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In this paper, we present a mathematical derivation of the Schrödinger equation departing from only two axioms.
We also show that, using this formal derivation process, it is possible to directly derive the Schrödinger equation
in generalized curvilinear coordinate systems. This derivation is also shown to be equivalent to Feynman’s path
integral approach, but goes further, allowing us to mathematically derive the Bohr-Sommerfeld quantization rules.
The use of a small parameter, both in the present derivation, where it is δr, and Feynman’s derivation, where it is
ϵ = δt, is also clarified in terms of the Central Limit Theorem. Therefore, the article makes a didactic transposition
of the topic of quantization, allowing it to be addressed in the context of teaching Quantum Mechanics. The
epistemological importance of axiomatic approaches for the mathematical derivation and the interpretation of
the symbols of the theory is also considered.
Keywords: Schrödinger equation, mathematical derivation, characteristic function.

Neste artigo, apresentamos uma derivação matemática da equação de Schrödinger partindo de apenas dois
axiomas. Mostramos também que, utilizando este processo de derivação formal, é possível derivar diretamente
a equação de Schrödinger em sistemas de coordenadas curvilíneas generalizadas. Esta derivação também se
mostra equivalente à abordagem de integrais de trajetória de Feynman, mas vai além, permitindo-nos derivar
matematicamente as regras de quantização de Bohr-Sommerfeld. O uso de um parâmetro pequeno, tanto na
presente derivação, em que aparece como δr, quanto na derivação de Feynman, em que aparece como ϵ = δt,
também é esclarecido em termos do Teorema do Limite Central. O artigo faz, pois, uma transposição didática do
tema da quantização, permitindo que seja abordado no contexto do ensino de Mecânica Quântica. A importância
epistemológica de abordagens axiomáticas para a derivação matemática e a interpretação dos símbolos da teoria
também é tratada.
Palavras-chave: Equação de Schrödinger, derivação matemática, função característica.

1. Introduction

The history of the birth of Quantum Mechanics based
upon the Schrödinger equation is already well known.
It came from a sequence of works of Erwin Schrödinger
made in the end of 1925 and published in 1926. It is
also known that the process by which this equation was
obtained was based on the identification

p → p̂ = −iℏ ∂

∂x
, x → x̂ = x, (1)

in which the classical functions x and p are taken into
the quantum mechanical operators x̂ and p̂, respectively,
and used, together with the classical Hamiltonian H, to
make the identification

H = p2

2m + V (x) → Ĥ = p̂2

2m + V (x), (2)

such that one gets the equation(
−ℏ2

2m
∂2

∂x2 + V (x)
)
ψ(x, t) = iℏ

∂ψ(x, t)
∂t

, (3)

*Endereço de correspondência: marcellof@unb.br

in which there appears a new function ψ(x, t), named
wave function. Historically, the interpretation of the
wave function immediately became the subject of many
debates and discussions [1], up to the appearance of
the presentation of the first interpretation of Quantum
Mechanics, called the Copenhagen Interpretation [2].

An early version of the Copenhagen Interpretation1

was presented in the Solvay Congress in 1927. Even after
that, the interpretation of this function remained (and
remains) being the source of dispute among different
interpretations of QM, as one can see, for example, from
the Hidden Variables Interpretation, suggested by David
Bohm [4, 5], the Statistical Interpretation, suggested
by Leslie Ballentine [6], the Stochastic Interpretation
[7–10] presented by many authors, and the Many Worlds
Interpretation, introduced by Hugh Everett [11, 12], to
cite but a few.

We call the process of mathematical derivation of the
Schrödinger equation, or some heuristic approach to get

1 Since, presently, one may say that nowadays there are many such
interpretations that assume slightly different constructs [3].
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e20240183-2 Derivation of the Schrödinger equation I

it, “quantization”, despite the fact that term “quantiza-
tion” may refer to a broader class of approaches. Some
problems appear from the heuristic manner in which
the equation was postulated by Schrödinger. Indeed,
the quantization in generalized coordinates, for instance,
cannot be performed in a direct way. It is known that
it is necessary to first make the quantization in Carte-
sian coordinates to, after that, proceed to the passage
(based on the operators) to the curvilinear coordinate
system desired. This, obviously, is a relevant theoretical
problem (despite not being a practical one), since such
a fundamental process such as the quantization cannot
depend upon the choice of the (arbitrary) coordinate
system representation. This problem was tackled on the
literature without, however, presenting cogent results
[13–15]. The previous heuristic approach is the one
presented in physics books, being them on a more
didactic level or an advanced one.

However, since its proposition, the Schrödinger equa-
tion has already received many mathematical deriva-
tions, under some diverse perspectives. Important
among these are the stochastic derivations [7], which
presented a boom in publications in the decades of 1950
and 1960, and are still a lively field of investigation [16].
This is so because when one derives the Schrödinger
equation from a, supposedly, more fundamental principle
and/or equation, there can be suggested important
results regarding the interpretation of the whole theory.
In fact, as it will become clear from the derivation we
present in what follows, the very interpretation of the
function ψ becomes quite direct and obvious, since it is
inherited from the equations used in the axioms. This
symbolic heritage process is, thus, of a fundamental
epistemological value.

Two of such mathematical derivations of the
Schrödinger equation were developed in [17–19], depart-
ing from first principles. These mathematical derivations
have the peculiarity of being axiomatic (and depend-
ing upon only two axioms), besides being very math-
ematically straightforward. Beyond the mathematical
perspective, important by itself, these mathematical
demonstrations introduce epistemological issues, given
the way by which they are performed, allowing the
teacher to address the field of Quantum Mechanics in a
different way even in introductory courses – a possibility
that is normally not utilized in such courses, that end
up being too mathematical, and functioning as mere
manuals [20] for the non-initiated.

Didactic transposition [21] is, in essence, an engineer-
ing process for creating a teaching object. Its operation
presupposes the conversion of basic knowledge, from a
scientific modality (called “wise knowledge”), to that of
clear academic incursion (admitted as “taught knowl-
edge”), having as a mediator what is conventionally
defined as “knowing how to teach”, that is, the one that
usually appears in books or teaching manuals. In a strict
sense, it is an instructional design tool.

It is widely known in the community of physicists that
Schrödinger’s equation is a model development (appro-
priately, an interpretation) of Quantum Mechanics for a
system (atoms, molecules and subatomic particles – free,
bound or localized) that admits electronic behavior as of
wave nature. As a result, the solution of such modeling
is capable of producing a set of wave functions (or, in
more pertinent terms, state functions), each associated
with an electron binding energetic level. It is, therefore,
a linear partial differential equation that describes the
variation of the quantum state of a physical system as a
function of time [22, 23].

It can be seen, from this succinct – and, we could
say, relatively crude – definition, that there are several
knowledges (definitions, concepts and operators) that
come from the field of production of scientific knowledge,
admit a didactic conversion into a formal compilation of
the theory and its developments and ultimately enables
transposition to didactic situations of interest. Here,
succinctly, by deriving Schrödinger’s equation by just
two axioms and demonstrating that it is possible to do
so directly in generalized curvilinear coordinate systems,
the equivalence between Feynman’s trajectory integral
approach, as well as enables the mathematical demon-
stration of the Bohr-Sommerfeld quantization rules. The
calibration of parameters, algebraic manipulation and
the use of differential and integral calculation attest to
the seminal scientific character of the approach which,
in its ultimate consequences, based on the mathemati-
cal operations and physical elucidations made, become
viable as an object of didactic transposition, such as
objectified.

The objective of this paper, thus, is to present one
of these derivations, called the characteristic function
derivation, and show the mathematical developments
that can be achieved with it. This will be done in the
next section. In section 3, we will show how the presented
axiomatic approach can be used to make a direct
quantization in any coordinate system, in a complete
formal way (that is, by writing the axioms in the desired
coordinate system and making the same mathematical
operations used in the derivation in Cartesian coordi-
nates). In the fourth section we will show how this
mathematical derivation allows one to mathematically
derive the Bohr-Sommerfeld quantization rules. The fifth
section is devoted to show how this quantization method
is connected to Feynman’s path integral approach. In the
sixth section we present our conclusions. In continuation
papers, we aim at presenting other mathematical deriva-
tions of the Schrödinger equation and the relations that
they have with the one here developed, showing that
they are all mathematically interconnected.

2. Characteristic Function Derivation

We begin our axiomatization of Quantum Mechan-
ics by presenting the axioms and showing that they,
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alone, allow us to mathematically derive the Schrödinger
equation.

Axiom 1 The characteristic function of the phase-space
probability density function F (q, p; t), defined by

Z (q, δq; t) =
∫ +∞

−∞
F (q, p; t) eipδq/ℓdp, (4)

where ℓ is a universal parameter with dimensions of
angular momentum, is such that it can be written as

Z (q, δq; t) = ψ∗
(
q − δq

2 ; t
)
ψ

(
q + δq

2 ; t
)
, (5)

and should be expanded up to second order in the
parameter δq.

Axiom 2 For an isolated system, the joint phase-space
probability density function related to any Quantum
Mechanical phenomenon obeys the Fourier transformed
Liouville equation∫

exp
(
i
pδq

ℓ

)
dF (q, p; t)

dt
= 0. (6)

The derivative in (6) may be written as

dF (q, p; t)
dt

= ∂F

∂t
+ p

m

∂F

∂q
− ∂V

∂q

∂F

∂p
= 0, (7)

where it is already assumed that the underlying forces
may be written as the gradient of a potential function.
We now apply transformation (4) to this last equation
and use the fact that F (q, p; t) is a probability density
function to put{

F (q, p; t) eipδq/ℓ
}p=+∞

p=−∞
= 0, (8)

to arrive at the equation for the characteristic function
(without the assumption 5)

− ℓ2

m

∂2Z

∂q∂ (δq) + δq
∂V

∂q
Z = iℓ

∂Z

∂t
, (9)

that is the differential equation for the characteristic
function Z (q, δq; t).

We can now use Axiom 2 and write the function
Z (q, δq; t) in terms of the functions ψ (q; t) as in (5) and
expand it up to second order. Thus, putting

ψ (q; t) = R (q; t) eiS(q;t)/ℓ, (10)

since ψ (q; t) is, in general, a complex function, we get
the result

Z (q, δq; t) =
{
R2 +

(
δq

2

)2
[
R (q; t) ∂

2R

∂q2 −
(
∂R

∂q

)2
]}

× exp
(
iδq

ℓ

∂S

∂q

)
(11)

Now we put expression (11) into (9) and separate the
real and imaginary terms to find equations

∂R2

∂t
+ ∂

∂q

[
R(q; t)2

m

∂S (q, t)
∂q

]
= 0 (12)

and

i
δq

ℓ

∂

∂q

[
∂S

∂t
+ 1

2m

(
∂S

∂q

)2
+ V (q) − ℓ2

2mR
∂2R

∂q2

]
= 0.

(13)
The first equation may be identified as a continuity

equation, precisely by the kind of semantic inheritance
to which we have already referred. Indeed, since we have
written the characteristic function as in (5) and also put
ψ as in (10), we immediately find that

R (q; t)2 = lim
δq→0

Z (q, δq; t)

= ψ∗ (q; t)ψ (q; t) =
∫ +∞

−∞
F (q, p; t) dp (14)

which must be a probability density function defined
upon configuration space, since F (q, p; t) is a probability
density function defined upon phase space—this means
that ψ (q; t) must be a probability amplitude, an inter-
pretation inherited from the axioms. It is also easy to
show that

R(q; t)2

m

∂S (q, t)
∂q

= − iℓ

m
lim

δq→0

∂Z (q, δq; t)
∂ (δq)

=
∫ +∞

−∞

p

m
F (q, p; t) dp, (15)

which gives equation (12) its unambiguous interpreta-
tion as a continuity equation. The second equation has
a derivation with respect to q and thus may be written
as

∂S

∂t
+ 1

2m

(
∂S

∂q

)2
+V (q)− ℓ2

2mR (q; t)
∂2R

∂q2 = f(t), (16)

in which the function f(t) is arbitrary. Since we can
redefine S (q; t) as

S
′
(q; t) = S (q; t) +

∫ t

0
f
(
t

′
)
dt

′

to cancel out the right hand side of the previous
equation, we may just consider that f(t) = 0 without
loss of generality.

However, equations (16) with f(t) = 0 and (12) are
fully equivalent to the Schrödinger equation

− ℏ2

2m
∂2ψ

∂q2 + V (q)ψ (q; t) = iℏ
∂ψ (q; t)
∂t

, (17)

since, if we replace the definition (10) in (17) and collect
the real and imaginary terms (and make ℓ = ℏ to

DOI: https://doi.org/10.1590/1806-9126-RBEF-2024-0183 Revista Brasileira de Ensino de Física, vol. 46, e20240183, 2024



e20240183-4 Derivation of the Schrödinger equation I

“discover” the value of our universal parameter2), we
also arrive at the same results (12) and (16).

This is the complete derivation and it does not depend
upon any kind of abstruse mathematics, although the
nature of the expansion up to second order must still be
clarified. Indeed, it is well-known that when one assumes
that the characteristic function should be written up
to second order, then the Central Limit Theorem is
in place, which is something that can be shown using
this approach [24]. Thus, this derivation implies that
Quantum Mechanics obeys the Central Limit Theorem.

3. Quantization in Spherical
Coordinates: An Example

It is really awful that to quantize a system (to write down
its Schrödinger equation) according to some orthogonal
curvilinear coordinate system, for instance, one has to
first write down its Schrödinger equation in Cartesian
coordinates and then change to the desired orthogonal
system in the quantum mechanical “side”.

This would imply the embarrassing conclusion that all
the formalism depends upon a coordinate system, which
is preposterous. There had been trials in the literature
to overcome these difficulties[25, 26], but even these
approaches are permeated with additional suppositions
as in [13–15], where the author has to postulate that the
total quantum-mechanical momentum operator pqi cor-
responding to the generalized coordinate qi is given by

pqi
= −iℏ ∂

∂qi
(18)

and where one also has to write the kinetic energy term
of the classical Hamiltonian as

H = 1
2m

∑
ik

p∗
qi
gikpqk

. (19)

These approaches seem rather unsatisfactory for we
would like to derive our results using only first principles,
without having to add more postulates to the theory.

On the other hand, if we do have an axiomatic
approach, since every formal aspect of the theory should
be contained in the axioms (or else they are not a
complete set of axioms), the problem of quantization
in generalized curvilinear orthogonal coordinate systems
must also be contained in the axioms in such a way
that, having written the axioms in the desired coordinate
system, one must find the Schrödinger equation in this
same coordinate system. This is an imposition (and in
fact quite a strong one, as we will see) upon the set of
axioms. For the sake of clarity and simplicity, we show
in what follows an example on quantization in spherical

2 One should remember that no mathematical derivation process
can simply “find” the universal parameter of a theory. A similar
situation can be found in Gravitation (where G is experimentally
obtained) or in Electromagnetism.

coordinates that can be generalized to any coordinate
system[17, 27, 28]. We begin rewriting our two axioms
in the appropriate coordinate system as:

Axiom 1 The characteristic function, defined as

Z (r⃗, δr⃗; t) =
∫ +∞

−∞
F (r, θ,ϕ,pr, pθ, pϕ; t) eip⃗·δr⃗/ℏd3p,

(20)
is such that it can be written as

Z (r⃗, δr⃗; t) = ψ∗
(
r⃗ − δr⃗

2 ; t
)
ψ

(
r⃗ + δr⃗

2 ; t
)
, (21)

and should be expanded up to second order in δr⃗.

Axiom 2 For an isolated system, the joint phase-space
probability density function obeys the integrated Liouville
equation∫

exp
(
i
p⃗ · δr⃗
ℏ

)
dF (r, θ,ϕ,pr, pθ, pϕ; t)

dt
= 0 . (22)

From these axioms, all the previous calculations pro-
ceed in the same fashion, with the usual complications
introduced by the non Cartesian coordinate system.
Thus, the classical Hamiltonian in spherical coordinates
is given by

H = 1
2m

(
p2

r + p2
θ

r2 +
p2

ϕ

r2sin2θ

)
+ V (r⃗) , (23)

and the Liouville equation becomes

∂F

∂t
+ pr

m

∂F

∂r
+ pθ

mr2
∂F

∂θ
+ pϕ

mr2sin2θ

∂F

∂ϕ

−

(
∂V

∂r
− p2

θ

mr3 −
p2

ϕ

mr3sin2θ

)
∂F

∂pr

+
p2

ϕ

mr2sin2θ
cotθ ∂F

∂pθ
= 0. (24)

Now, the Fourier transformation in (20) can be easily
constructed3. Note that we have

δr⃗ = δrr̂ + rδθθ̂ + r sin θδϕϕ̂, (25)

where
(
r̂, θ̂, ϕ̂

)
are the unit normal vectors, and

p⃗ = pr r̂ + pθ

r
θ̂ + pϕ

r sin θ ϕ̂, (26)

giving

p⃗·δr⃗ = prδr + pθδθ + pϕδϕ, (27)

3 We provide, in the appendix, a Maple program that performs
each important (and involved) calculation of this section.
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which is a general feature of what is called Mathieu’s
transformations ([29]), that form a subset of the canon-
ical transformations. Indeed, point transformations are
a particular case of Mathieu’s transformations.

The relations between the momenta in Cartesian and
spherical coordinates are given by

px = pr sin θ cosϕ+ pθ

r
cos θ cosϕ− pϕ

r

sinϕ
sin θ

py = pr sin θ sinϕ+ pθ

r
cos θ sinϕ+ pϕ

r

cosϕ
sin θ

pz = pr cos θ − pθ

r
sin θ

, (28)

and the Jacobian relating the two volume elements is
given by

dpxdpydpz = ∥J∥pdprdpθdpϕ, (29)

and thus, since point transformations are canonical and
the phase space volume element does not change, we
have

∥J∥p = 1
r2 sin θ . (30)

With results (27) and (30) we may write

Z (r⃗, δr⃗; t) =
∫
F (r⃗, p⃗; t)

× exp
[
i

ℏ
(prδr + pθδθ + pϕδϕ)

]
dprdpθdpϕ

r2 sin θ . (31)

We now impose this transformation upon the Liouville
equation (24) and use Axiom 1 to find the equation for
the characteristic function as

− ℏ2

m

[
1
r2

∂

∂r

(
r2 ∂Z

∂ (δr)

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ ∂Z

∂ (δθ)

)
+ 1
r2sin2θ

∂2Z

∂ϕ∂ (δϕ)

]
+ ℏ2

m

[
δr

r3
∂2Z

∂(δθ)2

+ δr

r3sin2θ

∂2Z

∂(δϕ)2 + δθcotθ
r2sin2θ

∂2Z

∂(δϕ)2

]

+ δr
∂V

∂r
Z = iℏ

∂Z

∂t
. (32)

To proceed with the calculations we must now write
Z in spherical coordinates. We know that it must be
written in Cartesian coordinates as

Z
(
R⃗, δr⃗; t

)
=

R2 + R

4

3∑
i,j=1

δxiδxJ
∂2R

∂xi∂xJ

− 1
4

3∑
i,j=1

δxiδxJ
∂R

∂xi

∂R

∂xJ


× exp

[
i

ℏ

(
δx
∂S

∂x
+ δy

∂S

∂y
+ δz

∂S

∂z

)]
,

(33)

where we used the fact that the ψ (r⃗; t) can be written
as in (10). We now use the fact that

∂x = sin θ cosϕ∂r + 1
r

cos θ cosϕ∂θ − 1
r

sinϕ
sin θ ∂ϕ

∂y = sin θ sinϕ∂r + 1
r

cos θ sinϕ∂θ + 1
r

sinϕ
sin θ ∂ϕ

∂y = cosθ∂r − 1
r

sin θ∂θ

, (34)

where ∂u is an abbreviation for ∂/∂u. Thus, in spherical
coordinates, the characteristic function becomes (up to
second order in δr, δθ and δϕ)

Z (r⃗, δr⃗; t) =
{
R2 + R

4

[
δr2 ∂

2R

∂r2 + δθ2
(
∂2R

∂θ2 + r
∂R

∂r

)
+ δϕ2

(
∂2R

∂ϕ2 + rsin2θ
∂R

∂r
+cosθ sin θ∂R

∂θ

)
+ 2δrδθ

(
∂2R

∂r∂θ
− 1
r

∂R

∂θ

)
+ 2rδϕ

(
∂2R

∂r∂ϕ
− 1
r

∂R

∂ϕ

)
+ 2δθδϕ

(
∂2R

∂θ∂ϕ
− cotθ∂R

∂ϕ

)]
− 1

4

[
δr2
(
∂R

∂r

)2
+ δθ2

r2

(
∂R

∂θ

)2

+ δϕ2

r2sin2θ

(
∂R

∂ϕ

)2
+ 2δrδθ

r

∂R

∂r

∂R

∂θ

+ 2 δrδϕ
r sin θ

∂R

∂r

∂R

∂ϕ
+ 2 δθδϕ

r2 sin θ
∂R

∂θ

∂R

∂ϕ

]}

× exp
[
i

ℏ

(
δr
∂S

∂r
+ δθ

∂S

∂θ
+ δϕ

∂S

∂ϕ

)]
.

(35)

Substituting this expression into (32) and collecting
zeroth and first order terms in δr, δθ, and δϕ, we find
the following two equations (four, if we consider their
scallar counterparts)

δr⃗· ∂
∂r⃗

[
∂S

∂t
+ 1

2m (∇S)2 + V (r) − ℏ2

2mR∇2R

]
= 0

(36)
and

∂R2

∂t
+ ∇·

(
R2

m
∇S
)

= 0, (37)

all written in spherical coordinates (the gradient, the
divergent, and the Laplacian differential operators). It
is then possible to show that we have the equivalence of
these two last equations with the Schrödinger equation
given by

− ℏ2

2m∇2ψ (r⃗, t) + V (r)ψ (r⃗, t) = iℏ
∂ψ (r⃗, t)
∂t

, (38)
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e20240183-6 Derivation of the Schrödinger equation I

also written in spherical coordinates. To see this, one
needs only to write the last equation in spherical coor-
dinates, write

ψ = R (r⃗, t) exp
(
i

ℏ
S (r⃗, t)

)
, (39)

substitute this result in the pervious equation and
subtract the overall expression from the one coming
from (36). This ends our derivation. This procedure,
developed for spherical coordinates, can be generalized
to any coordinate system[17, 18].

It is important to note here the non-trivial algebraic
relations involved in the preceeding derivation. Equa-
tion (32) is already very complicated and the substi-
tution in it of the extremely complicated expression
(35) turns the problem into a very long and intricate
(although direct) algebraic problem (see appendix A).

It would be an extravagance to believe that the
fact that the derivation was successful in this case
(and all cases related to other coordinate systems) is
simply a matter of coincidence. Our confidence in the
derivation method and the axioms should increase with
the success of this application. When we work out, in
a future section, the connection of this derivation with
Feynman’s path integral approach, it is expected that
this confidence will also be increased.

4. Connection to Bohr-Sommerfeld
Rules

We have the definition of the characteristic function as
given by (4) and also the imposition that it must be
written as a product of the type shown in (5). Since
the characteristic function is a Fourier Transformation
of the probability density defined upon phase space, if
it is a product, then the probability density must be
a convolution – this is just the convolution theorem of
Fourier transforms. We thus write

F (q, p; t) =
∫ +∞

−∞
ϕ∗
(
q, 2p− p

′
; t
)
ϕ
(
q, p

′
; t
)
dp

′
,

(40)
where ϕ is some phase-space probability amplitude. In
this case it is easy to show that the integration in (4)
leads to

Z (q, δq; t) = F {ϕ∗ (q, p; t)}F {ϕ (q, p; t)} ,

as desired, so that F {ϕ} represents the Fourier transfor-
mation of ϕ with respect to p.

Now writing (look at the factor two in the denomina-
tor)

ψ

(
q + δq

2 ; t
)

= F {ϕ (q, p; t)}

=
∫

exp
(
i

2ℏpδq
)
ϕ (q, p; t) dp, (41)

such that

ψ∗
(
q − δq

2 ; t
)

= F {ϕ∗ (q, p; t)}

=
∫

exp
(
i

2ℏpδq
)
ϕ∗ (q, p; t) dp, (42)

we reach the expression in (5). Thus, the constraint (5)
is mathematically equivalent to assume the previous
form for F (q, p; t), and thus, the mathematical form for
ψ (q; t) in terms of δq/2.

From results (41) and (42) it is very easy to mathemat-
ically derive the Bohr-Sommerfeld rules. Consider that
we are interested in translating the amplitude ψ (q; t) in
configuration space from the point q to the point q+ ∆q
by infinitesimal transformations. In expression (41) we
can see that the kernel of the infinitesimal transforma-
tion is given by

Kp(q) (q + δq, q) = exp
(
i

ℏ
p (q) δq

)
, (43)

and we write explicitly the dependence of p (q) on
variable q to make it clear that we are on a trajectory of
the system4. The finite transformation

ψ (q; t) →ψ (q + ∆q)

would imply in the kernel

ψ (q + ∆q; t) =
∫
Kp (q + ∆q, q)ϕ (q, p; t) dp,

such that (the arguments here are quite similar to those
of Feynman in his path integral approach[30]:

Kp (q + ∆q, q)
= lim

N→∞
ΠN

n−1Kp(q+(n−1)δq) (q + nδq, q + (n− 1) δq) ,

where we put Nδq = ∆q and take the limit N→∞, since
∆q is a finite interval and δq is infinitesimal. Using (43)
we find that this last expression can be written as

Kp (q + ∆q, q) = exp
(
i

ℏ
lim

N→∞

N∑
n=0

p (q + nδq) δq
)
.

The sum in the exponent is clearly an integral taken
along the trajectory of the particle and we end up with

Kp (q + ∆q, q) = exp
(
i

ℏ

∫ q+∆q

q

p (q) dq
)
.

If ∆q assesses a symmetry of the problem (q+ ∆q can
be equal to q for rotations by 2π, for instance) we must
impose that

ψ (q + ∆q; t) = ±ψ (q; t) , (44)

4 If one is distressed by the notion of trajectory, look at Feynman’s
approach, to be considered in the next section.
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where the ± sign comes from the fact that ψ (q; t) is an
amplitude, and the physically important quantity is the
density, which allows both signs. Since we can now write

ψ (q + ∆q; t) =
∫

exp
(
i

ℏ

∫ q+∆q

q

p (q) dq
)
ϕ (q, p; t) dp,

we obey (44) if we put

exp
(
i

ℏ

∫ q+∆q

q

p (q) dq
)

= ±1 .

This last expression immediately implies that∫ q+∆q

q

p (q) dq

=
{

2nπℏ = nh if Kp= +1
2nπℏ + πℏ =

(
n+ 1

2
)
h if Kp= −1 , (45)

which is the expression for the Bohr-Sommerfeld rules,
with the difference that, from the mathematical deriva-
tion, we also find the possibility of half-integral numbers.

This was never predicted in the historical development
of the theory and is usually considered as a flaw,
since there are a number of situations in which half-
integral quantum numbers are necessary [31]. Obviously,
this theory can neither assess results related to the
probability amplitudes, such as those related to inten-
sities, nor problems without symmetries – except in an
approximate way.

However, given the derivation process, relations (45)
cannot be considered a “mere approximation” for sys-
tems showing some kind of symmetry, although it may
be assumed as a first approximation (semiclassical is the
usual word) for systems in which there is no available
symmetry. As with the Feynman approach (that we will
soon present), the integrals (45) give the most or least
probable trajectories of the system’s particles, and, thus,
they also furnish the points at which one should expect
maxima or minima for the probability density.

5. Connections with Feynman’s Path
Integral Approach

In this section we are interested in showing that our
approach towards the establishment of the Bohr- Som-
merfeld conditions is fully equivalent with Feynman’s
path integral method (only slight modifications would
be necessary)[17, 27, 30].

On the other hand, Feynman’s approach already has a
very nice interpretation in terms of displacements and it
points in the direction of randomness (without making
it explicit–we will return to this point in what follows).
Moreover, in Feynman’s interpretation there appears
also a quantity (usually written as ε) representing
“infinitesimal amounts of time”, which is equivalent to
disregarding second order terms in ε.

We begin by writing

pδq = p
δq

δt
δt,

and we put q̇ = δq/δt. This means that q̇ represents the
velocity taken over the same trajectory, since in general
we would have

δq = ∆q + q̇δt,

where ∆q is the separation between two distinct trajec-
tories (which we made equal to zero). We must have

∆
∫ t2

t1

pq̇dt = ∆
∫ q(t2)

q(t1)
pdq = 0,

which is an expression for the Principle of Least Action.
We may now use

q̇p = L (q, q̇; t) − E,

where L (q, q̇; t) is the classical Lagrangian function and
E is the energy (supposed constant) of the system under
consideration. Our expression (41) becomes

ψ

(
q

(
t+ δt

2

))
=
∫

exp
[
i

2ℏ (L (q, q̇; t) − E) δt
]

× ϕ (q, p; t) J
(
p

q̇

)
dq̇, (46)

where J (p/q̇) is the Jacobian of the transformation
(q, p) → (q, q̇).

The kernel of the infinitesimal (in time) transforma-
tion in (46) is given by

Kq̇(t) (t+ δt, t) = J

(
p(t)
q̇(t)

)
exp

[
i

2ℏ (L (q, q̇; t) − E) δt
]
,

such that the transformation between two different times
ta = 0 and tb = t may be written as

Kq̇(t) (tb, ta)

= lim
N→∞

N∏
n=1

Kq̇(t+(n−1)δt) (t+ nδt, t+ (n− 1) δt) ,

where Nδt = tb − ta, making it necessary to take the
limit N→∞, since δt is infinitesimal. We may thus write
[tn = t+ (n− 1) δt]

Kq̇(t) (tb, ta) =
[

lim
N→∞

N∏
n=1

J

(
p (tn)
q̇ (tn)

)]

× exp
[
i

ℏ
lim

N→∞

∑
[L (q (tn) , q̇ (tn) ; t) − E] δt

]
.

In the appropriate limit we get

Kq̇(t) (tb, ta) = A

× exp
[
i

ℏ

∫ tb

ta

[L (q (tn) , q̇ (tn) ; t)] dt− i

ℏ
E (tb − ta)

]
,
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where we put

A = lim
N→∞

N∏
n=1

J

(
p (tn)
q̇ (tn)

)
.

Since the classical action is given by

Scl [tb, ta] =
∫ tb

ta

L (q, q̇; t) dt

we finally get the desired result

Kq̇(t) (tb, ta) = A exp
[
i

ℏ
Scl [ta, tb] − i

ℏ
E (tb − ta)

]
,

which is the expression for the kernel of Feynman’s path
integral approach. Note that the Feynman approach
furnishes the amplitudes and is an alternative approach
to the Schrödinger equation.

6. Final Considerations

In this paper we have presented a direct mathematical
method to derive the Schrödinger equation based upon
only two axioms. The non-trivial aspect of this deriva-
tion was confirmed by the example on the quantization
in curvilinear coordinate systems, of which we presented
the spherical one.

We have also used this derivation to show that
the Bohr-Sommerfeld rules are its direct formal conse-
quence. This should be used to improve our understand-
ing of the role played by these rules in the quantum
mechanical formalism, instead of considering it just
a matter of coincidence – a rather impressive one, if
we also consider their generalization to the relativistic
realm, from which one gets, for instance, the correct
fine structure spectral lines of the Hydrogen atom. The
statement, usually made, that this approach cannot deal
with the harmonic oscillator, because it misses the ℏω/2
term is avoided in the present approach, since, as we have
shown, this term can be present (although the approach
itself does not furnish a way to decide when it should be
present). These results contradict the notion that there
is an “old” quantum theory in opposition to a “new”
one. In fact, they show that the Born-Sommerfeld rules
(for systems with exact symmetries) are carved into the
deep mathematical structure of the quantum mechanical
formalism.

Finally, we have also shown that the characteristic
function derivation is completely equivalent to Feyn-
man’s path integral approach, with the difference that
it is taken on the phase-space, with a Hamiltonian
function, not upon the configuration space, using a
Lagrangian function, as it is with Feynman’s.

The didactic relevance of the present approach is two
folded. First, it is quite direct and straightforward (at
least in the Cartesian coordinate system) and allows
one to address important interpretation issues that were

the source of many discussions when the Schrödinger
equation was proposed. Secondly, it puts some usual
statements easily found in the literature in a new
and different perspective, based on sound mathematical
reasons, and not only on superficial thinking. Indeed,
this approach can be used in any introductory course
about Quantum Mechanics. This is the basis of the
perspective of didactic transposition as we announced
in the theoretical construction of the research problem.

At this point we may ask ourselves if there are other
derivations of the Schrödinger equation (quantization
methods) that can be made equivalent to the present
one. Being them based upon different physical quan-
tities, they can form together a sound basis for the
interpretation of the theory, to cite but an important
possibility. We leave this task to future papers on the
subject.
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