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Elementary Solution of Kepler Problem
(and a few other problems)
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We present a simple method to obtain the solution of a few orbital problems: the Kepler problem, the modified
Kepler problem by the addition of an inverse square potential and linear force.
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1. Introduction

There is a handful of non trivial problems in classical
mechanics one can solve exactly, such as the one-
dimensional harmonic oscillator (1dHO) and the Kepler
problem[1–9]. The latter one, that is, to find the orbit of
a point mass under the action of a inverse square force,
is particularly important for its historical role as well as
applications in celestial mechanics.

Besides their important applications in the real world,
these problems also serve as theoretical playground
where one can apply different methods an techniques,
with varying degrees of sophistication, as can be easily
learned from analytical mechanics books [10, 11].

In this note we present yet another solution by means
of a very simple trick, using minimal technical back-
ground, avoiding cumbersome manipulations or involved
mathematical calculations, making the approach suit-
able for beginners.

Initially we solve the 1dHO as a way to illustrate the
method. Then we move to the Kepler problem, followed
by the study of the Kepler problem modified by the
addition of a 1/r2 potential and, at the end we discuss
the orbit of a point mass under a quadratic potential
which is, surprisingly, a bit more involved than the
Kepler problem.

2. Warmup Problem: 1d Harmonic
Oscillator

Consider a 1d harmonic oscillator, a point mass m
attached to a spring of constant k. This is a conservative
system and we know its total mechanical energy, E, is
conserved and is given by

E = m

2 ẋ
2 + k

2x
2. (1)
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We can rewrite equation (1) as

(√
m

2E ẋ
)2

+
(√

k

2Ex
)2

= 1. (2)

Whenever the sum of the squares of two real quantities
adds up to 1 we can parametrize them by trigonometric
functions, namely, we can write each term as√

m

2E ẋ = sinφ, (3)√
k

2Ex = cosφ. (4)

where φ is a function of time, to be determined. Taking
the time derivative of equation (4) and using equa-
tion (3), we obtain√

k

2E ẋ = −φ̇ sinφ = −φ̇
√

m

2E ẋ, (5)

which implies

φ̇ = −
√
k

m
= −ω, (6)

where we introduced ω =
√
k/m. Therefore φ = −ωt+

φ0 and the solutions for x is

x =
√

2E
k

cos(ωt− φ0). (7)

This is the complete solution of the 1d harmonic oscil-
lator. Notice that the amplitude is already expressed
in terms of the total energy of the system. The only
adjustable parameter is the phase φ0, which can always
be set to zero, by demanding our clock starts at the
moment the particle is most distant from the origin.
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3. The Kepler Problem

Explaining the motion of celestial bodies, in particular
the orbits of comets and planets in the solar system, is
one of the greatest triumphs of Newtonian mechanics.
This is a problem that deserves to be studied carefully
and from as many different angles as possible.

Let us treat the Kepler problem, that is, the motion
of a point particle of mass m orbiting a planet of mass
M under the central potential V (r) = −GMm/r.

Initially, we note that the angular momentum ~L =
~r × ~p is conserved for central forces, for

d

dt
~L = d

dt
~r × ~p+ ~r × d

dt
~p = ~v × ~p+ ~r × ~F = 0 (8)

since the velocity ~v is parallel to the momentum ~p and
the position vector ~r is parallel to the central force ~F =
F (r)r̂. This general fact implies that the motion of a
particle under a central force takes place in a plane.

We can, therefore, use polar coordinates to describe
the motion of the planet, with ~r = rr̂, and its velocity
~v = ṙr̂ + rθ̇θ̂. Therefore, the (conserved) mechanical
energy E is given by

E = 1
2mv

2 + V (r) = 1
2m(ṙ2 + r2θ̇2)− GMm

r
. (9)

The angular momentum is given by ~L = ~r × ~p =
mr2θ̇ẑ = Lẑ, where L = mr2θ̇ is a constant. Using that
θ̇ = L/mr2, the energy can be written as

E = 1
2mṙ

2 + L2

2mr2 −
GMm

r
. (10)

We complete the squares, obtaining

E = m

2 ṙ
2 + L2

2m

(
1
r
− GMm2

L2

)2

− G2M2m3

2L2 . (11)

Introducing K ≡ E +G2M2m3/2L2, we have

K =
(√

m

2 ṙ
)2

+
(

L√
2m

(
1
r
− GMm2

L2

))2

. (12)

Since K is the sum of two squares, it is a positive
constant, unless ṙ = 0 and 1/r = GMm2/L2, which cor-
responds to circular orbits. Therefore we can rewrite (12)
as(√

m

2K ṙ

)2

+
(

L√
2mK

(
1
r
− GMm2

L2

))2

= 1. (13)

Equation (13) allows us to write each of the squared
terms as √

m

2K ṙ = sinφ, (14)

L√
2mK

(
1
r
− GMm2

L2

)
= cosφ (15)

where φ is a function of time, to be determined. Taking
the time derivative of the second expression in equa-
tion (15) and equation (14), we obtain

ṙ

r2 =
√

2mK
L

φ̇ sinφ = m

L
φ̇ṙ, (16)

implying L = mr2φ̇. But since L = mr2θ̇, we conclude
that φ = θ + φ0. Without loss of generality we can take
φ0 = 0, and solve for r in equation (15),

r = p

1 + e cos θ , (17)

where p = L2/GMm2 and e =
√

2L2K/G2M2m3 is the
eccentricity of the orbit. For completeness, we show that
this is the equation of conic sections in polar coordinates.

We can rewrite equation (17) as

r + er cos θ = p, (18)

which implies √
x2 + y2 + ex = p. (19)

From this we readily derive that

x2
(

1− e2

e2

)
+ 2p

e
x+ y2

e2 = p2

e2 , (20)

that is, for e < 1 it is an ellipse, for e = 1 a parabola
and for e > 1 a hyperbole.

4. The Kepler Problem as a Harmonic
Oscillator

We can rewrite Equation (12) in such a way that we see
a direct connection with the one dimensional harmonic
oscillator. Using L = mr2θ̇ is a constant, we have

K = L2

L2

(√
m

2 ṙ
)2

+
(

L√
2m

(
1
r
− GMm2

L2

))2

=
(
L

√
m

2
1

mr2θ̇
ṙ

)2

+
(

L√
2m

(
1
r
− GMm2

L2

))2

=
(

L√
2m

1
r2
dr

dθ

)2
+
(

L√
2m

(
1
r
− GMm2

L2

))2

.

(21)

Finally, introducing u = 1/r, we have(
du

dθ

)2
+
(
u− GMm2

L2

)2

= 2mK
L2 , (22)

which is quadratic in u and u̇, being, formally, the
same energy function as the one-dimensional harmonic
oscillator.
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5. A Related Problem

Careful observations of the orbit of Mercury revealed
it not to be an ellipse, as expected from a simple
model of spherical celestial bodies [12]. During it’s
orbit, Mercury’s perihelion, the point nearest to the
sun, precesses by a small amount. This led the french
mathematician Urbain Le Verrier to conjecture the
existence of a small planet, Vulcan, as it was called, with
an orbit between Mercury and the sun. A first correction
to the gravitational potential is proportional to 1/r2. We
can use the same method to solve this problem, namely,
consider the potential

V (r) = −GMm

r
+ α

r2 (23)

where α is a constant. In this case, the mechanical energy
is given by

E = 1
2mṙ

2+ L2

2mr2−
GMm

r
+ α

r2 = 1
2mṙ

2+ L̃2

2mr2−
GMm

r
(24)

where L̃2 = L2 + 2mα. Following the calculations in
section 3, in particular, equation (16) we find L̃ = mr2φ̇,
and therefore

L

(
1 + 2mα

L2

)1/2
= mr2φ̇ (25)

from which we derive φ = θ
√

1 + 2mα/L2, that is, the
angular variable θ is multiplied by a constant, which
depends on the total angular momentum. The solution
is, similarly to the Kepler problem,

r = p

1 + e cos(θ
√

1 + 2mα/L2)
(26)

where p = L̃2/GMm2 and e =
√

2L̃2K/G2M2m3,
with K ≡ E + G2M2m3/2L̃2 is the excentricity
of the orbit. Notice that the perihelion happens at
θn

√
1 + 2mα/L2 = 2nπ, n = 0, 1, . . .. The angu-

lar separation between two perihelions is ∆θn =
2π/

√
1 + 2mα/L2, which shows the perihelion preces-

sion explicitly.

6. Orbit Under Linear Force

We can use the same technique to solve the problem of
the orbit of a point mass m under the influence of a
linear force, that is, a quadratic potential. The energy is
given by

E = 1
2mṙ

2 + 1
2mr

2θ̇2 + 1
2kr

2, (27)

where k > 0. The case k < 0 can be dealt in the
same way or even obtained by taking k → −k in the

final result. Since this is a central potential, the angular
momentum L = mr2θ̇ is conserved, and we have

E = 1
2mṙ

2 + L2

2mr2 + 1
2kr

2 (28)

We can complete the squares, like in the previous
examples,

E = 1
2mṙ

2 + L2

2mr2 + 1
2kr

2

= 1
2mṙ

2 +
(

L√
2m

1
r
±
√
k

2 r
)2

∓ L
√
k

m
. (29)

Introducing ω =
√
k/m and K± = E ± Lω, we have

(√
m

2K±
ṙ

)2
+
(

L√
2mK±

1
r
±

√
k

2K±
r

)2

= 1. (30)

We can, therefore, write the terms inside the parentheses
as sinφ± and cosφ±, where φ± is a function yet to be
determined, √

m

2K±
ṙ = sinφ±; (31)

L√
2mK±

1
r
±

√
k

2K±
r = cosφ±. (32)

Taking the time derivative of the second equation and
using the first equation, we obtain

− L√
2mK±

1
r2 ṙ ±

√
k

2K±
ṙ

= −φ̇± sinφ± = −φ̇±

√
m

2K±
ṙ, (33)

that is,

− L

mr2 ± ω = −φ̇±. (34)

Using L = mr2θ̇ and integrating, we obtain

φ± = θ ∓ ωt± α± (35)

where α± are integration constants. We can choose θ = 0
at t = 0. Moreover, we can also choose θ = 0 as the
point in the orbit when ṙ = 0 (closest or farthest from
the center of force), which corresponds to φ± = 0. All
this together implies we can take α± = 0 with the
appropriate choice of coordinates and initial moment.

After some slightly tedious but straightforward alge-
bra, we find

r2
± = 2L2ω2 + (E2 − L2ω2)(sin2 2θ ± sin2 2θ)

2Ek + 2k
√
E2 − L2ω2 cos 2θ

. (36)
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Let us analyze the solutions, starting with r+,

r2
+ = L2ω2 + (E2 − L2ω2) sin2 2θ

k(E +
√
E2 − L2ω2 cos 2θ)

= 1
k

(E −
√
E2 − L2ω2 cos 2θ). (37)

Plugging Equation (37) in the energy expression for the
linear orbit does not give a constant, therefore being a
spurious solution which must be discarded.

A simpler way to convince oneself that Equation (37)
is not a solution of our problem is by noticing a peculiar
behaviour, namely, for E > 3Lω, the curvature at θ =
0, say, is negative, contradicting the fact that this is a
central force: the motion can not be ‘curved’ towards
outside the trajectory. One qualitative way to see that
is by inspecting the formal case L = 0. Here the polar
equation describes two circles tangent at the origin, in
an ‘8-shaped’ figure. Increasing L it is natural to expect
the negative curvature effect.

This leaves us with the ‘minus’ solution for the
physical motion of the particle

r(θ) = Lω√
Ek +

√
E2 − L2ω2k cos 2θ

. (38)

7. Conclusions

We obtained the complete solutions of the 1d harmonic
oscillator and the central potential problems that depend
on the radial coordinate as 1/r, 1/r2 and r2, using
minimal technical background. The parameters of the
solutions expressed directly in terms of the physical
quantities, such as energy and angular momentum. We
hope students, specially beginners, find this an appealing
approach to such beautiful problems.
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