt.
We end up with

D̂ = ∂

∂t
+ c

∂

∂q
+D

∂2

∂q2 + · · ·

D̂′ = − ∂

∂t
+ c′ ∂

∂q
+D′ ∂

2

∂q2 + · · ·
(9)

and we note that we readily have

D̂q = c; D̂′q = c′, (10)

which implies that

v = 1
2

(
D̂ − D̂′

)
q = D̂cq

u = 1
2

(
D̂ + D̂′

)
q = D̂sq

, (11)

where D̂c is the current derivative operator and D̂s is
the stochastic derivative operator. Using (9) these new
operators may be written as

D̂c = ∂

∂t
+ v

∂

∂q
+D−

∂2

∂q2 + · · ·

D̂s = u
∂

∂q
+D+

∂2

∂q2 + · · ·
, (12)

where D+ = (D +D′) /2 and D− = (D −D′) /2.
We note that D̂sq = 0 in the Newtonian limit, since
Newtonian physics has no stochastic variable.

We now need to introduce a force to build a dynamic
theory. We follow Newton’s prescription and assume
(another axiom) that the acceleration is given by

a = D̂c, (13)

and is calculated as the forward derivative of the general
velocity. This means that we have

a = D̂cv + D̂su+ D̂cu+ D̂sv (14)

that reduces in the Newtonian limit to the known result
a = D̂cv = dv/dt, which is the usual result for the total
acceleration acting on the particle.

Let us consider now only T̂ -invariant forces (those not
depending upon velocities). Since we want to identify
the acceleration a with the total force acting upon our
particle, we must have a as a T̂ -invariant quantity.
However, we have that

D̂′
c = T̂ D̂c = −D̂c; D̂′

s = T̂ D̂s = D̂s, (15)

and thus

T̂ a = D̂cv + D̂su− D̂cu− D̂sv, (16)

which means that

D̂cv + D̂su = a; D̂cu+ D̂sv = 0. (17)

Now, we may identify the total force f with our acceler-
ation a as f = ma. If we put

a = ac + as , (18)

where

ac = Dcv = D2
cq = T̂ ac = a′

c

as = Dsu = D2
sq = T̂ as = a′

s

, (19)

showing that the current changes of u are always
compensated by the changes impressed by the stochastic
motion on v, because of the second equation in (17).

Our last postulate for this approach is given by the
association of the external force with a combination of
current and stochastic accelerations in the form

f0 = m (λ1ac − λas) , (20)

and since the total force is given by f = m (ac + as),
we may write f as a linear combination of the external
force and as. From space time translation symmetry, we
conclude that λ1 and λ must be constants and, since
we search for an equation that reproduces Newtonian
mechanics in the limit as → 0, we must have λ1 = 1
and, thus,

f0 = m (ac − λas) ; f = f0 +m (λ+ 1) as. (21)

Equations (17) and (21) imply that our system is
described by

f0 = m(D̂cv − λD̂su)
D̂cu+ D̂sv = 0

, (22)

and using the operators (12) we may write these equa-
tions more explicitly as

∂v

∂t
+ v

∂v

∂q
+D−

∂2v

∂q2 − λu
∂u

∂q
− λD+

∂2u

∂q2 + · · · = f0/m

∂u

∂t
+ v

∂u

∂q
+D−

∂2u

∂q2 + u
∂v

∂q
+D+

∂2v

∂q2 + · · · = 0
,

(23)
which are our primary equations.

Equations (23) can be written as

∂v

∂t
+ ∂

∂q

[
v2

2 +D−
∂v

∂q
− λ

u2

2 − λD+
∂u

∂q

]
+ · · · = − 1

m

∂V

∂q

∂u

∂t
+ ∂

∂q

[
uv +D−

∂u

∂q
+D+

∂v

∂q

]
+ · · · = 0

, (24)

which is the system of equations that we will show as
equivalent, under some assumptions, to the Schrödinger
equation. In fact, when imposing certain conditions
upon the previous equation to recover the Schrödinger
equation we will get, precisely, the connection between

DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0234 Revista Brasileira de Ensino de Física, vol. 46, e20240234, 2024



e20240234-4 Derivation of the Schrödinger equation IV

the present approach and the characteristic function
derivation of the Schrödinger equation.

Indeed, looking at the equations that lead to the
Schrödinger equation in paper I [1], if we write

v = 1
m

∂S(q; t)
∂q

; u = 2D0
∂ lnR(q; t)

∂q
, (25)

where R (q; t) and S (q; t) are real dimensionless func-
tions of q and t, and put D=0, D+ = D = ℏ/2m, λ = 1,
to get

∂S(q; t)
∂t

+ V (q) + 1
2m

(
∂S

∂q

)2
− ℏ2

2mR
∂2R(q; t)
∂q2 = 0

∂R(q; t)2

∂t
+ ∂

∂q

[
R(q,t)2

m

∂S

∂q

]
= 0

,

(26)
As we have already noted in paper I [1], the two

equations in (26) are equivalent to the Schrödinger
equation if we replace ψ(q; t) by

ψ(q; t) = R(q; t) exp
(
iS(q; t)

ℏ

)
, (27)

and separate into real and imaginary parts.
One of the most important expressions of this section

is (25), which we rewrite here as

u(q; t) = ℏ
m

∂ lnR(q; t)
∂q

= ℏ
2m

∂ ln ρ (q; t)
∂q

= ℏ
2mkB

∂S(q; t)
∂q

, (28)

where we put, as usual, ρ (q; t) = R2(q; t) and wrote
S(q; t) = kB ln ρ(q; t) for the entropy. This last equation
associates the stochastic velocity with the derivative
of the entropy, which is precisely the content of the
fluctuation-dissipation theorem (see [19], pp. 594–597).

2.1. Some qualifications on the derivation

The previous derivation is, at least for its one dimen-
sional representation, quite simple and the relation
between it and the developments of paper I [1] are
immediate. This relation brings about some new under-
standings that were hidden in the characteristic function
derivation of paper I.

Indeed, now we were able to write down explicitly the
stochastic variables of the approach, the stochastic veloc-
ity and acceleration, and furnish their formal expression,
as shown in (28).

Furthermore, this relation also makes explicit the
necessary use of Boltzmann’s entropy, a concept used
in the entropy derivation of the Schrödinger equation,
done in paper II [2].

We thus learn, with the present derivation, that we
were, in all the previous derivations already presented
[1–3] dealing with a stochastic approach, something that

we can say only now, that this feature of the derivation
was mathematically presented.

On the other hand, our previous derivations also
gives us important understandings about the stochastic
derivation so far presented. For instance, we already
know, from paper III [3] and the Central Limit Theorem,
that expression (6), and all the equations that followed
it, are not approximations.

We get those new results at the price of having a more
involved derivation, that used many suppositions as a
means to get to the searched result.

Moreover, equation (6) makes it clear that we are
working within the realm of a stochastic system after
making an average on the dynamical behavior of the
system, something that becomes obvious in all deriva-
tions, in particular in the derivation in paper II [2]
and also in [20, 21]. In any case, we show, once more,
that Bohmian Quantum Mechanics has a statistical
(now stochastic) support and cannot be considered a
deterministic approach to Quantum Mechanics [22].

In fact, the average previously mentioned makes it
difficult to appreciate the explicit stochastic behavior
of the problem and, in fact, this stochastic behavior
is hidden in the Schrödinger equation exactly because
of this average. Thus, the stochastic velocity for a
quantum mechanical system, according to (28), will be a
deterministic function u(q.t), while one would expect, for
a thorough stochastic approach, to find a true random
system with trajectories that are realizations given by
the action of a truly random force.

Such an approach, which is another stochastic deriva-
tion of the Schrödinger equation, is presented in the next
section.

3. Stochastic Langevin Derivation

In this section we will show that it is possible to find
a true stochastic equation for Quantum Mechanics in
the form of a Langevin equation [23]. This result, thus,
complements the one obtained in previous sections,
and also fulfill the necessities of paper III [3], where
we derived the Schrödinger equation using the Central
Limit Theorem without knowing which equation would
furnish the sums of random variables that the theorem
assumes.

Thus, let us begin with a two-dimensional system
(phase-space of a system with one degree of freedom)
for which our proposed Langevin equations are given by

dp(t)
dt

= −γp(t) + ϕ1(q) +
√

Γ22(q)ζ(t)

dq(t)
dt

= 1
mp(t)

, (29)

where the second term on the right hand side of (29)
gives the average behavior of the field subsystem, the
third and first terms give, respectively, the fluctuation
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profile of the phenomenon and the dissipation of such
fluctuations, such that

⟨ζ (t)⟩ = 0;
〈
ζ (t) ζ

(
t

′
)〉

= δ
(
t− t

′
)
. (30)

The first equation in (29) may be solved by the usual
method: over the fiber defined by q we first make the
discretization of the time to find

pn+1 = apn + τϕ1 (q) +
√
τΓ22 (q)ξn, (31)

ζ (t) → 1√
τ
ξn, (32)

such that

⟨ξn⟩ = 0; ⟨ξnξm⟩ = δn,m. (33)

Note that we have not iterated in the variable q; this is
because we are searching for the momentum probability
distribution for each point in the configuration space.
Thus, for each such point q, pn is a random variable that
we can consider using the traditional statistical methods.

This is equivalent to treating the phase-space as a set
of fiber bundles with width δq, centered in each point q
of the configuration space, an approach with which we
are now acquainted. The stochastic variable pn defined
above is being considered within each fiber bundle (see
these arguments in greater detail in paper III [3]).

The sampling of phase-space by momentum fibers
indexed by some configuration space coordinate. In the
ensemble approach: we let our particles to begin at any
point of the phase space and, after some definite time,
given by nτ we make our statistics over the fiber using
the characteristic function given in (37).

Now, iterating (31) we find, for the first iteration

p1 = ap0 + τϕ1(q) +
√
τΓ22(q)ξ0 ;

for the second iteration

p2 = a2p0 + τ [ϕ1 (q) + aϕ1 (q)]

+
[√

τΓ22 (q)ξ1 + a
√
τΓ22 (q)ξ0

]
,

and, in general,

pn+1 = an+1p0 + τ

n∑
ℓ=0

aℓϕ1 (q)

+
√
τ

n∑
ℓ=0

aℓ
√

Γ22 (q)ξn−ℓ. (34)

If we put p0 = 0 for simplicity, we get

pn =
n−1∑
ℓ=0

wℓ, (35)

where wℓ is the random variable

wℓ = τaℓϕ1 (q) +
√
τaℓ
√

Γ22 (q)ξn−ℓ. (36)

Thus, pn is the sum of independent random variables

Zn (q, δq; t) =
〈

exp
(
ipnδq

ℏ

)〉
, (37)

where we note that, because the functions Γ22 are
dependent of q, we must have the same dependence for
the characteristic function Zn. In fact, the averaging
process represented in (37) is explicitly given by

Zn (q, δq; t) =
∫

exp
(
ipnδq

ℏ

)
f (q, pn; t) dpn; (38)

thus, since we write ⟨1⟩ as (38) with δq = 0,

⟨1⟩ = ρ (q) , (39)

and we are supposing that all the variables pk, q have the
same underlying joint probability distribution function
(see the derivation of the Central Limit Theorem in
paper III [3]). Now, (37) may be written as

Zn (q, δq; t) =
∫
exp

(
iδq

ℏ

n−1∑
ℓ=0

wℓ

)
n−1∏
ℓ=0

f (q, wℓ; t) dwℓ,

(40)
which results into

Zn (q, δq; t) = ρ (q)
n−1∏
ℓ=0

〈
exp

(
iwℓδq

ℏ

)〉
wℓ

, (41)

since the wℓ’s are all independent random variables –
note that the averages are now taken with respect to wℓ

and the characteristic function
〈

exp
(

iwℓδq
ℏ

)〉
wℓ

is such
that ⟨1⟩wℓ

= 1. We also note that (remembering that
our averages are now related to wℓ alone)

⟨wℓ⟩ = τaℓϕ1 (q) + aℓ
√
τΓ22 (q) ⟨ξℓ⟩ . (42)

Using (33), we find

⟨wℓ⟩ = τaℓϕ1 (q) . (43)

We also have

w2
ℓ = τ2a2ℓϕ2

1 (q) +2a2ℓτ3/2
√

Γ22 (q)ξℓ + τa2ℓΓ22 (q) ξ2
ℓ ,

(44)
and, thus, 〈

w2
ℓ

〉
= a2ℓτ2ϕ2

1 (q) + τa2ℓΓ22 (q) , (45)

where we used again the results in (33). We may also
calculate

w3
ℓ = τ3a3ℓϕ3

1 (q) + 3a3ℓτ5/2ϕ2
1 (q)

√
Γ22 (q)ξℓ

+ 3τ2a3ℓϕ1 (q) Γ22 (q) ξ2
ℓ + τ3/2a3ℓΓ22 (q)3/2

ξ3
ℓ ,
(46)

and higher orders moments.
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The variance of the random variable wℓ becomes〈
w2

ℓ

〉
− ⟨wℓ⟩2 = τa2ℓΓ22 (q) , (47)

and, thus,〈
exp

(
iwℓδq

ℏ

)〉
wℓ

= exp
{

−τa2ℓΓ22 (q) δq
2

ℏ2

}
exp

(
− i ⟨wℓ⟩ δq

ℏ

)
, (48)

with ϕ1 (q) = ϕ2
1 (q), and we get

Zn (q, δq; τ) = ρ (q) exp
(

−bn (q; τ) δq2

2ℏ2

)
× exp

(
− ipn(q; τ)δq

ℏ

)
, (49)

where

bn (q; τ) = τΓ22 (q)
n−1∑
ℓ=0

a2ℓ, (50)

and

pn (q; τ) = τϕ1 (q)
n−1∑
ℓ=0

aℓ, (51)

where pn is called the average momentum; note that
this nomenclature is appropriate, since ϕ1 (q) is a force
depending upon only the random variable q and τ is a
time, and thus τϕ1 (q) has the dimension of an average
momentum (an impulse), for it could be explicitly
written as

pn (q; τ) ρ (q) =
n−1∑
ℓ=0

∫
τaℓϕ1 (q) f (q, pn; t) dpn

= τϕ1 (q) ρ (q)
n−1∑
ℓ=0

aℓ, (52)

and is usually called (in non-equilibrium kinetic the-
ory) the macroscopic average momentum [39] (see also
paper II [2]).

Expression (49) automatically implies, by inversion of
the Fourier transform, that

f (q, pn; τ) = ρ (q)√
2πbn (q; τ)

exp
{

− [pn − pn (q; τ)]2

2bn (q; τ)

}
,

(53)
where we have already normalized the density f (q, p; t).
Now we may take the limit τ → 0, n → ∞, such that
nτ → t, to find

f (q, p; t) = ρ (q)√
2πb (q; t)

exp
{

− [p− p (q; t)]2

2b (q; t)

}
, (54)

where

b (q; t) = limτ→0 τΓ22 (q)
∑n−1

ℓ=0 a
2ℓ

p (q; t) = ϕ1 (q) limτ→0 τ
∑n−1

ℓ=0 a
ℓ

; (55)

Note, however, that, since (using τ = t/n)

n−1∑
ℓ=0

a2ℓ = 1 − [(1 − γt/n)n]2

1 − (1 − γτ)2 = 1 − [(1 − γt/n)n]2

2γτ − γτ2 ,

(56)
we get

lim
τ→0,n→∞

τΓ22 (q)
n−1∑
ℓ=0

a2ℓ = Γ22 (q)
(

1 − e−2γt

2γ

)
.

(57)
Thus, we may write

b (q; t) = Γ22 (q)
[

1 − e−2γt

2γ

]
p (q; t) = ϕ1 (q)

(
1 − e−γt

γ

) , (58)

and, for large enough times (t → ∞),

b (q) = Γ22 (q)
2γ ; p (q) = ϕ1 (q)

γ
. (59)

With the previous results, we find, for the asymptotic
distributions,

f (q, p; t) = ρ (q)√
2πb (q)

exp
{

− [p− p (q; t)]2

2b (q)

}
, (60)

as the joint probability distribution related with the
Langevin system of equations (29).

Note that, for higher order moments, we get results
such as

n∑
ℓ=0

〈
w3

ℓ

〉
= ϕ3

1 (q) τ3
n∑

ℓ=0
a3ℓ + 3τ2ϕ1 (q) Γ22 (q)

n∑
ℓ=0

a3ℓ

=
[
ϕ3

1 (q) τ3 + 3τ2ϕ1 (q) Γ22 (q)
]

· 1 − exp(−3γt)
−3γτ + 3γ2τ2 + γ3τ3 , (61)

which goes to zero as τ → 0, the same happening to
orders higher than three. This means that the expression
for the characteristic function Z(q, δq; t) using only up
to second order in δq is not an approximation. This
is the very expression of the CLT, rephrased using
the Langevin equation and the justification for the
characteristic function derivation.

We still have to solve the second equation in (29) to
find the probability densities ρ (q), but since we have
the unknown (up to this point) function Γ22 (q) that
depends upon q and that participates in this equation
because of the term p (t), this cannot be done in the
same straightforward manner as we have done with the
variable p. In fact, this is exactly the point at which
Quantum Mechanics enters.

The result (60) shows that, for each point q of the con-
figuration space, the momentum probability distribution
is of the Gaussian type—as we have already obtained
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from other considerations regarding the Central Limit
Theorem, or those of the previous section.

The similarities of the present derivation of (60) and
those of the previous papers [1–3] are obvious, but we
can bring them together as a means of making explicit
the function Γ22(q) and, thus, being capable of making
real simulations of actual physical systems.

Let us compare the result (60) with the one we
obtained in section two for the joint probability density
of any quantum system. From such a comparison it
becomes quite obvious that, to simulate the quantum
mechanical results with the system of equations (29) we
must make the identification

Γ22 (q) = γ(δp2) = −γℏ2

4m
∂2 ln ρ (q)

∂q2 ; p (q; t) = ∂S (q)
∂q

,

(62)
where both ρ (q) = R2 (q) and S (q) come from the
solution of the Schrödinger equation with

ψ (q) = R (q) exp
(
iS(q)
ℏ

)
. (63)

Because of these identifications, the first Langevin
equation becomes an expression in which the mean-
square deviation of p, given by√

[δp (q, t)]2 =

√
− ℏ2

4m
∂2 ln ρ (q)

∂q2 , (64)

enters as a true random force, because of the ξℓ. Thus,
the relation with the Bohmian “quantum potential”
becomes clear: Bohm’s equation is an equation for aver-
age values (such as p(q, t)) and the “quantum potential”
does not appear as a true random force.

In the next section we present the result of simulations
of the Langevin equations to two concrete physical sys-
tems: the one dimensional Harmonic Oscillator and the
one dimensional Morse potential. We also show, for the
Harmonic Oscillator example, the relation between the
results of the simulation of the Langevin equations (29)
and Bohm’s equation.

4. Examples

Langevin equations are quite easy to computationally
simulate. We then present, in what follows, some results
regarding concrete quantum mechanical systems just
as a means to show the adequacy of the approach.
The reader interested in the various details of these
simulations should see [18, 23].

4.1. The Harmonic Oscillator

The quantum mechanical problem is defined by the
potential

V (q) = 1
2mω

2q2, (65)

Figure 2: The results for the probability density function on
configuration space for the Harmonic Oscillator problem for the
first three excited states n = 1, 2, 3. The continuous curve is
the theoretical one coming from the solution of the Schrödinger
equation.

Figure 3: Comparison between Bohm’s trajectory for constant
energy, equal probability curves of the phase space probability
density function and the filling of the phase space made by
simulating the corresponding Langevin equations.

with probability amplitudes given by

ψ(q) =
(mω
ℏπ2

)1/4 1√
n!2n

exp
(

−mωq2

2ℏ

)
Hn

(√
mω

ℏ
q

)
,

(66)

where Hn is the Hermite polynomial. We make m = ℏ =
ω = 1 and perform the computational simulations to get
the results shown in Figure 2.

These simulations were made considering a single
particle system randomly moving on phase space. One
can also make the ensemble simulation of these equations
to get equivalent results. We also can plot a comparison
between the same energy curves coming from Bohm’s
potential, the equal probability curves coming from the
phase space probability density function, as we made in
paper II, but now compared with the filling of the phase
space coming from the dynamical Langevin equations.
The result is shown in Figure 3 for the first two excited
states of the Harmonic Oscillator.

4.2. The Morse Oscillator

For the quantum mechanical problem of the Morse
Oscillator, we have the potential function

V (q) = D

2 [exp(−β(q − q0)) − 1]2, (67)
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with wave functions given by

ψn(y) = e−
√

Dy(2
√
Dy)n−

√
D+1/2L2n+1−2

√
D

n

(
2
√
Dy
)
,

(68)

where q = 2
√
Dy and Lm

n (q) are the Laguerre associated
functions. We made our single system simulations for
D = 16 and for the quantum numbers n = 4, 5, 6, 7
whose states are represented in Figure 4 (note that the
last state is very close to the line of positive energy,
meaning that it is easy for it to spontaneously ionize).

The probability density functions upon configuration
space are shown in Figure 5 and show a very good fit to
the theoretical ones.

These simulations are but a few examples. The
reader can simulate the Langevin equations of Quantum
Mechanics for whatever physical system of interest.

Figure 4: Energy states of the Morse Oscillator with D = 16.

Figure 5: Probability density functions in configuration space for
four levels of the Morse oscillator with D = 16. The continuous
line is the theoretical curve coming from the solution of the
Schrödinger equation.

5. Final Considerations

In paper III [3] we end the paper regretting that we
had proved the Central Limit Theorem, but we did that
without having any clue of the process by which the
sum of random variables were performed, nor where they
come from.

The approach using the Langevin equations to show
that they reproduce all the results of Quantum Mechan-
ics shows that these Langevin equations are the source
of these random variables and sums of them.

In the process to show that, we needed to look “inside”
the characteristic function, as defined together with the
series of random variables, which brought us quite close
to the mathematical techniques used to demonstrate
that the Central Limit Theorem is a crucial part of the
Quantum Mechanical formalism.

This paper, thus, connects the previous derivations
of the Schrödinger equation to the stochastic one and
we now have our demonstration scheme as shown in
Figure 6.

Finding the Langevin equations for Quantum Mechan-
ics gives the theory a structure similar to its classi-
cal counterpart. In Classical Mechanics we have two
definitions for the state of a Newtonian system: the
point-like phase space pair of coordinates (q(t), p(t))
and the statistical phase space probability density func-
tion, given by F (q, p, t) and satisfying the Liouville
theorem. If we find a Langevin equation for Quantum
Mechanics, we will also have a point-like phase space
pair of coordinates (q(t), p(t)) for each realization of
the quantum mechanical system, and a phase-space
probability density function, given by F (q, p, t) defined
to the quantum realm.

We then come to the end of our journey into (some)
derivations of the Schrödinger equation. The attentive
reader may then ask if the approach is able to derive the
relativistic extension of the theory, based on the Klein-
Gordon equation. To this question we must answer in

Figure 6: State of the art regarding derivations of the
Schrödinger equation.
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the affirmative, since there is no option for an axiomatic
approach. Another possible extension of the approach
would be the attempt to encompass non Hamiltonian
forces, such as those related to dissipative forces. In
future papers we will show that both these extensions
come naturally from the derivations we have made so far.

Pointing to didactic extensions, we reinforce the rel-
evance of absorb the type of discussion in this paper
for teaching Quantum Mechanics in undergraduate and
postgraduate courses. Alternative formulations, which
nevertheless preserve in-depth understanding of a theory
essential to the understanding of contemporary physics,
are decidedly fundamental in processes of didactic
transposition. These ventures that favor teaching in a
critical, careful and creative way, aiming at meaningful
learning, are fundamental to fields of knowledge that
are still rare in curricula and teaching materials and
that integrate considerable theoretical and mathematical
abstractions. Similar efforts were made in discussions
such as those found in previous papers [1–3, 24–31],
which are complementary and illustrative of the didactic
interest expressed here.
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