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Isaac Newton’s early documents on circular motion: can
the dynamic reasoning in the “Principia” be found in

them?
Os documentos iniciais de Isaac Newton sobre o movimento circular: O raciocínio dinâmico no “Principia”

pode ser achado neles?
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Some historians claim that Isaac Newton had already formulated the categories in the Principia twenty years
earlier. This is based on two extant documents (1664–1665 and 1669). Derek Whiteside claims that second order
differentials are essential categories in the book, and that Newton had not yet mastered them in the 1660s. Isaac
Bernard Cohen states a desideratum: “I am certain it was Hooke’s method of analyzing curved motion that
set Newton on the right track”. I show that differentials in the early documents are introduced by geometric
arguments, lacking dynamic meaning; however in hindsight can a dynamic meaning be recognized in them. The
drawing of an orbit in a letter from Newton to Hooke on December 13, 1679 indicates the breakthrough toward
the Principia: I argue that the orbit was drawn by Hooke’s method, which proves Cohen’s desideratum.
Keywords: Mechanic orbits, Hooke’s method to draw orbits, Newton’s treatment of motion under central forces.

Alguns historiadores consideram que Isaac Newton formulou as categorias no Principia, vinte anos antes. Isso
é baseado em dois documentos (1664–1665 e 1669). Derek Whiteside considera que diferenciais de segunda ordem
são essenciais às categorias no livro e que Newton ainda não os dominava nos anos 1660. Isaac Bernard Cohen
formula um desiderato: “Eu estou certo que foi o método de Hooke para analizar curvas que colocou Newton nos
trilhos corretos”. Neste artigo, mostro que os diferenciais nos documentos iniciais são introduzidos por argumentos
geométricos, dos quais argumentos dinâmicos estão ausentes; entretanto, uma leitura em retrospecto, anacrônica,
pode enxergar conteúdos dinâmicos nesses diferenciais. O desenho de uma órbita em uma carta de Newton para
Hooke datada de 13 de dezembro de 1679 revela a inspiração levando ao Principia: Argumento que a órbita foi
feita usando o método de Hooke, o que demonstra o desiderato de Cohen.
Palavras-chave: Órbitas mecânicas, Método de Hooke para desenhar órbitas, O tratamento de movimentos sob
forças centrais feito por Newton.

1. Introduction

In two manuscripts written, respectively, c. 1664–1665
and c. 1669 (at most 1671), Isaac Newton made two
calculations of the “conatus recedendi à centro”, as he
called the tendency of bodies in rotation to move away
from the center of rotation. These calculations led many
scholars to claim that as early as the 1660s Newton had
already developed the dynamic concepts later found
in the Philosophiæ Naturalis Principia Mathematica.
Newton himself might have helped to spread this belief:
in order to emphasize his priority on the law of gravity,
he placed this discovery some twenty years earlier [1]1;
in this context, he also mentions some “method of
curvature” for drawing orbits [2]. Isaac Bernard Cohen

*Correspondence email address: penha@if.ufrj.br
1 Cohen shows that Newton’s reasoning leading to the law of
gravitation invokes the third law, which is first stated in De
Motu Corporum in medijs regulariter cedentibus, a draft of the
Principia.

and Derek Thomas Whiteside oppose these claims. Their
criticisms disclose the conceptual background on which
the earlier documents should be analyzed; these are: a
geometry of second order differentials and a method to
draw curves.

Whiteside recognizes that second order geometric dif-
ferentials are the essential mathematical tools on which
Newton develops his dynamic thinking in the Principia
([3], p. 108):

[. . .] the continuous growth during the period
1664–84 of Newton’s expertise with the var-
ious orders of the infinitely small was a
significant conditioning factor on the effec-
tive expression and forceful pursuance of his
dynamical research.

Then he observes that Newton did not have these tools
in the 1660s ([3], p. 110):

[. . .] I am not sure [Newton] could then
[in 1665] have differentiated successfully
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between the various orders of the infinitely
small which are involved.

Bernard Cohen [1, 4] argues that the method to draw
orbits in proposition 1 in the Principia is identical to
the method presented to Newton by Robert Hooke in a
letter on November 24, 1679. In the letter, Hooke invites
Newton to comment on the following problem ([5],
v.2, p. 297): “[. . .] compounding the celestiall motions
of the planetts of a direct motion by the tangent &
an attractive motion towards the centrall body [. . .]”;
Newton answered on November 28, 1679 that he had
never heard about the method. Bernard Cohen makes
the conjecture ([1], p. 169):

The exact progression of Newton’s ideas in
the time between his correspondence with
Hooke and the completion of the first draft
of De Motu is not documented. Nevertheless,
I am certain it was Hooke’s method of ana-
lyzing curved motion that set Newton on the
right track.

Later, in A Guide, Cohen states ([6], p. 77):

What Hooke did for Newton, therefore, was
not to tell him how to analyze curved motion
into components, but rather to reverse the
direction of his concept of displacement in
orbital motion, to shift from an outward to
an inward displacement.

This change of mind is motivated by a reconstruction
of an orbit drawn by Newton in a letter to Hooke
(December 13, 1679); it has been claimed by Michael
Nauenberg [7], Bruce Brackenridge [8] and Brackenridge
and Nauenberg [9] that Newton used some “method of
curvature” to draw it, not Hooke’s method. Nevertheless,
Bernard Cohen does not seem to have been entirely
convinced, and keeps a guarded opinion on the “method
of curvature” (A Guide, in [6], p. 75, n. 85):

[t]his reconstruction explains a number of
aspects of the development of Newton’s
thought but does have some gaps. For exam-
ple, Nauenberg must assume that docu-
ments some years apart refer to the identical
methods.

In this paper, I analyze the early documents according
to the categories disclosed by Whiteside and Cohen.
In Sect. 2, I investigate the role of second order differen-
tials in Newton’s Principia: they are geometric entities
that appear in curves generated by points in motion,
and are distances moved in (virtual) dynamic motions.
The same structure is also found in the De Motu, the
draft of the Principia (Sect. 3)2. The early manuscripts

2 The story of how Newton came to write the Principia has
been told in many places [1, 4, 10]; it is traced back to Edmond

are discussed in Sect. 4: I show that those manuscripts
fit in a conceptual framework, different from the one
in the book, as observed by Cohen; furthermore, New-
ton does not investigate in them (dynamic) processes
by which mechanic curves are generated. In Sect. 5,
I answer the question in the title; it is impossible not to
be sympathetic to Whiteside’s and Cohen’s respective
claims. However — with the benefit of hindsight — the
calculations in the documents can be made consistent
with dynamic results; perhaps Newton is in the way
to his mature work, but some essential piece is still
missing: this is the piece that made possible to Newton to
associate the infinitesimal segments in the static curves
in the early documents with the dynamic differentials
in the Principia. The missing piece is discussed in
Sect. 6: it is the same curve in the December 13 letter.
Hermann Erlichson [13] makes a hermeneutic analysis of
the letter: by taking Newton at his own words, Erlichson
reproduces the construction of the curve; but he does
not comment that the reconstruction reproduces Hooke’s
method. Erlichson’s reconstruction show that the letter
would be the documentary evidence that Cohen thought
to be non existent. That the curve was drawn by Hooke’s
method is enhanced by numerical computation: P. M.
Cardozo Dias and T.J. Stuchi [14] translated Hooke’s
method and the “method of curvature” in the language
of numerical computation, and compared their solutions
with the solution found using a more precise method of
computation; Hooke’s is the solution closest to the curve
in the letter. Cohen’s contention that Hooke’s method
“set Newton on the right track” gains strong support3.

2. The Mature Work: the Foundations of
a Mechanic Orbit

In the introduction to the first edition of the Principia,
Newton defines mathematical principles of natural phi-
losophy (translation in [8], p. 230–231):

[. . .] the description of straight lines and cir-
cles, on which geometry is founded, belongs

Halley’s visit to Newton in August 1684. In his Introduction to
the ‘Principia’ [11], Bernard Cohen reconstructs the development
of Newton’s ideas on dynamics from the various manuscripts to
the copy to the printer, as well modifications in the editions. He
lists the following manuscripts: several versions of the tract De
Motu; two fragments, De Motu Corporum in medijs regulariter
cedentibus ([10], pp. 188–194; [12], pp. 304–308) and De Motu
Corporum: definitiones ([10], pp. 92–96; [12], pp. 315–317); the
Lucasian Lectures, ([11], p. 61) “closely resembling the manuscript
[. . .] used for printing the Principia [. . .]”, composed of a set of
manuscripts that Cohen ([11], p. 85) reconstructs as De Motu
Corporum Liber Primus. The manuscript written between Halley’s
two visits is called “The original De Motu” by Whiteside ([10],
pp. 30–74); it is the document “De Motu Corporum in Gyrum”,
in John Herivel’s edition ([12], pp. 257–274).
3 The whole argument is better stated as “overwhelmingly
probable” that Newton used Hooke’s method. As it is going to
be shown, Newton did not draw the whole curve, but only a
small part where various integration methods coincide. However,
together with other evidences presented in this paper, the adverb
‘overwhelmingly’ is justified.
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to Mechanics. Geometry does not teach
the drawing of these lines, but requires it.
For it requires that the beginner learn to
describe these accurately before he reaches
the threshold of Geometry; then it teaches
how problems may be solved through these
operations. To describe straight lines and
circles are problems, but not geometric
ones. The solution of these is required from
Mechanics; the use of the solutions is taught
in Geometry. [. . .]. Therefore Geometry is
founded on mechanical practice and is noth-
ing else than that part of universal Mechan-
ics that proposes and demonstrates the art of
measuring accurately. But since the manual
arts are chiefly employed in the moving of
bodies, it happens that Geometry commonly
refers to their magnitudes, and Mechanics to
their motion. In this sense rational Mechan-
ics will be the science of motions that result
from any forces whatsoever, and also of
the forces required to produce any motions,
accurately proposed and demonstrated. [. . .].
I offer this work as the mathematical prin-
ciples of philosophy. For the whole burden
of philosophy seems to consist in this: from
the phenomena of motions to investigate the
forces of nature, and them from these forces
to demonstrate the other phenomena; [. . .]

In other words, “[. . .] geometrical objects [are conceived]
as generated by mechanical devices. Most notably,
curves are generated by tracing mechanisms” ([2], p. 15).
Colin MacLaurin recognizes in the separation of these
two methods, the geometric and the mechanic, the foun-
dations of Newton’s “method of fluxion” ([15], p. 1–2):

In the method of indivisibles, lines were
conceived to be made up of points, surfaces
of lines, and solids of surfaces; [. . .]. But
as this doctrine was inconsistent with the
strict principles of geometry [. . .] others in
the place of indivisible, substituted infinitely
small divisible elements, of which they sup-
posed all magnitudes to be formed [. . .].
There were some, however, who disliked the
making much use of infinites and infinites-
imals in geometry. Of this number was Sir
Isaac Newton [. . .]. In demonstrating the
grounds of the method of fluxion, he avoided
them, establishing it in a way more agreeable
to the strictness of geometry. He considered
magnitudes as generated by a flux or motion
[. . .].

In Book I of the Principia are given the foundations
of the mechanic geometry of central orbits:

• Identification of second order differentials in orbits
drawn by moving points. This is made in lemma 9,

lemma 10 and its corollary 4, lemma 11 and its
corollary 3.

• These differentials define virtual motions. The first
order segment on the tangent represent inertial
motion. The second order segments represent uni-
formly accelerated motions toward a center of force
(either the center of the osculating circle or the
center of force in central orbits). They also fix a
mechanism to draw orbits.

• Proposition 1 gives the drawing mechanism, which
is Hooke’s method4; accordingly, a central orbit
is obtained by the composition of two virtual
motions: a uniform motion along the tangent, and
a motion similar to a gravitational fall to the center
of force.

2.1. The second order differentials in general non
uniform motions

In this section it is shown: Lemma 9 identify a sec-
ond order area; lemma 10 interprets this area as dis-
tance moved in uniformly accelerated virtual motions;
lemma 11 identifies this motions: it is a “fall” from the
tangent to the curve on a line through the center of force,
which is either the center of the osculating circle or the
center of force in orbital motion.

2.1.1. Lemma 9: second order areas

Lemma 9 is stated in Fig. 1. In the figure, Abc is a
first order arc of an arbitrary curve; ABC is an arc
of another curve, tangent to Abc at A; AFGfg is the
tangent common to both curves at A. The curved areas
Ace e Abd, . . . , and the curved areas ACE e ABD, . . .
are successive figures in the limit that c tends to A and
C tends to A, respectively. The right triangles Ace e
Abd, . . . , and the right triangles ACE e ABD, . . . are
successive figures in the limit that c tends to A and C
tends to A, respectively.

It is demonstrated:

cuved area Abd

curved area Ace
≈ area △Afd

area △Age
= area △AFD

area △AGE

≈ curved area ABD

curved area ACE
;

on the other hand, exactly:

area △Afd

area △Age
=

(
Ad

Ae

)2

=
(

df

eg

)2

and

area △AFD

rea △AGE
=

(
AD

AE

)2

=
(

DF

EG

)2

.

4 That the drawing mechanism in Proposition 1 is given by Hooke’s
method is not disputed. The contention is whether Newton had a
different method before 1679.
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Figure 1: Second order areas. These are the areas of the
triangles Age, and the curved areas ACE, . . . .

Lemma 9 means that the curves tend to the common
tangent, or that cg, bf, . . . and CG, BF, . . . respectively
approach the tangent, in the same ratio that the curved
areas tend to the areas of the right triangles △Age,
△Afd, . . . and △AGE, △AFD, . . . , respectively.

Furthermore, the areas are in the same ratio as the
square of the sides of the right triangles. The parameter
that measures how much a point on the tangent goes
away from A is the length of the segment on the tangent,
or ∆λ; but the hypotenuses of the right triangles of sides,
AD and FD, ad and fd, etc. are on the tangent, so
that (a side being proportional to the hypotenuse for a
fixed angle ĉAb) it follows that the areas are proportional
to ∆λ2.

2.1.2. Lemma 10: existence of a uniformly
accelerated virtual motion

Lemma 10 is obtained from lemma 9 by an appropriate
interpretation of the axes ce and eA. Calling ‘time’ the
direction Ae, and ‘speed’ the direction ce, or vice-versa,
the right triangles △Age, △Afd, △AGE and △AFD
are the graphic velocity versus time in a uniformly accel-
erated motion. Therefore, the curved areas in Fig. 1 are
interpreted as distances moved in uniformly accelerated
motions ([6], p. 437):

Lemma 10. The spaces which a body
describes when urged by any finite force
whether that force is determinate and
immutable or is continually increased or con-
tinually decreased, are at the very beginning
of the motion in the squared ratio of the
times.

Corollary 4 to lemma 10 introduces the force ([6], p. 438):

And thus the forces are as the spaces
described at the very beginning of the motion
directly and as the squares of the times
inversely.

The spaces “urged . . . at the very beginning of the
motion” are the segments cg, bf , . . . , and CG, BF , . . . ,
in Fig. 1.

2.1.3. Lemma 11: identification of the uniformly
accelerate virtual motion

Lemma 11 is stated in Fig. 2. In the figure, arcAB is
a first order arc of some curve. △ABG, △Abg, . . . are
successive triangles in the limit that B tends to A; in the
limit, G and g tend to J , the lower end of the diameter
of the osculating circle.

Lemma 11 states that for small arcs (AD ∝ ∆t; AB ≈
arcAB ∝ ∆t):

lemma 11: BD ∝ AB
2

2R
, (1)

where R is the radius of the osculating circle.
The proof starts from the assumption that △AGB,

△agb are respectively similar to the right triangles
△ABC and △abc. Therefore, △AGB and △agb must be
triangles inscribed in semi circles. Therefore lemma 11
introduces the osculating circle and the curvature. But
AB is meant to be an arc of an arbitrary curve, so that
Newton is taking the circle as a first order approximation
to the curve. Lemma 11 associates the curvature with
a uniformly accelerated motion: the “bending” of the
tangent results from a uniformly accelerated motion,
in which points on the tangent “fall” to the center of
the osculating circle, “wrapping” the tangent around it.
Once △AGB, △agb, . . . are recognized as right triangles,
the remaining of the proof is “non-illuminating”.

Newton uses the Latin word for arrow — sagitta —
to name the arrow that bisects the chord AB (and the

Figure 2: Second order segments. These are the segments
DB, db, . . . , whatever their inclination with respect to the
tangent.

Revista Brasileira de Ensino de Física, vol. 45, e20230263, 2023 DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0263



Dias e20230263-5

arc arcAB). It is a corollary that the inclination of BD
is arbitrary, so that lemma 11 can be applied to the
sagitta, as well. This can be explained: when the point is
fixed, the angle between BD and the sagitta (which goes
through the center of the circle) is also fixed, so that the
angle between them (and their circular functions) can
be taken as constants (at the point). Then:

sagitta ∝ BD

Lemma 11: BD ∝ (AB)2

2R

then: sagitta ∝ (AB)2

2R .

Then corollary 3 to lemma 11 gives dynamic meaning to
the sagitta ([6], p. 440):

Corollary 3 [to lemma 11]. And thus the
sagitta is in the squared ratio of the time in
which a body describes the arc with a given
velocity.

In mathematical notation, sagitta ∝ (∆t)2; in fact by
the law of inertia, AB ∝ ∆t.

Lemma 11 can be stated:

distance of “fall” = sagitta ∝ (∆t)2
. (2)

This result means that the uniformly accelerated
virtual motion found in lemmas 9 and 10 is the “fall”
from the tangent to the osculating circle, along a line
through the center of the osculating circle. The force is
proportional to the sagitta, according to Galileo’s law for
the uniformly accelerated motion.

The language of proportions is essential in the argu-
mentation. It also allows to conflate a line through
the center of force and a line through the center of
the osculating circle, as already mentioned. Therefore,
Equation 2 can be applied to a central orbit, as in
proposition 1.

2.2. Method to trace central orbits by moving
points

The method of tracing orbits is Hooke’s method, illus-
trated in Fig. 3. A body at A moves uniformly to B,
in an interval of time ∆t. If the body continues in its
uniform motion, in an equal time interval it moves a
distance Bc = AB. However, if the body receives at
B a push toward S (the center of force), it goes to C
in ∆t, and not to c. And so successively, so that the
body describes the polygonal line ABCDEF . . . . In the
process a curved motion is obtained by the composition
of two motions:

1. A uniform motion on the tangent (AB).

2. A uniformly accelerated motion along BV , accord-
ing to the second order nature of BV . In Fig. 3, BV
is toward the center of force, so that the polygonal
orbit is a central orbit5.

5 The center of the osculating circle also is a center of force, so
that the decomposition holds for any curved motion.

Figure 3: Drawing a central orbit by the motion of a point
(proposition 1). S is the center of force. The orbit is the
polygonal line ABCDEF . . . . AB = Bc, ABCV e BcCV are
parallelograms. A⃗V = A⃗B + B⃗V = B⃗C = B⃗c + c⃗C.

Figure 4: Parameters of an orbit (proposition 6). S is the center
of force, SP is the radius vector, QT ⊥ SP , area △SP Q ≈
SP × QT ∝ ∆t.

These motions occur in an infinitesimal instant ∆t. They
are “instantaneous (virtual) motions”.

The central force acts along BV . Clearly, sagitta ∝
BV , and using Equation 2,one obtains the fundamental
equation that caracterizes the uniformly accelerated
motion:

distance = sagitta ∝ force × ∆t2,

or

BV ∝ central force ∝ sagitta
∆t2 . (3)

Fig. 4 defines the parameters involved in a central
motion. The segment QR is (proportional to) the sagitta
of an arc twice arcPQ with P at the middle. From
Equation 3, and the geometry of the segments in Fig. 4,
Newton proves a relation between the force and the
parameters of the curve:

force ∝ QR(
SP × QT

)2 . (4)

This is the solution to the “direct problem” — find the
force, given the curve.

3. The Intermediate Work: “De Motu”
(August–December 1684)

Although the story of the Principia starts with Edmond
Halley’s visit to Newton in August 1684, as already said
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Table 1: “De Motu” versus “Principia”. Equivalence between
propositions and theorems.

De Motu Principia Meaning
theorem 1 proposition 1 proof of the law of areas
theorem 2 proposition 4 expression of the centripetal force
theorem 3 proposition 6 proof of the direct problem

(footnote 1), the “real beginning” of the book is the treat
De Motu6, placed by Bernard Cohen close to Halley’s
second visit in December 1684 ([11], p. 61):

[. . .] when we talk of the real beginning of the
Principia, we cannot go back much before
Halley’s second visit: true first steps toward
the Principia as a treatise must be dated in
November or December of 1684.

The structure of the treat is similar to the structure
of the Principia. Tab. 1 compares theorems in the De
Motu and in the Principia.

Hypothesis 2 introduces the law of inertia, the other
two laws are absent. The content of lemma 10 is
introduced as a hypothesis ([10], p. 33):

Hypothesis 4. The space which a body, urged
by any centripetal force, describes at the very
beginning of its motion is in the doubled
ratio of the time.

Instead of the general lemma 11, theorem 2 introduces
the centripetal force; the proof of the theorem and the
identification of the force are done with the aid of Fig. 5.
The ‘centripetal force’ is then defined ([10], p. 31):

Definition 1. A ‘centripetal’ force I name
that by which a body is impelled or attracted
towards some point regarded as its centre.

The centripetal force has the same dynamic meaning of
the segments in lemma 11, Fig. 2 ([10], p. 39):

[t]he centripetal forces are those which per-
petually drag the bodies back from the tan-
gent to the circumferences and hence are to
each other as distances CD, cd surmounted
by them [. . .].

6 Bernard Cohen [11] reconstructs the development of Newton’s
ideas on dynamics from the various manuscripts to the copy to the
printer, as well modifications in the editions. He lists the following
manuscripts: several versions of the tract De Motu; two fragments,
De Motu Corporum in medijs regulariter cedentibus ([10], pp. 188–
194; [12], 1965, pp. 304–308;) and De Motu Corporum: definitiones
([10], pp. 92–96; [12], pp. 315–317;); the Lucasian Lectures, ([11],
p. 61) “closely resembling the manuscript [. . .] used for printing
the Principia [. . .]”, composed of a set of manuscripts that Cohen
([11], p. 85) reconstructs as De Motu Corporum Liber Primus.
The manuscript written between Halley’s two visits is called
“The original De Motu” by Whiteside ([10], pp. 30–74); it is the
document “De Motu Corporum in Gyrum”, in Herivel’s edition
([12], pp. 257–274).

Figure 5: The centripetal force. The force is along cd and CD
and tend to the radius of the circle.

The figure corresponding to theorem 3 in de Motu (direct
problem) is identical to Fig. 4; hypothesis 4 defines QR
as describing a uniformly accelerated fall, so that QR ∝
(∆t)2; also, QR is proportional to the centripetal force,
so that QR ∝ (force) × (∆t)2. Equation 4 is proved in
the same way as it is proved in the book. The proof
points to a subtlety also found in lemma 10: Newton
conflates central and centripetal forces; this is possible
for infinitesimal segments, because at a fixed point the
angle between them can be considered constant, so the
forces are proportional.

4. The Early Documents

The documents present two different calculations of the
“conatus”. The first manuscript is dated between 1664
and 1665. Herivel [12] places the second manuscript in
1669, and Rupert Hall ([16], p. 64) places it earlier than
1671.

4.1. The first document (c. 1664–1665)

The calculus of the “conatus” is approached as follows
([12], pp. 128–132). A small sphere (b) moves inside
a circle (Fig. 6); it collides with the circle, rebounds,
collides again, and so forth, so that it describes the
square abcd. Newton proves:

“pressure” of the sphere on the circle
“force of motion”

= perimeter of the circle
radius of the circle .

The proof is geometric, and involves only the similar-
ity of △abd and △afb, and the a definition of “force of
motion” (mv) and “pressure” (bn)7.

The terms ‘force of motion’ and ‘pressure’ do not nec-
essarily have dynamic meaning, they could as well have
kinetic meaning (respectively momentum and acceler-
ation)8. Newton’s “pressure” is as reminiscent of the

7 From △abd ∼ △afb: db
ab

= ad
af

= ab
fb

. Or pressure
force of motion = ad

af
=

ab
fb

. But ad
af

= ab
fb

= side
radius , or pressure

force of motion = side
radius . After

four collisions, pressure
force of motion = perimeter

radius . In the limit in which
the number of sides tends to infinity, pressure

force of motion = 2πr
r

= 2π.
8 A similar construction is made to introduce the centripetal
acceleration, in introductory physics courses.
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Figure 6: First calculation (1664–1665). A sphere hits the
circle from the inside, describing the square abcd. The “force of
motion” is defined by ab (∝ mv); the “pressure” of the sphere
on the circle is along the diameter bnd.

modern concept of ‘force’ as Renè Descartes’s centrifugal
tendency or “effort” in circular motions ([17], pp. 45–47;
[18], pp. 131–1339.

Furthermore, as indication that the “pressure” is
centrifugal, the sphere in Fig. 6 is inside the circle. It
can be objected (Brackenridge, 1995, p. 47–48):

Implicit in this statement is Newton’s under-
standing that the impulsive force exerted by
the body b on the side of the square fg at
a reflection is equal to the impulsive force
exerted on the bdy by the square (i.e. action
and reaction).

However, the third law was first stated in De Motu
Corporum in medijs regulariter cedentibus [1], which was
written after the De Motu.

Nevertheless this calculation points to the dynamic
process in Hooke’s method. Fig. 6 is similar to Fig. 3;
completing △abc in Fig. 6, its sides have the same
meaning as the sides of △ABV in Fig. 3:

1. In △abc: b⃗c − a⃗b = b⃗d = 2b⃗n. But mv⃗ab = a⃗b and
mv⃗bc = b⃗c, so that ∆ (mv⃗) = 2b⃗n.

9 Descartes explains the “natural tendency” of bodies to go away
from the center of a circle [19]. A stone rotates in a sling, and
is released. Then it moves uniformly on a straight line tangent to
the circle (gravity absent). Taking the center of the circle described
by the sling as the center of (plane polar) coordinates, Descartes
argues that the uniform velocity is everywhere decomposed in two
components: one is along the radius, and the other is perpendicular
to the radial component; circular motion occurs, when the radial
motion is hindered by an obstacle (“empesché”, in Descartes’s
words). Descartes then imagines ([18], p. 131–133) an infinite rule
rotating around an end, and an ant moving on it; in order that
the ant be seen moving (uniformly) on a straight line as the ruler
rotates (as is seen by an observer external to the cylinder, of
course), the ant “fait an effort” (p. 132) , which is conceptually
the same as the “effort” made by the stone in the sling to move
away from the center of the circle. In other example, a small sphere
moves inside an infinite cylinder that rotates around an extremity;
then (p. 133) “[. . .] la pierre qui est dans une fonde, fait tendre la
corde d’autant plus fort qu’on la fait tourner plus vite”.

2. In △ABC: B⃗C − A⃗B = B⃗V . But mv⃗AB = A⃗B
and mv⃗BC = B⃗C = A⃗V , so that ∆ (mv⃗) = B⃗V .

Once Newton learned Hooke’s method, he might have
recognized that his earlier construction was similar to
Fig. 3, and could be similarly interpreted. This implies
the composition of motions expressed by b⃗c − a⃗b = b⃗d,
which demands that the “pressure” be inwards.

The claim that prior to the Principia, Newton already
had a method to draw orbits (and that it was the
“method of curvature”) is based on a corollary to the
calculation ([12], p. 130):

If the body b moved in an Ellipsis that its
force in each point (if its motion in that point
bee given) [will?] bee found by a tangent
circle of Equall crookednesse with that point
of the Ellipsis.

This corollary does not necessarily indicate a “method
of curvature” to draw orbits. Newton introduced the
concept of ‘curvature’ in the October 1666 version of the
Tract on Fluxions; in the quotation, he only recognizes
that the circle in Fig. 6 can be the osculating circle at
some point of an ellipse, in which case the “pressure”
on the ellipse is similarly calculated. This does not
add anything else to the construction of a dynamics,
that is not already in Fig. 6; it at most shows how
the calculation can be applied to planetary motions.
Nevertheless, I agree that if Newton had a method of
curvature, this was it.

4.2. The second document (c. 1669)

In the document ([12], pp. 192–198; [16]), Newton
considers a body moving on a circle with uniform speed
v (Fig. 7). In an infinitesimal time t, it moves arcAD; if
the body leaves the circle at A, it moves in the same time
a distance AB = vt on the tangent; also arcAD ≈ AB.
The radial distance away from the circle is BD. In a time
equal to the period of the circular motion (τ), the body
moves the whole circumference, C = 2πr. The problem
stated by Newton is to find x such that

BD

x
= (arcAD)2

C2 or BD

x
≈ AB

2

C2 . (5)

The proof starts from a geometric property of circles:

(
AB

)2 =
(
BD

)
×

(
BE

)
. (6)

For small arcs, BE ≈ DE = 2r, and the geometric
Equation 6 can be written

(
AB

)2 ≈
(
BD

)
×

(
DE

)
(7)
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e20230263-8 Isaac Newton’s early documents on circular motion

Figure 7: Second calculation (1669). The body leaves the circle
at A. The segment AB represents a uniform motion with the
speed at A. The segment BD is the distance moved away from
the circumference.

hence: (
AB

)2

C2 ≈
(
BD

)
×

(
DE

)
C2 ≡

(
BD

)
C2

(DE)
. (8)

Comparing Equation 8 with Equation 5: x ≡ C2

(DE)
10.

Equation 6 is geometric; it involves the square of AB,
therefore AB

2 is to be compared with C2. The variable
“time” is introduced by the law of inertia: AB = vt
and C = vτ ; this is also the time to move BD, hence
from Equation 6, BD ∝ t2. Therefore the parameter
t2 need not be introduced by a dynamic principle: it
can be justified from the motion on the tangent, which
is uniform. Furthermore, as in the first calculation, the
circle is static, and not traced by the motion of a
point, so that BD (Fig. 7) does not belong in the same
framework of thinking as segments BV (Fig. 3), QR
(Fig. 4), and CD and cd (Fig. 5).

Once BD is recognized to be proportional to t2, it is
possible to make an analogy with a uniformly accelerated
motion ([12], p. 195):

Now since the endeavour, provided it were to
act in a straight line in the manner of gravity,
would impel bodies through distances which
are as the square of the times: [then Newton
states the problem].

This analogy is not entirely a novelty: it had already
been made by Christiaan Huygens. He proves in the
De Vi Centrifuga [20] many theorems on the centrifugal
force11, and treats the problem dynamically from the

10 Anachronistically, BD ≈ 1
2

(
v2

r

)
t2.

11 Although the book, written in 1673, was published only in 1703,
much after Huygens’s death, the theorems were stated at the end
of Horologium Oscillatorium [21], published in 1673. Huygens sent
a copy to Newton, through Oldenburg, as documented in a letter

beginning: he proves that the centrifugal “tendency” is
analogous to a fall, then segments such as BD are as
t212; Newton in the above passage reasons in the inverse
direction: the analogy with a weight is only formal, and
is based on the t2 dependence, but this dependence need
not represent an actual motion of fall by which the circle
is drawn, as commnmeted in Sect. 4.1.

Textual evidence that Newton does not think in terms
of a centripetal “conatus” is given by the words with
which he frames two corollaries to the calculation: he
refers to the Moon as “receding” from the Earth and
planets as “receding” from the Sun. The first is ([12],
p. 196; italics are mine):

And so the force of gravity [as at the surface
of the Earth] is 4000 and more times greater
than the endeavour of the Moon to recede
from the centre of the Earth.

In the second, using Kepler’s third law, Newton finds an
expression for the “endeavour” to recede from the Sun
([12], p 197; italics are mine):

Finally, since in the primary planets the
cubes of their distances from the Sun are
reciprocally as the squares of the numbers
of revolutions in a given time the endeavours
of receding from the Sun will be reciprocally
as the squares of the distances from the Sun.

The two corollaries have been taken as evidence that
Newton already had the law of universal gravitation. In
view of the analysis of Newton’s conceptual framework,
this seems not well founded, because the “pressure” is
centrifugal.

5. Answer to the Question in the Title

A signature of the mature dynamics described from
De Motu on is that the geometric segments are “ani-
mated” in the sense that they are associated with a
dynamic motion described by a moving point mass.
It means that an orbit can actually be drawn by a
graphic program, such as GeoGebra [23], or by numerical
computation [14], or by hand (as certainly did Newton).
The treat De Motu contains this structure, but not yet
in the sophisticated form it attains in the Principia.

Of course, one can always claim that a t2 dependence
means that a motion is uniformly accelerated; but there

from Oldenburg to Newton, on June 4, 1673 ([5], v. 1, p. 284).
Newton answers to Oldenburg on June 33, 1673 ([5], v. 1, p. 290):
“I received your letters wth M. Hugens kind present, wch I have
viewed wth great satisfaction, finding it full of very subtile &
usefull speculations very worthy of ye Author”.
12 Huygens argues [22] that the centrifugal tendency on a small
sphere held by a person standing at the top of a wheel is canceled
by the weight of the sphere. Therefore, the centrifugal tendency is
equivalent to a weight. When released, the sphere moves uniformly
on the tangent, but at its beginning, the motion away from the
center of the wheel is similar to the free fall.

Revista Brasileira de Ensino de Física, vol. 45, e20230263, 2023 DOI: https://doi.org/10.1590/1806-9126-RBEF-2023-0263



Dias e20230263-9

is not a hint in the early documents that the segments
proportional to t2 are associated with a motion: the
dependence is entirely justified on geometric and kine-
matic arguments13.

The association of bn (Fig. 6) and BD (Fig. 7) with a
fall to the curve relies on the change from a centrifugal
to a centripetal “pressure”; as seen in Sect. 4.1 and
in Sect. 4.2, Newton thinks in terms of a centrifugal
“pressure”, which has been pointed by many authors.
In the Introduction, I mentioned that Cohen weakened
his initial claim. Acccording to the new claim, what
Newton learned was the change from a centrifugal to a
centripetal force, not the composition of motions; I could
not disagree more: the circle in Fig. 6 is static, and
the composition of motions is what turns a static circle
into a dynamic one; of course, for the composition to be
possible, the “pressure” must be centripetal.

The comparison between the early and the later
documents corroborates the claim that the structure
of Newton’s mature thinking is not found in the early
documents. Sometime in the intervening twenty years
between the early manuscripts and the De Motu, Newton
made a breakthrough. According to Bernard Cohen, it
was triggered by Hooke’s method to draw orbits (Fig. 3).

6. The Missing Piece: the Curve in the
Letter on December 13, 1679:

Answering on November 28, 1679 to an invitation made
by Hooke (November 24, 1679) to comment on his
method, Newton proposes a new problem ([5], v. 2,
p. 300–303); leaving aside Newton’s motivations, the
problem can be given an anachronistic statement: to
find the orbit of a body moving in a central field of
force of constant magnitude, F⃗ (r) = mgr̂. The solution
in the letter is a spiral. The spiral was criticized by
Hooke (December 9, 1679), who proposed instead an
“elliptueid” ([5], v. 2, pp. 304–306). On December 13,
1679 Newton sent Hooke a new solution, the curve in
Fig. 8 ([5], v. 2, pp. 307–308).

The correct solution to the problem for an orbit near
the circular orbit is in Fig. 9 [14]. It was obtained using
a method of numerical integration, which is sufficient
precise to be taken as a pattern.

6.1. Numerical computation helps to decide the
method of drawing the orbit

Nauenberg [7] shows that Newton drew the curve by the
method of curvature up to the axis of symmetry (CO),
and then reflected it; the curve so obtained is similar
to the curve in the letter. Furthermore, as observed by
many historians, the pericenter in Newton’s drawing is
displaced downwards, i.e., the angle ACO in the drawing

13 Although acceleration is proportional to force, Newton’s second
axiom first appears in the Principles. However it is meant to be a
definition, as shown by Cohen [24].

Figure 8: Newton’s solution. The orbit drawn on 12/13/1679.

Figure 9: The correct solution. Solution of the equation m d2r⃗
dt2 =

mgr̂ for an orbit close to the circular orbit, obtained by
numerical computation. Its similarity with Fig. 8 is striking.

is bigger than it should be; this is accounted for by an
error in reflecting, as Nauenberg correctly shows.

Cardozo Dias and Stuchi [14] solved the problem using
three different methods other than the method used in
Fig. 9: Hooke’s method, the “method of curvature” and
a third method called “generic”14; these methods are
rephrased in the language of numerical computation,
and the solutions are then compared with the pattern
in Fig. 9. For orbits close to the circular orbit, the
three methods agree with each other up to some point
(not far from the pericenter). Beyond the point, Hooke’s
method closely follows the pattern, but the other two
methods diverge from it: (1) they leave the circle, then
go back inside it; (2) they display higher eccentricities.
Therefore, of the three methods, Hooke’s is the one that
come the closest to the orbit by Newton, and to the
orbit in Fig. 9. As to the position of the pericenter,
adding Newton’s error to the pericenters found by the
three methods, the pericenter in Hooke’s method is the
one that leads to a value closest to the value in Fig. 8,
measured with a protractor.

14 The “generic” method is called “Euler’s method” in numerical
computation. To avoid the anachronistic name and unnecessary
criticisms, the name has been changed.
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e20230263-10 Isaac Newton’s early documents on circular motion

That Newton used the “method of curvature” cannot
be entirely disclaimed on the matching of the curves,
because in each of the three methods the curves match
up to a certain point: it happens that Newton drew
the matching segment, and reflected it; unhappily many
historians are mislead into believing in the “method
of curvature” ([25], p. 236). However, the “method of
curvature” does not account for the position of the
pericenter in Newton’s drawing, as does Hooke’s method.
Furthermore, the method of curvature is awkward. It
suffices to try to draw the curve following the script
in Nauenberg [7] and in Brackenridge and Nauenberg
[9]; the method demands algebraic calculations of the
centripetal forces and the measure of angles.

6.2. Newton’s explanation of the construction in
the December 13 letter

In his letter (December 13), Newton gives an explanation
of the curve ([5], v. 2, p. 307–308)15. Herman Erlich-
son [13] shows that Newton’s words fit the construction
in Fig. 10.

The curve is the polygonal ARSTUV, . . . , so built:

1. Each side is extended by a segment equal to
it: RR′ = AR, SS′ = RS, TT ′ = ST, UU ′ =
TU, . . . . The extensions respectively represent uni-
form motions with the speed at the beginning of
the segment, respectively R, S, T, U, . . . .

2. The points R, S, T, U, . . . result from “falls” from
R′, S′, T ′, U ′, . . . , respectively. The “fall” is equal

15 Suppose A ye body, C ye center of ye earth, ABDE quartered
wth perpendicular diameters AD, BE, wch cut ye said curve
in F & G; AM ye tangent in wch ye body moved before it
began to fall & GN a line drawn parallel to yt tangent. When
ye body descending through ye earth (supposed pervious) arrives
at G, the determination of its motion shall not be towards N but
towards ye coast between N & D. Two motions are compounded
at each instant: a motion parallel to AM , and a “converging
motion” generated by gravity. For ye motion of ye body at G
is compounded of ye motion it had at A towards M & of all
ye innumerable converging motions successively generated by ye
impresses of gravity in every moment of it’s passage from A to
G: the motion AM takes the body to a place parallel to GN . The
motion from A to M being in a parallel to GN inclines not ye body
to verge from ye line GN . The other motion, takes the body at G
to a point below G, and away from D: The innumerable & infinitly
little motions (for I here consider motion according to ye method
of indivisibles) continually generated by gravity in its passage from
A to F incline it to verge from GN towards D, & ye like motions
generated in its passage from F to G incline it to verge from GN
towards C. But these motions are proportional to ye time they are
generated in, & the time of passing from A to F (by reason ofye
longer journey & slower motion) is greater then ye time of passing
from F to G. And therefore ye motions generated in AF shall
exceed those generated in F G & so make ye body verge from GN
to some coast between N & D. The nearest approach therefore of
ye body to ye center is not at G but somewhere between G & F as
at O. And indeed the point O, according to ye various proportions
of gravity to the impetus of ye body at A towards M , may fall any
where in ye angle BCD in a certain curve wch touches ye line BC
at C & passes thence to D. Thus I conceive it would be if gravity
were ye same at all distances from ye center.

Figure 10: Erlichson’s reconstruction. Remake of the figure in
[13].

at each point, so that A′R = R′S = S′T = T ′U =
U ′V = · · · ∝ mg, but is directed to the center of
force C, so that A′R ∥ CA, R′S ∥ CR; S′T ∥ CS,
T ′U ∥ CU ; U ′V ∥ CU .

Erlichson dores not mention that this is the method in
Fig. 3, nor that this is Hooke’s method; but he is not
discussing priorities.

7. Comments

In the Introduction, I quote Bernard Cohen’s comments
that Newton’s ideas on mechanics in the period between
the exchange of letters with Hooke and the De Motu
are not documented. However, reconstructive analysis
also produces evidences: it shows “tools for thinking”
(I borrow the expression from Mathias Schemmel [26]),
and it makes possible to decide whether documents
belong in a common thinking framework, or whether not.
These evidences are much in need, when documentary
evidences are misunderstood, scarce, and historiography
too contentious. The reconstruction of the documents
made in this paper is such a kind of evidence16, and
so is Erlichson’s hermeneutic reconstruction of Newton’s
letter17.

16 In this paper many arguments already presented in [27] are
improved and new arguments are added.
17 This is not the actual trend in the history of physics. The
preference is for narratives that cover a large period of time
(perhaps too large), placing primary sources in general contexts.
The result is that the meaning of the papers is not taken into
account.
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The sequence of letters establishes a chain of events
leading to the mature conceptual structure shown in the
De Motu:

• Hooke’s letter on November 24 possibly brought
Newton’s interest to the investigation of the
drawing of mechanic orbits in specific physical
problems, and called attention to the centripetal
“pressure”. The similarity between Fig. 6 and the
method (such as Fig. 3 in proposition 1) might have
been a motivation. Newton started experimenting
with Hooke’s method.

• The spiral (November 28) is a puzzle. It is an exact,
integrable solution for a central force of magnitude
proportional to r−3 (which Newton proves in the
Principia).
A hypothesis is that Newton used some systematic
method, such as Hooke’s, but made a mistake.
For instance, if the steps of integration in Hooke’s
method are large, in two or three steps the curve
goes far inside the circle, as in Fig. 10 above, which
may suggest a spiral, misleading Newton.
Hooke’s criticism led Newton to review his draw-
ing, and he realized that he had to consider
“motion according to ye method of indivisibles”
in which a motion is composed in small steps
by “innumerable & infinitly little motions”, as
he states in the letter with the reviewed curve
(December 13).

• In the four days between December 9 and Decem-
ber 13, Newton made advances in mastering
Hooke’s method, as shown by Erlichson’s analysis.
Methods of numerical computation allow a more
precise reproduction of the method in Fig. 10 and
Fig. 3.
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